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Abstract

Contour-based instance segmentation methods represent masks through a series of
points. However, the point number is fixed once the model is trained, which limits the
model’s flexibility in dealing with various instances. We follow this issue and present
an idea to predict an appropriate number of points dynamically according to instance
shapes. Concretely, we observe that the leaf locates coarse margins via major veins and
grows minor veins to refine twisty parts, which helps cover any masks accurately. Mean-
while, major and minor veins share the same growth mode, which makes it possible to
generate minor veins dynamically according to the trained major vein mode. Consider-
ing the superiorities above, we propose VeinMask to formulate the instance segmentation
problem as the simulation of the vein growth process and to predict the major and minor
veins in polar coordinates for instance segmenting.

Besides, centroidness is introduced for instance segmentation tasks to help suppress
low-quality instances. Furthermore, a surroundings cross-correlation sensitive (SCCS)
module is designed to enhance the feature expression by utilizing the surroundings of
each pixel. Additionally, a Residual IoU (RIoU) loss is formulated to supervise the re-
gression tasks of major and minor veins effectively. Experiments demonstrate the effec-
tiveness of VeinMask. Particularly, our method outperforms existing one-stage contour-
based methods on the COCO dataset with almost half the trained point number. Code is
available at: https://github.com/omtcyang/veinmask.

1 Introduction
Instance segmentation is one of the challenging computer vision tasks, which provides es-
sential information for many intelligent applications (such as security monitoring and self-
driving). With the rapid development of deep learning, instance segmentation has achieved
great progress. Some works [23, 29] follow the intuitive idea and aim to represent instances
through dense contour points and predict them via detection techniques only, which ensures
simple pipelines. However, these methods suffer from the same problem: the point number
is fixed once the model is trained. It limits them to deal with various instances flexibly.
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Figure 1: Visualization of VeinMask. (a) shows the details of VeinMask and (b) illustrates
that how those major and minor veins are modeled in the same polar coordinate.

(a) PolarMask [23] (b) E2EC [29] (c) Ours
Figure 2: Visualization of the essential differences between VeinMask and previous works.
The ‘white lines’ in (a)–(c) are predefined for generating a series of points. The point number
is fixed once the model is trained. The ‘black lines’ in (c) are generated dynamically in the
inference process according to instance geometries.

Considering the issues above, we aim for pursuing to generate an appropriate number of
points to cover instance masks according to their shapes in the inference process. Specif-
ically, We combine morphology with deep learning and propose to simulate the leaf vein
growth process to segment instance masks. As shown in Figure 1(a), the leaf vein, a directed
graph that can represent any complex geometries, is composed of major and minor veins.
In the growth process, major veins sprout out from the root to locate the coarse leaf margin
at first. Then, minor veins grow from the node to refine the twisty part. We observe the
process and find that major and minor veins share the same growth mode. It means we can
grow minor veins following the major vein mode, which makes it possible to generate ap-
propriate points for various instances dynamically in the inference process. Inspired by the
superiorities above, we design VeinMask and construct a single-shot instance segmentation
framework based on it, which simulates the leaf vein growth process to segment instances
dynamically according to instance mask shapes (Figure 2(a)–(c)). Concretely, we model ma-
jor and minor veins through a polar coordinate with n directions (as depicted in Figure 1(b))
to assemble masks by the following steps: (1) locating the coarse contour through instance
centroid (‘root’) classification and dense distance (‘major vein’) regression in the polar co-
ordinate built at the root; (2) exploring the twisty part origin (‘node’) according to adjacent
major veins; (3) refining the twisty part through dense distance (‘minor vein’) regression
in the polar coordinate built at the node dynamically; (4) assembling instance contour by
connecting all endpoints of major and minor veins in a clockwise direction.

Meanwhile, we present centroidness to help suppress low-quality instances in the infer-
ence process. It forces our method to focus on the instance centroid and spreads around in
a Gaussian distribution, which is more effective for instance segmentation tasks and easier
to learn for the model. Besides, considering the vein plays a key role in assembling instance
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masks and the weak features make it hard to regress veins accurately, a surroundings cross-
correlation sensitive (SCCS) module is proposed. It helps the model utilize the surrounding
information of each pixel to encourage extracting strong expression features while ensuring
the enhanced pixel dominance to the surroundings, which can suppress the negative effects
brought by surrounding features. Furthermore, a Residual IoU (RIoU) loss is formulated for
supervising the regression of the major and minor veins. It inherits the IoU loss [28] advan-
tage to correlate the veins in all directions of polar coordinates. Particularly, our RIoU loss
focuses on the residual between the predicted and real values, which can optimize the model
more effectively. The contributions are summarized as follows:

1. We combine morphology with deep learning to design a VeinMask, which simulates
the leaf vein growth process to generate an appropriate number of contour points for
representing instances accurately. It helps enhance model’s ability for dealing with
different shape masks flexibly.

2. Centroidness is proposed for suppressing low-quality results. It focuses on the instance
centroid and spreads around in a Gaussian distribution related to the instance geome-
tries, which can easier bring significant performance gains for instance segmentation
tasks compared to the centerness in FCOS and PolarMask.

3. A surroundings cross-correlation sensitive (SCCS) module is introduced. It helps our
model enhance the feature expression by utilizing the surrounding information of each
pixel to encourage regression tasks. Importantly, the module ensures the enhanced
pixel dominates to surroundings, which can suppress the negative effects brought by
surrounding features.

4. A Residual IoU (RIoU) loss is formulated for supervising the regression of the major
and minor veins. Remarkably, it inherits the IoU loss [28] advantage and focuses on
the residual between the predicted and real values, which is more effective for instance
segmentation tasks compared to IoU loss and Polar IoU loss.

2 Related Work
Mask-based instance segmentation methods. The intuitive idea for instance segmentation
is combining existing object detection and semantic segmentation techniques. Typically,
Mask R-CNN [8] followed the design of Faster R-CNN [16]. It predicted the bounding
boxes of instances at first and then segmented precise masks within the boxes, which inspired
plenty of following works (such as PANet [12] and Cascade Mask R-CNN [2]). However,
these methods failed to segment large instances precisely because of ROIAlign operators.
With the development of one-stage detection methods, some works [1, 3, 19, 27] proposed
to segment masks on the whole feature maps directly, which accelerated the inference speed
while ensuring competitive performance. However, they had to assemble instance masks
through complex processes. SOLO [20, 21] followed the design of YOLO [15]. It segmented
masks by predicting the relationships between each pixel and all grids. However, the grid
mechanism made the detection of small instances difficult and depended on the grids deeply.

Contour-based instance segmentation methods. Mask-based methods adopt a hybrid
design of detection and segmentation, which leads to inherent model complexity. To pursue
a straightforward and effective instance segmentation pipeline, recent methods [5, 13, 14,
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Figure 3: Overall architecture. H and W are the height and width of feature maps. k and n
are the instance category number and the polar coordinate direction number. Vein growth is
responsible for assembling masks. The ‘white circles’ are fixed contour points. The ‘black
circles’ are generated dynamically according to instance shapes.

22, 23, 25, 26, 29] formulated instance segmentation problem as contour points prediction.
DenseReppoints [26] predicted a series of boundary points and the corresponding categories
to represent instance masks. Some researches [13, 14, 22, 29] proposed to regress ordered
contour point sequences. They improved the predicted point reliability through a multi-
stage point refinement structure and achieved remarkable performance. But the refinement
structure complicated the model seriously and brought expensive research costs (such as
computational and time costs) for the following researchers. PolarMask [23] inherited the
anchor-free detection framework [18]. The authors regressed the offsets between instance
centers and boundaries to generate dense ordered contour points for rebuilding masks, which
could reach a quite fast detection speed that is almost equivalent to that of the one-stage
detectors. However, the mask cover quality of PolarMask [23] is limited.

3 Methodology
We construct a single-shot framework based on VeinMask to segment instances precisely
through an appropriate number of contour points dynamically. Our method aims to simulate
the leaf vein growth process to reconstruct instance masks. It assembles contours by the
‘root’ and ‘node’ classification and ‘major vein’ and ‘minor vein’ (see Figure 1(a)) regres-
sion. Figure 3 illustrates the details of our framework, which consists of backbone, FPN [10],
three heads (including classification, centroidness, and regression heads), and vein growth.
They will be introduced next in detail.

Building veins in polar coordinates. As depicted in Figure 1, VeinMask represents
instance masks according to the combinations of ‘root’ and ‘major vein’, and ‘node’ and
‘minor vein’ respectively. In practice, we train our model to fit a polar coordinate with n
directions (see Figure 1(b)), where each direction will generate a single contour point. For
some complex masks, our VeinMask will generate extra points dynamically based on the
polar coordinate for refining twisty parts of contours (black lines in Figure 2(c)).

Backbone and FPN. Following previous works, we extract hierarchical features (see
Figure 3P3 ∼ P7). Meanwhile, we follow FCOS [18] to allocate instances into different level
feature maps from FPN. Concretely, supposing l∗, t∗,r∗,b∗ are the distances between cen-
troids and instance bounding boxes in left, top, right, and bottom directions, the instance is
distributed to Pk if max(l∗, t∗,r∗,b∗)∈Sk, where {Sk|,k= 3,4,5,6,7}= {(−1,64),(64,128),
(128,256),(256,512),(512,+∞)}.
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Figure 4: Visualization of SCCS module. This module aims to enhance feature expression
through surrounding information.

Classification head. The head is responsible for locating instance centroids (the root
in Figure 1(a)) by classifying each pixel into k categories, where k is the instance category
number. It applies to all feature maps (P3 ∼ P7) from FPN and detects different sizes of
instances on different levels of feature maps. We refer to FCOS [18] to construct the head
through a few CNN layers.

Centroidness head. Centerness is introduced to suppress the low-quality results in
FCOS [18] and PolarMask [18]. However, it may lead to information distortion that hinders
the model from learning the correct centroid importance information in instance segmenta-
tion tasks. We follow the above issue and design centroidness for improving the reliability
of the instance centroids. Concretely, centroidness is formulated as:

wx,y = 1{l∗x,y∈mask}
min{d1

x,y,d
2
x,y, ...,d

m
x,y}

dc
x,y +min{d1

x,y,d2
x,y, ...,dm

x,y}
, (1)

where wx,y is the centroid weight at the coordinate of (x,y). dc
x,y is the Euclidean distance

between the coordinate of (x,y) and the instance centroid. {d1
x,y,d

2
x,y, ...,d

m
x,y} denotes the

set of Euclidean distances between the coordinate (x,y) and all m instance contour points.
1{l∗x,y∈mask} is the indicator function, being 1 if the pixel location (l∗x,y) within the range of
instance masks and 0 otherwise. The centroidness weight spreads around in a Gaussian
distribution related to instance shapes. It makes the weight distribution easier to learn, which
encourages our model for retaining high-quality instances more effectively.

Regression head. The regression head is used to regress the veins. As depicted in
Figure 2(c), our method needs to regress minor veins at the node for refining mask twisty
parts. However, different from the root, the node is close to the instance contour, which
leads to weak features for regressing minor veins. We follow this issue and introduce a
surroundings cross-correlation sensitive (SCCS) module (details can be found in Figure 4)
to help regress veins at the node.
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Figure 5: Visualization of the growth process of minor veins.

The module aims to enhance feature expression through surrounding information. Con-
sidering the enhanced pixel plays a dominant role in the vein regression tasks, we concatenate
the pixel feature and the cross-correlated surrounding features instead of concatenating all
features. Meanwhile, since the different sensitivity of enhanced pixels to surrounding infor-
mation in different directions, surroundings sensitive prediction is introduced to help focus
on the key information. Specifically, as shown in Figure 4, each feature map from FPN is
translated in left, top, right, and bottom directions to generate four translation features at
first. Then, the corresponding surroundings sensitive maps are predicted (A1,A2,A3,A4)
and cross-correlated (A

′
1,A

′
2,A

′
3,A

′
4). In the end, combining the translation features and

surroundings sensitive maps for enhancing the vein regression at the node.

Algorithm 1 Search Node
Require: The offset maps M; the instance centroid coordinate c; searching deep s;
Ensure: The node coordinate cn of nth part;

1: for i = 0→ s do
2: if i == s−1 then
3: λ 1

n ← 1
2 ; λ 2

n ← 1
2

4: else
5: λ 1

n ← 1
2(s−i)−1 ; λ 2

n ← 1
2(s−i)−2

6: end if
7: ln←M[c[1],c[0]][n]
8: cn← (λ 1

n ln + c[0],λ 1
n ln + c[1])

9: ln+1←M[cn[1],cn[0]][n+1]
10: cn← (λ 2

n ln+1 + cn[0],λ 2
n ln+1 + cn[1])

11: c← cn
12: end for

Vein growth. We introduce a natural and effective representation method (VeinMask)
for covering instances masks with various shapes through an appropriate number of points
dynamically. It assembles instance contours by simulating the leaf vein growth process.

Concretely, see Figure 5, given an instance, our method first locates the instance cen-
troid (root) through classification and centroidness heads. Then, the distances between the
centroid and instance contour in n directions of the polar coordinate are obtained by the re-
gression head. Combining the centroid and the distances to generate n major veins, where
a coarse instance contour can be constructed by connecting the vein endpoints in the clock-
wise direction. It is found that the instance is decomposed into n parts via major veins. Next,
all twisty parts are refined by minor veins one by one (see Figure 5). For a specific part,
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our method searches the corresponding node under the guidance of adjacent major veins
(the details can be referred to Algorithm 1) and determines it is a twisty part if the angle
<
−−−→
cnen

pre,
−−−→
cnen

nxt > is bigger than 180◦, where cn is the node coordinate of nth part. en
pre and

en
nxt denote the coordinates of nth part adjacent major vein endpoints, respectively. At the

location of the twisty part node, the directions in the range of (
−−−→
cnen

pre,
−−−→
cnen

nxt) are treated as
minor veins and the vein endpoints are connected in the clockwise direction can be obtained
the contour points of this twisty part.

Residual IoU loss. Our method simulates the leaf growth process to assemble instance
contours via the veins. To train them effectively, we introduce Residual IoU (RIoU) loss.

Concretely, IoU loss [28] and the corresponding improved versions [17, 30, 31] are
designed for supervising the four bounds of the box as a whole. Considering the IoU of
irregular-shaped instances is difficult to compute, Polar IoU loss [23] expresses it via the ra-
tio of dense discrete offsets. However, the loss may result in different optimization gradients
for the same differences between the predicted and real values, which brings interference to
the optimization process. we follow this issue and design RIoU loss:

LRIoU =
∑

n
k=1 |dk−d∗k |

∑
n
k=1 d∗k

, (2)

where dk and d∗k are the predicted and real values, respectively. n is the direction number
of polar coordinate. Rather than computing Polar IoU loss via the ratio of the predicted and
real value, we explicitly let the model takes the residual over them as the optimization object
directly, which avoids the problem that exists in Polar IoU loss effectively and is easier to
learn for the model. Moreover, compared with the logarithm formulation of Polar IoU loss,
the derivation of our loss is simpler, which helps improve the back propagation efficiency.

For classification and centroidness heads, we supervise them by cross-entropy loss (LCE )
and focal loss (LFL) [11]. The overall loss L can be formulated as L= LRIoU +LFL +LCE .

4 Experiments
We show the experimental results on the SBD [6] and COCO test-dev [9] datasets in this
section. We typically analyze the superiorities of VeinMask over the other contour-based
methods on the SBD dataset in detail. Meanwhile, we compare our approach with existing
state-of-the-art (SOTA) methods on the two datasets.

Training details. In ablation study, ResNet-50 [7] pre-trained on ImageNet [4] is adopted
as backbone unless otherwise noted. We resize the input into 768×768. The model is trained
by the optimizer of stochastic gradient descent (SGD) for 144 epochs on the SBD dataset,
where weight decay and momentum are set as 0.0001 and 0.9. The initial learning rate and
batch size are 0.01 and 16. In comparison experiments, the images on the COCO test-dev
dataset are scaled to 800×1333 and padded to 896×1408 with 0.

4.1 Ablation Study
We ablate our approach in Figure 6, Table 1, and Table 2 to verify the effectiveness of Vein-
Mask, centroidness, SCCS, and RIoU loss. The fixed point number is 12 unless otherwise
noted. The default model in Table 1 is constructed with the centerness and polar IoU loss
proposed in PolarMask [23] and without VeinMask and SCCS.
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Figure 6: Ablation experiments on SBD dataset. (a) shows the mask cover ratio upper bound
analysis of different methods and different fixed point numbers. (b) demonstrates RIoU loss
enjoys more efficient training process than Polar IoU loss.

VeinMask AP AP50 AP75 APS APM APL

w/o 24.4 53.3 19.4 8.4 17.0 29.8
with 27.5 53.7 24.3 8.4 17.7 34.6

centroidness AP AP50 AP75 APS APM APL

w/o 27.5 53.7 24.3 8.4 17.7 34.6
with 29.1 56.6 26.1 7.4 19.0 36.9

SCCS AP AP50 AP75 APS APM APL

w/o 27.5 53.7 24.3 8.4 17.7 34.6
with 29.0 56.6 25.8 7.7 19.3 36.8

RIOU Loss AP AP50 AP75 APS APM APL

w/o 27.5 53.7 24.3 8.4 17.7 34.6
with 28.8 55.6 26.0 6.7 18.0 37.3

Table 1: Ablation experiments on the SBD dataset. We report the effectiveness of VeinMask,
centroidness, SCCS, and RIoU loss, respectively.

Mask cover ratio. VeinMask is designed to generate an appropriate number of points
dynamically to cover various masks precisely. We compare the mask cover ratio upper bound
of it with previous representative contour-based methods (PolarMask and E2EC) in differ-
ent fixed point numbers. Notably, the fixed point number denotes the direction number of
the polar coordinate in our method and PolarMask, and the vertices number for E2EC. As
depicted in Figure 6(a), benefiting from the advantages of the dynamic fitting process, Vein-
Mask achieves almost 92% mask cover ratio with only eight fixed points, which outperforms
the others a lot. Meanwhile, VeinMask is still in a dominant position even when tuning the
point number to large. The results verify the VeinMask’s superior ability to cover masks.
VeinMask. The effectiveness of VeinMask is studied in Table 1. It is found that refining
twisty parts via the minor vein of VeinMask can bring 3.1% improvements in mAP, which
verifies the VeinMask’s strong ability to segment instance masks with complex shapes.

Centroidness vs. centerness. An important design of contour-based approaches is to
filter low-quality results via centerness. In this work, we propose centroidness for instance
segmentation according to the relation between the instance shape and centroid distribution.

Table 1 studies this design. We report the performance of models that are equipped with
centerness and centroidness. It is found that centroidness brings 1.6% mAP for our model,
which benefits from the advantage that centroidness ensures the result’s reliability in the
inference process. The results verify the superior of centroidness over centerness.

SCCS. We design SCCS module to enhance feature expression to help regress veins
more accurately. As shown in Table 1, the module brings 1.5% mAP improvements to the
baseline. Rather than extracting features of all contour points and concatenating them, SCCS
ensures the regression head and the other two heads run in parallel. It avoids multiple stages



YANG, ET AL.: INSTANCE MASK GROWING ON LEAF 9

deep AP AP50 AP75 APS APM APL

none 25.9 55.2 21.3 7.8 17.9 32.1
+P7 26.0 55.3 21.3 7.8 17.9 32.2
+P6 28.3 55.8 25.0 7.8 18.0 36.2
+P5 29.3 56.3 26.8 7.8 19.2 37.4
+P4 29.4 56.4 26.8 7.8 20.0 37.0
+P3 29.1 56.1 26.3 6.7 19.1 37.4

Method AP AP50 AP75 APS APM APL

PolarMask [23] 25.9 57.0 20.3 8.0 18.4 32.0
+ RIoU loss 27.8 59.1 22.3 8.8 19.7 34.4

+ centroidness 28.3 59.9 22.6 8.4 19.8 35.0

(a) Deep for refining the twisty part (b) Generalization of RIoU loss and centroidness
Table 2: Ablation experiments on the SBD dataset. (a) shows growing minor veins on more
different-sized feature maps brings more gains except on P3. We embed RIoU loss and
centroidness into PolarMask in (b) to show the brought performance gains.

method N SBD COCO
AP AP50 AP75 AP AP50 AP75

PolarMask [23] 4 5.1 21.1 0.1 1.1 6.2 0.0
E2EC [29] 4 2.3 16.4 0.0 2.0 11.5 0.0
VeinMask 4 21.1 50.7 15.2 14.8 34.2 11.8
PolarMask [23] 8 20.7 52.5 12.9 5.6 14.0 3.2
E2EC [29] 8 26.5 57.6 20.7 17.3 37.4 14.3
VeinMask 8 28.6 56.0 25.3 25.3 47.5 24.0

contour-based N AP AP50 AP75

multi-stage
DeepSnake [14] 128 30.3 - -
E2EC [29] 128 31.7 52.2 32.8
one-stage
PolarMask [23] 36 30.4 51.9 31.0
PolarMask++ [24] 36 31.6 54.5 32.2
VeinMask 20 32.4 55.7 32.7

(a) Comparisons in less fixed point number (b) Comparisons with SOTA methods
Table 3: Comparisons with previous contour-based methods on the SBD and COCO test-
dev datasets. N denotes the fixed point number.

serial feature enhancement process in [14, 29], which brings gains with negligible costs.
RIoU loss vs. Polar IoU loss. In Table 1 we compare our RIoU loss with Polar IoU loss.

We force the model to focus on the residual between the predicted and real values via RIoU
loss, a more effective optimization object than Polar IoU loss. It enjoys a simpler derivative
formulation and ensures the same gradients for the same residuals. The experimental results
in Table 1 show that our RIoU loss brings 1.3% mAP gains, which verifies its superiority
over Polar IoU loss. We report the training processes of PolarMask equipped with Polar
IoU and RIoU losses respectively in Figure 6(b). RIoU loss enjoys a smoother descending
process than Polar IoU loss, which shows the superiority of RIoU loss.

Deep for refining the twisty part. VeinMask helps improve performance by refining
twisty parts of instance masks via minor veins (see Table 2(a)). We further explore the
performance gains when growing minor veins on feature maps with different sizes. In Ta-
ble 2(a), we grow the minor veins from P7 to P3, it is found that our strategy brings significant
performance gain for large instances, while performs not well for small ones since they are
very sensitive to the predicted veins.

Generalization of centroidness and RIoU loss. Centroidness and RIoU loss are em-
bedded into PolarMask to replace the centerness and Polar IoU loss. In Table 2(b), they can
bring 2.4% and 1.9% mAP gains, respectively. In particular, centroidness and RIoU loss
gain performance significantly for large-scale instances because centroidness helps suppress
low-quality results more effectively and RIoU loss makes the model learn more differences
between the predicted and real values. The results show their generalization and verify that
they can be embedded into other methods seamlessly to gain performance without costs.

Citation
Citation
{Xie, Sun, Song, Wang, Liu, Liang, Shen, and Luo} 2020

Citation
Citation
{Xie, Sun, Song, Wang, Liu, Liang, Shen, and Luo} 2020

Citation
Citation
{Zhang, Wei, and Ji} 2022{}

Citation
Citation
{Xie, Sun, Song, Wang, Liu, Liang, Shen, and Luo} 2020

Citation
Citation
{Zhang, Wei, and Ji} 2022{}

Citation
Citation
{Peng, Jiang, Pi, Li, Bao, and Zhou} 2020

Citation
Citation
{Zhang, Wei, and Ji} 2022{}

Citation
Citation
{Xie, Sun, Song, Wang, Liu, Liang, Shen, and Luo} 2020

Citation
Citation
{Xie, Wang, Ding, Zhang, and Luo} 2022

Citation
Citation
{Peng, Jiang, Pi, Li, Bao, and Zhou} 2020

Citation
Citation
{Zhang, Wei, and Ji} 2022{}



10 YANG, ET AL.: INSTANCE MASK GROWING ON LEAF

(a) w/o VeinMask (b) with VeinMask (c) result in SBD (d) result in COCO
Figure 7: Visualization of some qualitative results on the SBD and COCO test-dev datasets.

4.2 Comparisons with Previous Results

In Table 3(a), we compare our method with existing contour-based methods to show supe-
rior performance. Specifically, VeinMask outperforms PolarMask [23] 19.7% mAP on the
COCO test-dev when tuning the fixed point number to 8 and outperforms E2EC [29] 18.8%
mAP on the SBD when tuning the fixed point number to 4, which demonstrates the strong
ability of VeinMask to segment instance masks in low fixed point number.

Furthermore, we explore the upper performance of VeinMask on the COCO test-dev
and compare it to existing SOTA approaches. As depicted in Table 3(b), for multi-stage
contour-based methods (DeepSnake [14] and E2EC, our method can achieve 32.4% mAP
with the one-sixth fixed point number of them. For the one-stage contour-based method
(PolarMask), our approach even outperforms it 2% in mAP with almost half the fixed point
number. Additionally, we visualize some qualitative results in Figure 7. It can be found
in Figure 7(a) and Figure 7(b) that VeinMask helps to refine twisty parts effectively, which
benefits from the flexible fitting ability brought by minor veins. Figure 7(c) and Figure 7(d)
demonstrate the strong ability of our approach for segmenting complex and dense objects,
respectively. The combination of Table 3 and Figure 7 verify the superior performance of
VeinMask and the effectiveness of the representative flexible fitting strategy.

5 Discussion and Conclusion

Unifying object detection and instance segmentation problems is a valuable exploration di-
rection. In this work, we follow the intrinsic idea of box detectors to segment instances
with center classification and offset regression. We observe leaf vein growth mode and de-
sign VeinMask to provide a natural and interesting solution for enhancing the flexibility of
contour-based methods. It can generate an appropriate number of points to cover instance
masks according to their shapes in the inference process. Meanwhile, we introduce centroid-
ness and RIoU loss for enhancing the model’s ability to segment instances without costs.
Importantly, they can be used directly in existing state-of-the-art center classification and
offset regression-based architectures. The performance can be effectively enhanced by re-
placing their centerness and loss function with our centroidness and RIoU loss. Additionally,
we construct SCCS to help feature expression of the offset regression. It can be embedded
into other architectures and brings performance gains with slight computational costs. We
hope the idea that combines leaf vein morphology with instance geometric characteristics
will inspire future work, and the proposed centroidness, RIoU loss, and SCCS can become
basic components of other approaches.
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