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Abstract

Real-world deep learning applications often encounter out-of-distribution (OOD)
samples that do not belong to the label spaces of the training dataset. Therefore, neu-
ral networks should detect OOD samples and refrain from making predictions on the
detected ones to help users be less confused about models’ decisions. A rejection net-
work that has learned representations of OOD can be used to detect distribution shifts,
but most existing methods require an additional data collection procedure to train the
rejection network. In this paper, we propose the Synthetic Harmless outlier Images
generator From Training samples (SHIFT), a realistic OOD generator that converts a
training image into synthetic OOD samples by using vision foundation models in a zero-
shot manner. Specifically, to construct the surrogate OOD image, the SHIFT uses CLIP
to erase the regions of the in-distribution (ID) object, and the latent diffusion model
replaces the key regions with realistic features considering the marginal background.
Therefore, our method can eliminate the need to collect external outlier samples to train
a rejection network. We demonstrate the competitiveness of the proposed method on
several benchmarks (i.e., CIFAR-10/100 and STL-10), and the code is publicly available
at https://github.com/Anears/SHIFT.
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Figure 1: Examples of our synthetic OOD samples constructed from STL-10 (ID). Each row
represents ID images and generated OOD images with removed ID objects, respectively.

1 Introduction

In a wide range of safety-critical applications, such as object recognition in autonomous driv-
ing [7] and computer-aided diagnosis systems [18, 33, 34], deep neural networks (DNNs)
have shown remarkable success under the closed-world assumption. However, in many real-
world deployments of neural networks, the test sample could potentially be sampled from
arbitrary input space, and previous studies have shown that DNNs often produce unreliable
predictions for out-of-distribution (OOD) samples that are outside of the training distribu-
tion [13, 30]. Since these erroneous predictions can confuse users when interpreting the
model’s decisions, recent DNNs require the ability to detect OOD samples and subsequently
refrain from making predictions for such samples.

To address this problem, a widely adopted approach is to manipulate the model’s outputs
by leveraging scoring functions derived from a pre-trained classifier [11, 22, 25, 35, 36].
These scoring functions assign higher scores to the in-distribution (ID) examples, whereas
lower scores to the OOD examples. Another popular approach for detecting OOD inputs
is training a rejection network using auxiliary OOD datasets [3, 12, 27, 42]. Rejection net-
works exposed to diverse OOD representations excel at detecting OOD samples, but train-
ing the rejection network requires an additional burden for collecting external OOD datasets
(sometimes infeasible to obtain in practice), and the optimal choice of external OOD datasets
remains an open question [6].

Instead, several studies suggest synthetic OOD sample generation techniques that gener-
ate virtual OOD samples using a generative adversarial network (GAN) [21, 38] and ad-
versarial training [10]. Although they show improved OOD detection performances on
CIFAR-10/100 datasets, a rejection network trained on synthetic high-resolution data still
perform poorly than when using real OOD examples due to distributional discrepancy be-
tween synthetic- and real-OOD samples [19].

In this paper, we propose a simple yet effective method, called SHIFT, to generate a re-
alistic OOD sample by converting a training image into an OOD sample (see Figure 1). Our
proposed procedure is based on contrastive language-image pre-training (CLIP) [31] and la-
tent diffusion model (LDM) [32], inspired by the extraordinary capabilities of foundation
models [1, 14, 26]; (1) we mask the ID object in the training image using the CLIP-based
segmentation model [26], then (2) inpaint the masked region with its background by lever-
aging the LDM.

After constructing the OOD dataset, a rejection network operating on a pre-trained clas-
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sifier’s latent space can then be trained on the generated OOD and ID datasets in order to
detect OOD data in a test time. Our main contributions are as follows:

• The OOD dataset is constructed offline while being adaptable to any ID training data for
image classification tasks. Compared to the previous method using outlier exposure [12],
our proposed method eliminates the need to collect an external OOD dataset.

• The rejection network trained with constructed OOD dataset shows state-of-the-art per-
formances in the OOD detection task by improving averaged area under the receiver op-
erating characteristics (AUROC) +0.9% (CIFAR-10), +2.5% (CIFAR-100), and +5.9%
(STL-10), while preserving the classification accuracy on the ID dataset.

• To the best of our knowledge, this is the first study to propose how to generate OOD
examples using visual foundation models in a zero-shot manner. Through comprehensive
experiments, we confirm that the proposed method does indeed generate realistic OOD
examples from a training image, and demonstrate its effectiveness in training a rejection
network.

2 Related Work

Post-hoc methods are those that can detect OOD samples without re-training a pre-trained
classifier. Hendrycks and Gimpel [11] present a simple baseline that utilizes the maximum
softmax probability (MSP) as a scoring function. Subsequently, improved algorithms have
been proposed; ODIN [23] shows that the addition of controlled perturbations to test inputs
and temperature scaling can separate confidence scores between ID and OOD samples. As-
suming the feature space of a pre-trained classifier as class-conditional Gaussian variables,
Lee et al. [22] propose the Mahalanobis distance-based rejection rule. Liu et al. [25] use the
energy score (Energy) as an OOD scoring rule to align with the probability density of the
logits for a pre-trained network. DICE [35] is a sparsification-based OOD detection tech-
nique that ranks weights by contribution and then uses the most significant weights to reduce
noisy signals in OOD samples. However, many post-hoc algorithms rely on tuning with a
small subset of OOD data. It is not only hard to define a-priori, but also hyperparameters
tuned using the subset of OOD data can lead to biased results [15].

Another line of approaches explores the rejection network using an additional outlier
dataset. Outlier exposure (OE) [12] uses auxiliary datasets completely disjoint from ID
classes to teach the model a representation for ID/OOD distinctions. However, in real-world
applications, OE has a limitation in that collecting all possible OOD samples is not feasi-
ble. Instead, several studies propose an efficient method for generating a synthetic outlier
sample; Lee et al. [21] use GAN to generate synthetic OOD samples that are close to train-
ing distribution but also simultaneously have high entropy in terms of classifier output over
these samples. Their key finding is that synthetic OOD samples are most useful when they
lie near ID examples on feature spaces of the pre-trained network. CEDA and ACET [9]
both use random noise and pixel shuffling of ID samples, the latter including ad additional
adversarial enhancement procedure. Kim et al. [19] suggest a novel approach called KIRBY
which generates surrogate OOD data from training samples, they show the state-of-the-art
OOD detection performance on the vision benchmarks.
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Prompt: “A photo of ship”

LDM inpaint
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Generated OOD Images

…
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Figure 2: Overall procedure of SHIFT.

3 Preliminary
Out-of-Distribution Detection. For image classification tasks, let X ⊂ Rd be the input
space and let Y be the label space. Denote by DID = {(xi,yi)|yi ∈ YID}NID

i=1 the marginal
distribution over X ×Y , which represents the distribution of ID data. Suppose a pre-trained
model f : X → R|YID| (with logit outputs) is trained on the training dataset. The task of
detecting an OOD instance x ∈ XOOD is to design a decision function Ψ : X → {0,1} that
distinguishes between ID and OOD for a test input:

Ψ(x; f ) =

{
1 if x ∈ XID,

0 if x ∈ XOOD,
(1)

where Ψ can be defined by a scoring function (e.g., MSP, and Energy) or a parametrized
anomaly detector Ψθ that is trained with a subset of auxiliary data DOOD = {(xi,yi)|yi /∈
YID}NOOD

i=1 . Here, we focus on the OOD detection task by leveraging an OOD detector Ψθ .
Synthetic Outlier Generation. Recently, Kim et al. [19] propose KIRBY which constructs
a synthetic OOD dataset by replacing class-discriminative features of training samples with
marginal background features. We briefly review the KIRBY which is the primary motiva-
tion of the proposed method.

KIRBY generates a surrogate OOD sample x̃ by masking class-specific key regions:
x̃ = xtrain ⊙M, where xtrain is a training sample, ⊙ is element-wise multiplication, and M ∈
{0,1}W×H is a binary mask indicating class-discriminative features. This mask is obtained
by thresholding the output of a pixel attribution method [2, 17, 44]:

Mi j =

{
0 if Ai j ≥ λ ,

1 otherwise,
(2)

where A ∈ [0,1]W×H is a normalized saliency map and λ is the threshold that determines
how many key features are erased. Masked regions are then replaced by marginal features
using the fast marching (FM)-based inpainting algorithm F [39].

4 Method
The models such as CLIP and diffusion models become promising due to their impressive
performance and generalization capabilities. Leveraging such models, we propose SHIFT
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which can generate multiple photo-realistic OOD images from a training sample. In the
procedure of SHIFT, the pre-trained CLIPseg [26] detects regions for ID objects based on
an ID class-wise text prompt and erases the detected regions. We then inpaint the regions
using the pre-trained latent diffusion model (LDM) [32]. The overall process of SHIFT is
described in Figure 2.

4.1 Out-of-Distribution Generation

CLIPseg has a pre-trained CLIP model as its backbone, followed by a transformer-based
decoder that enables pixel-wise prediction. After training on a large scale dataset, CLIPseg
can generate a binary segmentation map for a test image based on a free-text prompt. We
first extract a binarized segmentation mask Mi j ∈RW×H indicating class-specific key regions
from a training image x and its text prompt QCLIP:

Mi j =

{
0 if Pi j ≥ λ ,

1 otherwise,
(3)

where Pi j = CLIPseg(x,QCLIP) is the output of CLIPseg, λ is a threshold that determines the
extent of removed ID regions in the training image. The text prompt means the ID class and
has the form of "A photo of [ID class]". For example, the prompt for a "car" image is
"A photo of a car".

Masked regions are then inpainted using LDMinpaint to generate perceptually realistic
OOD sample x̃:

x̃ = LDMinpaint(x,M,QLDM), (4)

where x̃ is the generated OOD sample, and QLDM = {QP
LDM,QN

LDM} is the static text prompts.
QP

LDM is the prompt to generate a background image based on x, and QN
LDM is the negative

prompt to prevent ID classes from being created. In this work, we set QP
LDM to be "A photo

of background" and QN
LDM to be a list of ID classes. In particular, LDMinpaint can generate

multiple synthetic samples from an input image using different seeds. We generate K syn-
thetic OOD samples per training sample. Therefore, for N training samples, we collect the
surrogate OOD samples generated by the above process, i.e., D̃OOD = {x̃1

i , ..., x̃
K
i }N

i=1.
Although the high-level concept for generating an OOD sample (xID → xOOD) is sim-

ilar to KIRBY, our components are significantly different to the previous work, including
additional advantages with respect to OOD detection tasks. The quality of an segmentation
mask introduced by KIRBY is depending on a pre-trained classifier because gradient-based
saliency method (e.g., Grad-CAM [2] and Layer-CAM [17]) are not model-agnostic and is
directly affected by the accuracy of the pre-trained classifier. Compared to KIRBY, our OOD
construction is independent to the pre-trained classifier by exploiting the foundation models.
In addition, the KIRBY’s final OOD data inpainted by F may include artifacts (the quali-
tative result for KIRBY is presented in the supplementary material), thereby resulting in a
sub-optimal performance.

4.2 Rejection Network

The rejection network Ψθ is trained to classify between ID and generated OOD samples.
This network can be a binary classifier (ID vs. OOD), and the training objective for Ψθ
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(with sigmoid function) is as follows:

L(xi) =

{
− log(Ψθ (g(xi))) if xi ∼DID,

− log(1−Ψθ (g(xi))) if xi ∼ D̃OOD,
(5)

where g(xi) is the output feature of the pre-trained classifier’s penultimate layer.
When training the rejection network, the weights of the pre-trained network are not up-

dated. Therefore, our training method has the advantage of preserving the ID classification
performance of the pre-trained network.

5 Experiments

5.1 Training Details
Pre-trained classifier. We adopt three modern neural networks, including ResNet-34 [8],
DenseNet-BC (depth L = 100, growth rate k = 12) [16], and WideResNet-40-2 [43].
Outlier construction. We adopt the CLIPseg ("CIDAS/clipseg-rd64-refined") and LDM
("stable-diffusion-2-inpainting") from HuggingFace spaces [40]. Since the foundation mod-
els are trained on high-resolution images, an output of the models on an extreme low-
resolution image (e.g., 32× 32 pixels) may be sub-optimal. We also observe that the OOD
samples generated from the original CIFAR dataset are of low quality, and qualitative re-
sults are reported in the supplementary material. To handle the low-resolution image, we
first refine training images into 512×512 pixel images using the super-resolution diffusion
model [32] (the detailed implementation is described in the supplementary material). The
converted images are fed into CLIPseg and the segmentation mask is extracted with λ of 0.2
(Eq. 3). When inpainting the masked image, we set the guidance scale of LDM as 7.5 and we
use the default inference steps of 50, alongside the noise schedulers [24]. Lastly, we resize
512×512 OOD images to match the resolution of the ID data.
Rejection network. Ψθ is implemented as two fully-connected layers with its hidden layer’s
width being 2048. Training converges in 10 epochs using SGD-momentum with the initial
learning rate of 0.01 and weight decay of 5×10−4.

5.2 Datasets and Metrics
Datasets. Following Kim et al. [19], we compare SHIFT with state-of-the-art methods using
CIFAR-10, CIFAR-100 [20], and STL-10 [5] as ID sets and the following six OOD datasets:
SVHN [29], DTD [4], Place365 [45], LSUN-crop [23], LSUN-resize [23], iSUN [41].
Metrics. The OOD detction performance is measured with following criteria: (1) AUROC
is the area under the receiver operating characteristic curve obtained by varying values of the
threshold. (2) FPR@95TPR (FPR) is the probability that an OOD example is classified as
a positive when the true positive rate (TPR) is as high as 95%.

5.3 Baselines
We compare the proposed method with various post-hoc methods: MSP [11], ODIN [23],
Mahalanobis [22], Energy [25], ReAct [36], and DICE [35]. Their hyper-parameters are
found using grid search based on the respective references and detailed implementations
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Method

Out-of-Distribution Datasets

SVHN DTD LSUN
-crop

LSUN
-resize Place365 iSUN

AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓

C
IF

A
R

-1
0

(I
D

)

MSP 91.91 48.43 88.51 59.11 96.48 25.52 91.07 53.39 89.52 57.04 91.18 50.11
ODIN 94.70 20.10 88.51 59.11 99.04 4.37 95.13 22.50 91.78 36.63 93.97 28.29

Mahalanobis 98.58 6.71 96.53 17.76 96.47 22.06 94.98 31.05 82.11 74.05 94.67 30.68
Energy 91.07 35.35 85.34 52.51 99.05 4.41 93.82 28.91 91.85 34.63 92.24 31.74
ReAct 90.83 36.81 87.44 51.43 98.91 5.24 93.54 31.39 90.77 35.93 92.19 37.34
DICE 89.55 36.09 83.35 52.35 99.59 1.81 93.87 27.74 90.59 36.65 92.43 33.22
CSI 95.40 31.92 93.64 64.43 98.68 8.18 98.28 10.23 94.89 31.68 98.30 10.12
VOS 92.66 32.51 86.58 47.95 99.29 2.94 96.13 20.06 90.70 37.46 95.64 22.62
GAN 77.15 86.63 72.95 84.87 71.56 88.44 80.92 76.77 80.16 75.68 78.43 80.35
ACET 91.20 56.21 89.41 51.98 91.55 50.64 91.22 49.54 88.07 55.80 91.30 48.85

KIRBY 98.99 4.66 95.86 15.84 99.53 2.05 98.66 5.69 95.06 23.05 98.85 4.96
SHIFT (K=1) 99.31 3.58 95.75 15.84 99.39 2.29 99.26 2.51 96.45 17.61 99.38 2.44
SHIFT (K=8) 99.52 2.45 97.40 11.50 99.57 1.43 99.60 1.13 96.86 15.81 99.68 0.90

C
IF

A
R

-1
00

(I
D

)

MSP 71.37 84.35 73.54 82.65 85.58 60.33 74.11 83.27 70.46 85.17 74.95 83.24
ODIN 81.34 68.12 76.68 79.53 96.95 16.98 84.96 60.59 72.57 81.74 85.56 59.47

Mahalanobis 94.66 28.42 90.28 40.05 73.97 76.49 96.08 20.61 66.91 85.83 94.69 25.09
Energy 73.87 85.61 76.29 79.85 95.88 23.07 77.67 80.94 72.32 82.33 77.93 72.43
ReAct 87.45 78.05 83.46 68.36 95.06 24.41 72.75 80.76 75.12 78.78 73.41 81.59
DICE 74.14 86.68 76.65 76.64 97.84 11.70 78.84 77.78 73.34 80.60 78.89 79.11
CSI 85.44 59.49 74.02 73.90 90.19 41.19 92.13 36.10 76.04 75.11 90.59 42.01
VOS 84.54 75.34 76.56 81.67 97.14 16.59 74.23 80.02 73.19 82.15 73.20 82.68
GAN 76.07 85.75 66.23 91.50 6 3.99 92.25 64.62 90.08 62.84 91.16 62.06 91.09
ACET 81.40 73.93 76.19 80.39 77.28 79.68 72.49 78.98 72.53 82.33 73.79 78.45

KIRBY 96.26 14.96 91.30 32.43 97.46 12.50 97.24 14.58 78.94 72.72 97.48 13.03
SHIFT (K=1) 98.91 4.56 88.42 38.33 97.59 11.65 99.82 0.48 84.41 62.64 99.72 1.12
SHIFT (K=8) 99.19 3.85 91.63 35.80 97.43 13.13 99.85 0.33 85.83 62.14 99.75 0.89

ST
L

-1
0

(I
D

)

MSP 57.56 95.98 64.53 89.23 81.64 75.59 80.91 77.07 80.15 77.84 81.60 76.57
ODIN 98.78 5.20 65.41 83.00 89.17 54.79 87.52 60.27 86.38 72.79 85.70 64.89

Mahalanobis 98.52 5.13 90.38 32.25 70.08 88.90 70.36 87.56 67.88 89.03 84.05 70.19
Energy 64.03 89.60 64.44 87.71 89.05 54.90 87.71 59.47 86.66 60.57 85.78 63.98
ReAct 66.48 90.06 71.21 86.73 88.14 56.09 86.99 60.24 86.09 61.55 87.56 63.40
DICE 70.99 83.91 66.32 82.96 91.40 44.20 89.82 50.68 88.53 53.72 86.30 59.94
CSI 65.86 90.69 77.70 68.06 83.28 78.37 80.92 72.74 73.78 79.59 82.71 67.85
VOS 81.36 83.10 66.17 85.40 92.99 42.70 83.74 68.26 87.69 59.47 83.12 67.77
GAN 53.46 97.16 56.52 95.08 60.10 91.98 62.64 90.46 63.08 89.37 62.13 86.95
ACET 54.15 95.50 65.13 89.14 77.25 79.59 79.35 76.57 79.11 76.38 63.23 90.65

KIRBY 98.90 1.01 69.64 76.29 90.58 47.16 91.30 43.59 90.31 44.31 92.01 36.36
SHIFT (K=1) 99.85 0.28 86.39 41.49 92.92 39.70 93.64 35.58 92.17 40.15 96.10 21.98
SHIFT (K=8) 99.84 0.14 91.01 34.38 92.73 45.30 93.89 38.18 92.84 41.94 97.99 9.84

Table 1: Comparison of OOD detection results with state-of-the-art methods using WideRes-
Net. The best and second best results are highlighted in bold and underline, respectively.

are reported in the supplementary material. We compare SHIFT with VOS [6], GAN [21],
ACET [10], and KIRBY [19] which learn a rejection rule from OOD samples as described
earlier. Lastly, as the orthogonal research, contrastive learning method (CSI [37]) that effi-
ciently learn informative feature representations is compared. Excluding post-hoc methods,
we report averaged AUROC and FPR over five runs.

5.4 Comparison with Baselines
The overall performances of the OOD detection are presented in Table 1. SHIFT outperforms
all considered baselines on most ID and OOD pairs, even though the rejection network is not
exposed to a real OOD dataset. KIRBY and SHIFT generally perform much better than
the other methods, but SHIFT shows state-of-the-art performance on the harder STL-10
which has the small amount of the training samples (5,000 images) and its higher resolution
(96×96 pixels). One of the reasons for the performance improvement is that SHIFT does
not depend on the size of the training dataset compared to KIRBY because it can generate
multiple outliers from a single image. SHIFT (K=1) also outperforms the baselines, showing
that it can effectively detect outliers even with a small amount of OOD data. The superiority
of the SHIFT is again confirmed in Table 2, where the algorithms are further compared when
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WideResNet ResNet DenseNet
ID CIFAR10 CIFAR100 STL10 CIFAR10 CIFAR100 STL10 CIFAR10 CIFAR100 STL10

MSP 91.18 75.00 74.40 85.62 82.77 74.40 86.48 77.97 50.39
ODIN 93.86 83.01 85.49 86.67 85.14 83.14 87.32 81.83 52.36
Energy 92.24 78.99 79.61 85.63 85.23 79.19 85.75 80.97 50.42
ReAct 92.27 81.19 81.08 85.63 85.42 80.20 86.64 82.39 50.07

Mahalanobis 93.89 86.10 80.21 95.11 82.97 66.98 90.65 84.21 74.14
DICE 91.56 79.95 82.23 90.68 72.91 83.65 93.53 86.09 84.83
CSI 96.53 84.73 77.37 97.30 92.44 89.16 89.02 73.54 62.73
VOS 93.50 79.81 82.51 93.19 79.04 79.02 95.25 78.78 64.88
GAN 76.86 65.97 59.66 78.23 70.11 61.10 75.32 66.81 59.32
ACET 90.46 75.61 69.70 91.05 74.21 69.12 92.16 77.14 69.98

KIRBY 97.82 93.11 88.79 97.51 90.44 82.30 96.54 92.99 88.59
SHIFT (K=8) 98.76 95.61 94.72 98.68 95.24 95.26 99.02 96.27 96.69

Table 2: The detection performance using different classifier architectures. Each value is the
averaged AUROC over the six OOD benchmark datasets.

ID Method OOD Datasets
SVHN Textures LSUN-crop LSUN-resize Place-365 iSUN Average

CIFAR10 OE 98.36 97.77 99.68 98.88 96.58 98.79 98.34
SHIFT (K=8) 99.52 97.40 99.57 99.60 96.86 99.68 98.76

CIFAR100 OE 87.66 84.39 97.38 78.53 81.93 77.74 84.60
SHIFT (K=8) 99.19 91.63 97.43 99.85 85.83 99.75 95.61

Table 3: Comparison between SHIFT and OE when using WideResNet classifier. Each value
is the AUROC. Recall that OE’s auxiliary dataset is limited to 32×32 images, and its method
naturally does not scale to larger images without additional synthetic constructions.

using different pre-trained classifiers.

5.5 Comparison with Outlier Exposure

OE, unlike all the other algorithms of synthetic OOD set construction, relies on a much larger
external OOD set for its reject class. To evaluate whether the OOD data we generated are
indeed valuable, we compare SHIFT with OE. In Table 3, we observe that SHIFT (K=8) is
shown to be better detection performance on both CIFAR-10 and CIFAR-100. In addition,
our method preserve the ID classification accuracy of the pre-trained classification network’s
because we do not fine-tune the network’s parameters. However, OE requires fine-tuning,
and its ID accuracy decreases from 94.84 → 94.80 and 75.96 → 75.62 for CIFAR-10 and
CIFAR-100, respectively [12].

5.6 Ablation Study

In Table 4, we assess how the choice of ID region removal algorithms affects OOD detection
performance by experimenting with Layer-CAM [17] and CLIPseg. Following KIRBY, we
extract the saliency map of Layer-CAM at the layer preceding global averaged pooling layer
and we then erase the ID key features using the saliency mask (Eq. 2). Compared to Layer-
CAM, the OOD sample generated by CLIPseg that is trained with pixel-level supervision for
large scale images more contributes to improving the detection performance of the rejec-
tion network. Meanwhile, the OOD detection performance is advanced when the inpainting
component is applied.
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Layer-CAM CLIPseg LDM CIFAR-10 CIFAR-100 STL-10
AUROC↑ / FPR↓ AUROC↑ / FPR↓ AUROC↑ / FPR↓

✔ 95.30 / 19.70 88.81 / 29.04 84.28 / 58.27
✔ 96.40 / 16.27 91.89 / 24.77 86.63 / 53.22
✔ ✔ 98.27 / 7.33 94.85 / 19.20 93.47 / 30.02

Table 4: Ablation study assessing each component in SHIFT (K=1) using WideResNet. We
report AUROC and FPR averaged over OOD test sets.

FID↓ / Hausdorff↓ CIFAR-10 (train) CIFAR-100 (train) STL-10 (train)
KIRBY 230.9/5.4 206.8/17.7 262.3/12.8

SHIFT (K=1) 66.4/3.7 37.4/14.5 114.1/8.0
CIFAR10 (test) 3.2/3.1 35.8/21.8 97.3/12.7

CIFAR100 (test) 35.7/3.9 3.6/21.6 127.7/12.7
STL10 (test) 93.4/6.1 124.4/22.1 6.8/12.6

Table 5: FID and Hausdorff distance between ID and OOD data. We calculate the Hausdorff
distance at the penultimate layer of pre-trained WideResNet.

1 2 3 4 5 6 7 8 9 10
K

0.94

0.95

0.96

0.97

0.98

0.99

AU
RO

C

CIFAR-10 CIFAR-100 STL-10

Figure 3: The OOD detection performance
(AUROC) with varying K. Each ⋆ marker de-
notes the point at which the AUROC is high-
est.

One of the advantages of LDM is the di-
versity of its generation. To effectively uti-
lize this characteristic, we generate multiple
OOD samples from a single ID sample us-
ing different seeds of LDM. To investigate
its effectiveness, we trained a rejection net-
work with progressively increasing num-
bers of K (Figure 3). SHIFT shows gradu-
ally improved AUROC as K increases, with
optimal performance convergence observed
within a range of K between 7 and 9. The
diversity afforded by the LDM confers a no-
table advantage in training the rejection net-
work, as it facilitates the provision of vari-
ous OOD samples.

5.7 Analysis
To assess the quality of synthetic images generated by SHIFT, we calculate the Frechet
Inception Distance (FID) between ID and OOD samples (Table 5). SHIFT has a higher
similarity between the distribution of the generated image and the distribution of the ID
image than KIRBY, and this result shows that SHIFT can produce realistic OOD images.

Another valuable characteristic of SHIFT is that the surrogate OOD samples have simi-
lar representations to ID samples. For example, in the feature space of WideResNet trained
on CIFAR-10, the Hausdorff distance between the SHIFT’s OOD and ID samples has the
closest distance compared to other OOD datasets. Several studies have been observed that
synthetic OOD data is most effective when nearby ID data [19, 21] because excessively dis-
tant synthetic examples (easy-to-learn) from ID samples may not help with OOD detection.
Furthermore, Ming et al. [28] demonstrate that OOD images that do not have identity objects
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present, but only have a background similar to the training dataset, lie near the discriminative
boundaries of the pre-trained classifier. Relatedly, the OOD samples produced by SHIFT are
close to ID data because it generates OOD samples by erasing only ID objects.

6 Conclusion
We proposed the effective OOD generator using vision foundation models where SHIFT
removes class-discriminative regions using the CLIP and LDM fills the erased features. Its
resultant surrogate OOD dataset is realistic and close to the distribution of ID samples on the
feature space of the pre-trained classifier. We demonstrate that these synthetic OOD samples
are indeed useful for enhancing the OOD detection performance of the rejection network.
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