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Abstract

Cross-domain few-shot segmentation (CD-FSS) aims to achieve semantic segmen-
tation in previously unseen domains with a limited number of annotated samples. Al-
though existing CD-FSS models focus on cross-domain feature transformation, relying
exclusively on inter-domain knowledge transfer may lead to the loss of critical intra-
domain information. To this end, we propose a novel residual transformation network
(RestNet) that facilitates knowledge transfer while retaining the intra-domain support-
query feature information. Specifically, we propose a Semantic Enhanced Anchor Trans-
form (SEAT) module that maps features to a stable domain-agnostic space using ad-
vanced semantics. Additionally, an Intra-domain Residual Enhancement (IRE) mod-
ule is designed to maintain the intra-domain representation of the original discriminant
space in the new space. We also propose a mask prediction strategy based on proto-
type fusion to help the model gradually learn how to segment. Our RestNet can trans-
fer cross-domain knowledge from both inter-domain and intra-domain without requir-
ing additional fine-tuning. Extensive experiments on ISIC, Chest X-ray, and FSS-1000
show that our RestNet achieves state-of-the-art performance. Our code is available at
https://github.com/bupt-ai-cz/RestNet.

1 Introduction
Deep convolutional neural networks (CNNs) have demonstrated remarkable performance
in diverse computer vision tasks, including semantic segmentation [24, 29, 43] and object
detection [7, 13, 28]. Although CNNs are effective, their dependence on a large number
of labeled data is still a constraint. To alleviate this dependence, the Few-shot Semantic
Segmentation (FSS) [31] was proposed to learn the model of segmenting new classes with
only a few pixel-level annotations. In recent years, significant progress has been made in the
FSS [2, 21, 22, 26, 27, 32, 34, 36, 41, 42]. However, it is still challenging to apply them to
cross-domain scenarios. To solve this problem, the Cross-Domain Few-Shot Segmentation
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(a) Previous CD-FFS Method [18]

(b) Our Residual Transformation Network (RestNet)

Figure 1: The comparison between the previous cross-domain few-shot segmentation
method and our RestNet. (a) The previous CD-FSS method focused on knowledge trans-
fer using an inter-domain transformation that may lose the intra-domain information, so
additional target domain fine-tuning is required. (b) Our RestNet learns knowledge from
both inter-domain and intra-domain. It performs cross-domain enhancement transformation
while preserving the intra-domain matching information.

(CD-FSS) was proposed [18] to generalize meta-knowledge from the source domain with
sufficient labels to the target domain with limited labels.

The CD-FSS problem considers a more realistic scenario: the model cannot access the
target data during training, and the data distribution and label space in the test phase are
different from those in the training phase. To accomplish the CD-FSS, PATNet [18] was pro-
posed to perform a linear transformation on the support foreground features and query fea-
tures, project them into domain-agnostic features, and compute the feature similarity in the
new spaces before exporting the query mask. However, the cross-domain feature mapping
by imprecise projection layers often makes the distribution alignment of features aligned in
the original space fail in the new space. In the CD-FSS scenarios, it reflects reduced match-
ing between intra-domain support and query samples, so additional fine-tuning is required
in the target domain, as shown in Figure 1(a). In addition, due to the fine-grained differ-
ences between support and query samples and the presence of support masks, the learning of
knowledge may be biased towards the support samples even if they belong to the same class
[40]. To address these problems, we propose the Residual Transformation Network (Rest-
Net). It considers not only inter-domain transfer but also the preservation of intra-domain
knowledge, as illustrated in Figure 1(b).

For the inter-domain, we propose a novel Semantic Enhanced Anchor Transform (SEAT),
which uses the attention to help the model learn advanced semantic features that are then
mapped to domain unknown spaces for knowledge migration. Further, we propose a sim-
ple and effective Intra-domain Residual Enhancement (IRE) mechanism. It associates the
information of the original discriminative space to the present domain-agnostic space via
residual connection [12] and helps the model to align the support and query features of the
domain-agnostic feature space to enhance the intra-domain knowledge representation. The
two mechanisms each help the model adapt more comprehensively to cross-domain small-
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sample tasks from different perspectives. Finally, we generate a coarse soft query mask and
feed it to the network with the support mask through prototype fusion to obtain the final
mask, which can help the model learn how to segment step by step.

In summary, our contributions are summarized as follows:
• We propose a Residual Transform network (RestNet) that uses the proposed SEAT and

IRE modules to help the model preserve key information in the original domain while
performing cross-domain few-shot segmentation.

• We propose a new mask prediction strategy based on the prototype fusion. This strat-
egy helps the proposed RestNet gradually learn how to segment the unseen domain.

• Our method achieves state-of-the-art results on three CD-FSS benchmarks, namely
ISIC, Chest X-ray, and FSS-1000. Our RestNet solves the problem of intra-domain
knowledge loss under the condition of considering inter-domain knowledge transfer,
which provides a new idea for future research in this field.

2 Related Work

2.1 Domain Adaptive Segmentation
Domain adaptive segmentation has led to some achievements. The goal of the method is to
transfer knowledge learned from a labeled source domain to an unlabeled or weakly labeled
target domain. The method based on adversarial learning [4, 5, 8, 15] aims to learn domain
invariant representations in features. In addition, the design loss function [14, 23, 37] to
constrain the data distribution can also achieve feature alignment. These methods operate
in settings where the target domain data can be accessed during training to drive model
adaption and compensate for domain offsets. In contrast, our source and target domain have
completely disjoint label spaces and no target data is required during the CD-FSS training.

2.2 Few-Shot Semantic Segmentation
Unlike domain adaptive semantic segmentation, the target domain cannot be accessed by
the FSS tasks during training. The goal is to segment new semantic objects in the image,
with only a few labeled available. Current methods mainly focus on the improvement of the
meta-learning stage. Prototype-based approach [27, 32, 36, 42] is to use methods to extract
representative foreground or background prototypes that support data and then use different
strategies to interact between different prototypes or between prototypes and query features.
Relation-based methods [20, 21, 22, 26, 34, 41] also achieved success in the few-shot seg-
mentation. HSNet [26] uses multi-scale dense matching to construct hypercorrelation and
uses 4D convolution to capture context information. RePRI [2] presents a transduction infer-
ence for feature extraction on a base class without meta-learning. However, these methods
focus only on segmenting new categories from the same domain. Because of the large dif-
ferences in cross-domain distributions, they cannot be extended to invisible domains.

3 Method

3.1 Problem Setting
In the problem setting of the CD-FSS, there exists a source domain (Xs,Ys) and a target
domain (Xt ,Yt), where X denotes the distribution of the input data and Y denotes the space
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Figure 2: The framework of our RestNet. The model maps support and query features to a
new domain-independent space using Semantic Enhanced Anchor Transform (SEAT). The
Intra-Domain Residual Enhancement (IRE) module is designed to preserve the matching
information of the original feature space in the new space. Next, the similarity between the
support and query is calculated and input into the encoder and decoder to generate a rough
mask. The final mask is obtained by a prototype fusion mechanism in the fine stage.

of the data label. The input data distribution of the source domain is different from the target
domain, and the label space of the source domain does not intersect with the target domain,
i.e., Xs ̸= Xt and Ys ∩Yt = /0. The model is trained on the source domain and does not have
access to the target data. We place it in a few-shot learning scenario [10] for training and
inference based on the episode data (S,Q) as same as the previous work [18]. For the few-
shot setup, the support set S = (Ii

s,M
i
s)

K
i=1 contains K image mask pairs, where Ii

s denotes the
i-th support image and Mi

s denotes the corresponding binary mask. Similarly, the query set
is defined as Q = (Ii

q,M
i
q)

K
i=1. In the training or meta-training phase, the model obtains the

support set S and the query set Iq from a specific class c as input and predicts the mask Mq
of the query image. In the testing or meta-testing phase, the model performance is evaluated
by providing the model with the support set and using the query set of the target domain.

3.2 Overview

Figure 2 illustrates our RestNet, which incorporates two key components to enable rapid
CD-FSS adaptation across both inter- and intra-domain: Semantic Enhancement Anchor
Transformation (SEAT) and Intra-domain Residual Enhancement (IRE) module. Given the
support set S = (Ii

s,M
i
s)

K
i=1 and the query image Iq, we first derive a multi-level feature map

by extracting the features of different layers of the shared backbone weights. We map sup-
port and query features to a new domain-agnostic space through the semantic enhancement
anchor transformation (SEAT). Then, the intra-domain residual enhancement (IRE) module
is designed to preserve the matching information of the original feature space in the new
feature space. After realignment, we calculate the similarity between the support and query
features and input it into the 4D convolution encoder and 2D convolution decoder [26] to
generate a coarse query mask. The coarse mask is fed to the network with the support mask
through the prototype fusion mechanism to obtain the final mask.
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3.3 Semantic Enhanced Anchor Transformation
To help the model transfer the cross-domain knowledge, we propose a novel semantic en-
hancement anchor transformation (SEAT). The goal is to learn a stable pyramid anchor layer
using advanced semantic features derived from a unified attention mechanism to translate
features into domain-agnostic features. The downstream partitioning module will be easier
to predict in such a stable space.

Semantic Enhancement. Before the transformation, the quality of segmentation predic-
tion is highly dependent on the quality of advanced features from the encoder. If the encoder
fails to provide informative advanced features, it is impossible to obtain useful domain-
agnostic features. Thus, we use a unified attention mechanism [38] to enhance the support
and query feature semantics at intermediate layer l:

F̂l = σ(Conv([AvgPool(F̂ l);MaxPool(F̂ l)]))⊗ F̂ l , (1)

where F̂ l denotes the masked feature, σ denotes the sigmoid function, [·; ·] represents the
concatenation and ⊗ represents the element-wise multiplication. The unified spatial attention
mechanism can share an attention extraction module for the feature layers of different feature
channels and support-query samples. It can reduce the number of parameters to be learned
and help the model learn a unified domain-invariant knowledge between different feature
maps from the support and query.

Anchor Transformation. Inspired by the previous work [18, 30], we use the linear
transformation matrix as the transformation mapper. The matrix can be calculated from
the anchor layer parameter matrix and the support prototype. Taking 1-way 1-shot as an
example, for the intermediate feature layer {F l

s }L
l=1 supporting the image, the l-th foreground

support prototype is as follows:

cl
s, f =

∑i ∑ j F l,i, j
s ψ l(Mi, j

s )

∑i ∑ j ψ l(Mi, j
s )

, (2)

where ψ l(·) denotes the bilinear interpolation, F l,i, j
s and Mi, j

s represent the pixel values cor-
responding to the support feature and the mask in row i and column j respectively. Similarly,
the supporting background prototype cl

s,b can be obtained in the same way. Therefore, given
the weight matrix of anchor layer A, the definition of transformation matrix is as follows:

WCs = A, (3)

where Cs =
[

cs, f
∥cs, f ∥

,
cs,b
∥cs,b∥

]
, A =

[
a f
∥a f ∥

, ab
∥ab∥

]
and a is the anchor vector that has the length

matching the number of channels in the high-level feature. Therefore, we can calculate
the transformation matrix W conveniently. However, since the prototype Cs is usually a
non-square matrix, we can calculate its generalized inverse [1] with C+

s = {CT
s Cs}−1CT

s .
Therefore, the transformation matrix of the l-th intermediate layer is calculated as Wl =
AlCl+

s . Similar to [18], we have three anchor layers for low, medium, and high-level features
respectively. Then, we can map the support and query features to stable domain-agnostic
space more effectively through this transformation matrix.

3.4 Intra-domain Residual Enhancement
Considering only inter-domain knowledge transfer, the model’s ability to perform few-shot
tasks in unseen domains is limited. This limitation arises from the fact that the features are
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transformed into a unified space solely through an anchor layer, leading to the loss of crucial
intra-domain information. This loss is reflected in the reduced matching between support-
query features within the same domain. To address this issue, we propose an intra-domain
residual enhancement module that leverages residual connections to preserve essential infor-
mation from the original space to help the model perform well in the unseen domain.

Formally, for the transformed feature F̂ l
trans = WlF̂l , the definition of intra-domain resid-

ual enhancement is as follows:

Rl = F̂ l
trans ⊕ F̂ l , (4)

where ⊕ denotes the residual connection and F̂ l denotes the masked feature. The residual
enhancement module reduces the cross-domain knowledge forgetting caused by anchor layer
transformation by introducing support and query information in the original domain. It does
not introduce additional parameters or require additional fine-tuning in the target domain.

For each residual enhancement support-query pair, the cosine similarity is calculated to
form a 4D hypercorrelation tensor:

Cosl
i, j = ReLU

(
Rl

s(i) ·Rl
q( j)

∥Rl
s(i)∥

∥∥Rl
q( j)

∥∥
)
, (5)

where Rl
s(i) and Rl

q( j) means the i-th support and j-th query residual enhancement feature.
The similarity is fed to the 4D convolution encoder and the 2D convolution decoder to gen-
erate the query mask. The prediction query mask and the ground truth mask are used to
calculate the cross-entropy loss, and the model parameters are updated by backpropagation.

3.5 Mask Prediction Strategy
Due to the fine-grained difference between the support query samples and the lack of the
query mask, the learning of knowledge may also be biased towards the support samples [40].
At the same time, we can not calculate the query prototype, resulting in the transformation
matrix being biased toward the support. To solve the above problems, we use the idea of
coarse to fine [25] to generate a coarse query mask, and then feed it and the support mask to
the network through the prototype fusion mechanism to get the final prediction mask.

Specifically, the model first generates a coarse soft mask M̂q for query samples, and the
query foreground mask is calculated as follows:

ĉl
q, f =

∑i ∑ j F l,i, j
q ψ l(M̂i, j

q )

∑i ∑ j ψ l(M̂i, j
q )

, (6)

where F l,i, j
q and M̂i, j

q represent the pixel values corresponding to the query feature and the
soft mask respectively. The background mask for the query can also be calculated in the same
way. Then we use a simple prototype fusion mechanism to get the final unbiased prototype:

cl
f = αcl

s, f +(1−α)ĉl
q, f , (7)

where α is a learnable parameter. Bring the fused prototype into Equation 3 to get the exact
transformation matrix and go through subsequent modules to get the final query mask. This
method not only solves the potential phenomenon of supporting sample over-fitting in FSS
but also helps the model learn how to segment across domains step by step. Finally, we
optimize the whole model through the cross-entropy loss.
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Table 1: The results of comparison with FSS and CD-FSS methods under 1-way 1-shot and
5-shot settings on the CD-FSS benchmark. It is noteworthy that all methods are trained in
PASCAL VOC and tested on the CD-FSS benchmark.

Methods Backbone ISIC Chest X-ray FSS-1000 Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Few-shot Segmentation Methods
AMP [32] VGG-16 28.42 30.41 51.23 53.04 57.18 59.24 45.61 47.56

PGNet [41] ResNet-50 21.86 21.25 33.95 27.96 62.42 62.74 39.41 37.32
PANet [36] ResNet-50 25.29 33.99 57.75 69.31 69.15 71.68 50.73 58.33
CaNet [42] ResNet-50 25.16 28.22 28.35 28.62 70.67 72.03 41.39 42.96

RPMMs [39] ResNet-50 18.02 20.04 30.11 30.82 65.12 67.06 37.75 39.31
PFENet [34] ResNet-50 23.50 23.83 27.22 27.57 70.87 70.52 40.53 40.64
RePRI [2] ResNet-50 23.27 26.23 65.08 65.48 70.96 74.23 53.10 55.31

HSNet [26] ResNet-50 31.20 35.10 51.88 54.36 77.53 80.99 53.54 56.82
Cross-domain Few-shot Segmentation Methods

PATNet [18] VGG-16 33.07 45.83 57.83 60.55 71.60 76.17 54.17 60.85
RestNet (Ours) VGG-16 37.00 43.10 62.03 62.41 75.20 78.81 58.08 61.44

PATNet [18] ResNet-50 41.16 53.58 66.61 70.20 78.59 81.23 62.12 68.34
RestNet (Ours) ResNet-50 42.25 51.10 70.43 73.69 81.53 84.89 64.74 69.89

4 Experiments

4.1 Implementation Details

Following the previous approach, we used PASCAL VOC 2012 [9] and SBD [11] as training
domains, and then tested our models on ISIC [6, 35], Chest X-ray [3, 16], and FSS-1000
[19], respectively. Each run contains 1200 tasks that contain all datasets except FSS-1000.
FSS-1000 has 2400 tasks per run [18]. We chose VGG-16 [33] and ResNet-50 [12] for
feature extraction. During the training, we kept these weights frozen and selected the feature
map as the same as the previous work [18]. We employed Adam [17] as the optimizer with
a learning rate of 1e-3.

4.2 Experimental Results

As shown in Table 1, our average results at 1-shot and 5-shot show that compared to exist-
ing methods, the mIOU of VGG-16 has increased by 3.91% and 0.59%, and the mIOU of
ResNet-50 has increased by 2.62% and 1.55%. In the case of a large gap between the fields in
the source domain dataset, our model achieves SOTA in all results for Chest X-rays. In ISIC,
the mIOU of VGG-16 increased by 3.93% (1-shot), and the mIOU of ResNet-50 increased
by 1.09% (1-shot). For FSS-1000, which has a relatively small gap from the source domain
dataset, our model surpasses all existing methods and validates its advantages in CD-FSS. In
addition, we show some qualitative results of the proposed method on different datasets in
Figure 3. These results prove that our method can improve the generalization ability, which
benefits from that our method can learn cross-domain knowledge from different views.

4.3 Ablation Study

4.3.1 Component Analysis

Our method mainly includes three parts, namely the Semantic Enhanced Anchor Transfor-
mation (SEAT) module and the Residual Enhancement (IRE) module, and Mask Prediction
Strategy (MPS). We validated the effectiveness of each component and presented the results
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Figure 3: Qualitative results of our model for 1-way 1-shot in different CD-FSS datasets.
The model is trained using PASCAL VOC. Best color view and zoom in.

in Table 2. It can be concluded that SEAT and IRE have brought significant improvements
to the model from different perspectives, and MPS is also indispensable.

4.3.2 Effect of Different Attention

We mentioned a unified attention mechanism in Section 3.3. In Table 3, we calculated its
results on the FSS-1000 with different attention mechanisms (i.e., support and query non-
shared attention mechanism modules). The results show that a unified attention mechanism
can not only help the model reduce learnable parameters but also help the model learn unified
support query attention information to achieve better segmentation results.

Table 2: Ablation study of key
modules on FSS-1000.

Baseline SEAT IRE MPS 1-shot mIOU

✓ 77.53
✓ ✓ 78.21
✓ ✓ ✓ 81.03
✓ ✓ ✓ ✓ 81.53

Table 3: Ablation study of dif-
ferent attention on FSS-1000.

Method 1-shot mIOU

Different Attention 81.69
Unified Attention 82.03

4.4 Additional Analysis
4.4.1 Visualization of Intra-domain Knowledge

In Section 3.4, we mentioned the importance of intra-domain matching similarity. To quan-
tify this attribute, for the same domain support and query samples, we calculate the support-
query similarity in Equation 5 and count the pixel pairs in each similarity whose value is
greater than zero. We call these pixel pairs intra-domain active matching. The Intra-domain
active matching reflects the knowledge learning between support and query samples from
the same domain, which can well represent the retention of intra-domain knowledge by the
model after cross-domain feature projection in the CD-FSS.

Specifically, we visualized the active matching of our method and existing methods [18]
during the training process, as shown in Figure 4(a), where Original denotes no feature trans-
formation. Compared to existing methods, our method can well preserve the intra-domain
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(a) Activate Matching (b) PATNet [18] (c) RestNet (Ours)

Figure 4: Visualization of the Intra-domain support-query activate matching.

Table 4: Comparison of the number of additional parameters of different methods.

Method HSNet [26] PATNet [18] RestNet (Ours)

Additional Parameters (M) 2.5740 M 2.5809 M 2.5812 M

knowledge in the original space and reduce the loss caused by cross-domain transformation.
Further, we visualize the support-query similarity for the 30th epoch. For ease of visualiza-
tion, we reshape the similarity from R∈H×W×H×W to R∈HW×HW , as shown in Figure 4(b)
and Figure 4(c). It can be shown that our method can activate more intra-domain matching,
helping the model utilize more intra-domain support-query information.

4.4.2 Comparison of Model Parameter Quantities

In Table 4, we compare the number of parameters with those of existing FSS methods and
CD-FSS methods. We calculate the number of additional parameters relative to the back-
bone. The results show that our method only introduces a very small number of parameters
but has additional performance improvements compared with the recent CD-FSS method.

5 Conclusion

In this work, we propose a residual transform network (RestNet) to solve the cross-domain
few-shot segmentation (CD-FSS). It is to comprehensively help the model to transfer knowl-
edge with few samples from both inter-domain and intra-domain perspectives. To achieve
this, we propose a Semantic Enhanced Anchor Transformation (SEAT) module to help the
model learn domain-independent features using advanced semantic features. In addition, an
intra-domain residual enhancement (IRE) module is also involved to help the model enhance
intra-domain information while transferring knowledge between domains. Finally, we use
the mask prediction strategy based on prototype fusion to help the model gradually learn
how to segment the unseen domain. On the three CD-FSS benchmarks, several experiments
have proved that our RestNet achieves state-of-the-art performance.
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