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Abstract
This paper proposes an assistive system for architects that converts a large-scale

point cloud into a standardized digital representation of a building for Building Infor-
mation Modeling (BIM) applications. The process is known as Scan-to-BIM, which
requires many hours of manual work even for a single building floor by a professional
architect. Given its challenging nature, the paper focuses on helping architects on the
Scan-to-BIM process, instead of replacing them. Concretely, we propose an assistive
Scan-to-BIM system that takes the raw sensor data and edit history (including the cur-
rent BIM model), then auto-regressively predicts a sequence of model editing operations
as APIs of a professional BIM software (i.e., Autodesk Revit). The paper also presents
the first building-scale Scan2BIM dataset that contains a sequence of model editing op-
erations as the APIs of Autodesk Revit. The dataset contains 89 hours of Scan2BIM
modeling processes by professional architects over 16 scenes, spanning over 35,000 m2.
We report our system’s reconstruction quality with standard metrics, and we introduce
a novel metric that measures how “natural” the order of reconstructed operations is. A
simple modification to the reconstruction module helps improve performance, and our
method is far superior to two other baselines in the order metric. We will release data,
code, and models at a-scan2bim.github.io.

1 Introduction
Building Information Modeling (BIM) serves as a modern foundation for building design,
construction, and management. This comprehensive approach involves generating a com-
plete digital representation of a building, integrating various engineering disciplines such as
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architecture, electrical, HVAC, and more. BIM transcends traditional CAD modeling by in-
corporating not only geometric data but also essential constraints and metadata. The process
of creating a BIM model from a 3D scan of an existing building is referred to as Scan-
to-BIM. Leveraging a BIM model significantly simplifies cost-saving assessments, such as
heating optimization and structural analysis. Furthermore, it streamlines renovations by pro-
viding a consistent, underlying model for designers across all industries. Swiftly generating
an architectural model through Scan-to-BIM serves as the initial step for diverse industries
like Civil, Construction, MEP (Mechanical, Electrical, and Plumbing), among others.

Scan-to-BIM is a labor-intensive process that often demands numerous hours of manual
work from a professional architect, even for a single building floor. There exists commercial
and open-source software for automatic Scan-to-BIM, but in general architects do not use
these software due to poor performance and integration with their workflows. Recognizing
this challenge, the paper aims to assist architects in the Scan-to-BIM process rather than re-
place them entirely. Nonetheless, existing building reconstruction algorithms struggle with
this assistive task, as their reconstruction approach differs significantly from that of an archi-
tect. Specifically, architects create a BIM model by executing a series of modeling editing
operations using CAD software, while current algorithms [7, 8, 15, 24] typically reconstruct
a model in a single step or sequentially but without enabling human-interactions.

This paper proposes an assistive Scan-to-BIM system that takes raw sensor data and edit
history (including the current BIM model), then auto-regressively predicts a sequence of
model editing operations as APIs for professional BIM software, specifically Autodesk Re-
vit. The sequence is presented to the user in the Revit interface, who can either accept or
reject the suggestions for other options. We focus on wall reconstruction, one of the main
steps of Scan-to-BIM workflow taking up 80% of the modeling steps based on our data col-
lection process with architects. Concretely, the system operates in two stages. First, we use
a modified version of a state-of-the-art floorplan reconstruction system [8] to enumerate can-
didate walls. The modification is to estimate wall thickness and scale to building-scale scans.
Secondly, an auto-regressive transformer network processes a set of candidate walls and the
addition action history (with order information) to predict a future sequence of actions. The
transformer learns a feature embedding for a candidate wall with a contrastive loss, such that
the next action is closer to the latest one in the feature space. The wall addition action acti-
vates a corresponding wall addition API via a Revit Plugin, where nearby wall segments are
automatically joined and elevated to 3D. These segments can also be interactively modified
within Revit. We have collected the first building-scale Scan2BIM dataset, comprising 89
hours of modeling processes by architects across 16 scenes over 35,000 square meters.

We have included a supplementary video showcasing our system assisting a user in a real
modeling scenario. We also conduct qualitative and quantitative evaluations of the proposed
system against several baselines using 1-fold cross-validation. In addition to standard metrics
for structured reconstruction [8], the paper assesses the "naturalness" of the reconstruction
order by introducing a new metric inspired by the FID score, a standard metric for generative
models [17]. Our experiments demonstrate that the proposed system more closely resembles
approaches by architects than the baselines. In summary, the paper’s contributions are three-
fold: 1) A transformer network with contrastive loss training that predicts a natural sequence
of actions; 2) A Scan2BIM assistive system that directly drives professional CAD software
throughout the BIM reconstruction process; and 3) A building-scale Scan2BIM dataset con-
taining 89 hours of BIM modeling sequences by professional architects. To further promote
the development Scan-to-BIM techniques, we will release all the data, models, and code.
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2 Related works

Our paper introduces a new dataset of large-scale buildings, and proposes an interactive algo-
rithm for structured reconstruction. We review datasets and methods related to architectural
structured reconstruction, along with the literature of Scan-to-BIM.

Architectural structured reconstruction datasets have been introduced for modeling at
the scene-level, floor-level, and city-level. Scene-level primarily focuses on semantic seg-
mentation [1, 6, 9, 20], plane reconstruction [6, 9], and wire-frame parsing [11], while floor-
level [12, 14, 15, 16] aims to obtain architectural structures such as walls and columns.
HoliCity is a city-level dataset containing 3D structures of buildings along with street-level
panoramic images and segmentation masks. In terms of data type, the floorplan dataset
used by HEAT [8] is closely related to our dataset, as both the input is a point cloud and
the output is a planar graph of edges. However, our floors are significantly larger and have
more complex structures with walls of varying thickness. In terms of floor scale, S3D pro-
posed by Armeni et al. [1] more closely resembles our dataset, as both consist of large office
spaces. Our labels contain significantly more detailed geometry, as our dataset represents
architectural models. Additionally, our dataset includes 16 floors compared to 5, covering
over 35000 square meters in comparison to 6,000 square meters in their dataset.

Architectural structured reconstruction methods commonly use input data such as im-
ages, RGB-D scans, or 3D point clouds, and output the man-made structure in a planar graph
representation. A two-stage pipeline has been the dominant approach to recover building
structures, where geometry primitives such as corners are first detected, followed by their
assembly process. Ikehata et al. [12], Liu et al. [15], and Chen et al. [7] employed opti-
mization systems for the second stage, using predefined grammar, integer programming, or
energy minimization techniques. These methods typically make strong assumptions about
the structure, such as a Manhattan layout. Conv-MPN [24] improved upon previous works
by proposing a fully-neural architecture, allowing for learnable topology inference. Monte-
Floor [21] incorporated Monte Carlo Tree Search while remaining fully differentiable and
removing assumptions in earlier optimization-based methods. Finally, HEAT [8] achieved
state-of-the-art outdoor and indoor reconstruction results through a transformer architec-
ture [22], which learns to classify edge proposals by considering edge image features and
global topology. 3D wireframe techniques [11, 23, 25, 26] often do not rely on primitives
and directly predict the target geometries from learnable embeddings.

Scan-to-BIM There exists automatic Scan-to-BIM systems in the Civil Engineering com-
munity [13, 18, 19]. They often employ multi-step optimization systems such as semantic
segmentation followed by plane fitting and wall reconstruction. To our knowledge, they are
not evaluated on standard datasets and no code exists for comparison. Exceptions are with
works from Bassier et al. [4, 5], where automatic systems are proposed and evaluated on
the S3DIS [1]. Furthermore, these papers focus on system integration instead of technical
contribution, which would be more critical for the computer vision community.

3 Assistive Scan-to-BIM dataset

We borrow building-scale scans from the “Computer Vision in the Built Environment” work-
shop series at CVPR [2]. We have used 16 scans from 11 buildings, with space types includ-
ing office spaces, parking lots, medical offices, and laboratories. Point clouds are captured
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Figure 1: A BIM model and a scan from one floor with the ceiling removed. Walls, doors,
windows, and columns account for 84.2%, 1.1%, 14%, and 0.6% of the modeling steps.

Table 1: Statistics of our proposed dataset. Average refers to average per floor.
General stats Element counts Element type counts

Total Average Total Average Total Average
Floor size (m2) 35528 2221 Walls 3142 196 Walls 189 12
Annotation time (hrs) 89 6 Doors 808 51 Doors 297 19
Modeling steps 45306 2832 Windows 3344 209 Windows 77 5
JSON data size (GB) 29.97 1.87 Columns 323 20 Columns 113 7

using professional surveying equipment, which is accurate to 1 cm. To obtain ground-truth
BIM models, we hired 5 professional architects and asked them to model at Level of De-
velopment (LOD) 200, which includes floors, walls, doors, windows, columns, and stairs.
Autodesk Revit software was used for modeling, which will be our target platform.

The main goal is to record modeling sequences, while Revit does not provide this func-
tionality. We created a custom Revit plugin that saves the states of the BIM model before
and after an operation, and programmatically translates the state difference into an equivalent
operation as a Revit API call. Please see the supplementary for more details.

Table 1 shows the statistics of our dataset. Figure 1 visualizes a BIM model and a scan.
Walls, doors, windows, and columns account for 84.2%, 1.1%, 14%, and 0.6% of the opera-
tions, respectively. A 3-channel top-down point density image is an input to our system: We
slice the point clouds horizontally at 6.56, 8.2, and 12 feet above the ground, and calculate
the point density within the three slices in the top-down view at one inch resolution.

4 Assistive Scan-to-BIM

Scan-to-BIM turns sensor data into a BIM model, where we focus on wall structures. As a
BIM assistant, the proposed system is integrated with a BIM software, in our case Autodesk
Revit. The section explains 1) The pre-processing module, in which we enumerate wall seg-
ment candidates by modifying the current state-of-the-art floorplan reconstruction system [8]
to handle building-scale scans; 2) The next wall prediction module, which is the core of our
system; and 3) The assistive Scan-to-BIM system that integrates the two modules with Revit.
We refer to Figure 2 for an overview of our system.

Citation
Citation
{Chen, Qian, and Furukawa} 



SONG: A-SCAN2BIM 5

Figure 2: System overview. Given an existing BIM model as the current state, we first obtain
wall candidates by enumerating corners and edges with thickness. We then auto-regressively
predict an ordering to the candidate walls using a Transformer network.

4.1 Candidate wall enumeration

Given a density image and existing walls, we use the state-of-the-art floorplan reconstruction
system HEAT [8] with a few key modifications to enumerate wall candidates in four steps:
corner enumeration, wall enumeration, wall thickness prediction, and duplicate removal.

Corner enumeration is done by a HEAT corner detection module that uses a Transformer
network to estimate the corner likelihood at every pixel and apply non-maximum suppression
(NMS). Since our density image is large, we divide the image into 256×256 local windows
with 64 pixels overlap, compute the pixel-wise likelihood by the HEAT module, and merge
results while keeping the maximum value at the overlaps. The same NMS filter applies.

Wall enumeration is done by a HEAT edge classification module, where we modify the de-
formable attention layer to pool image features along very long edges in our task. Concretely,
instead of sampling image features from one reference point (typically the edge center), we
sample from N linear-interpolated reference points along an edge, and apply max-pooling.
Lastly, Revit represents a T-junction as one long edge and one short edge. During training,
we split the long edge into two at the junction point to obtain a proper planar graph structure.

Wall thickness prediction is obtained by an extra two-layer MLP which is added to the end
of the image branch of the edge classifier above. The thickness can range from 1 inch to
84 inches with an increment of an inch. During training, we apply cross-entropy loss on all
walls with known thickness while ignoring the rest.

Duplicate removal looks through the enumerated walls and retains only ones that do not
exist yet. Given the coordinates of a pair of enumerated and existing walls, we compute the
distances of their end-points. An enumerated wall is flagged as a duplicate and removed, if
both corners are less than 10 pixels for at least one existing wall. We also perform the same
filter between the enumerated walls themselves and remove duplicates.
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4.2 Next wall prediction

Given an existing set of walls optionally with their edit history (i.e., the sequence in which
they were added to the model) along with a set of wall candidates, we calculate a score
for each candidate. The score estimates the likelihood of each candidate wall being the
next addition to the model. The process runs auto-regressively to obtain future modeling
sequences of arbitrary length. Please see the lower half of Figure 2 for a high-level overview.

A Transformer network is our architecture where an existing or a candidate wall is a node.
The network contains six blocks of self-attention layers, and produces a 256-dimensional
embedding vector for each node. The cosine similarity in the embedding space between the
last existing wall to candidate walls determines the scores of the next one to be added (i.e.,
higher the more likely). We refer to the supplementary for the full architecture specifications.

Each wall node is a concatenation of three embeddings: 1) 256-dimensional sinusoidal
embedding of the wall coordinates; 2) one of three learnable 128-dimensional wall type em-
beddings; and 3) 128-dimensional sinusoidal embedding of the timestep t when the wall was
added. The timestamp (t) is assigned in reverse chronological order. Specifically, candidate
walls are marked with t = 0. The last added wall is assigned t = 1. The second last added
wall is given t = 2, and so on. For walls that have not been modified in the last 10 steps, we
designate their timestamp as t = 10. For type embeddings, the three types of walls are ones
with timestep t = 0, 1 ≤ t < 10, and t ≥ 10, respectively. The concatenated embedding is
then projected down to the dimension of 256 by a linear layer.

We train the Transformer network with a contrastive loss by constructing triplets with
the last wall (t = 1), the ground-truth (GT) next wall, and all other candidate walls, such that
the cosine embedding distance between the latest and GT next wall are closer than the rest
of the candidates by a margin of 1. We train on GT edges and sequences, and found that the
network also works well on our reconstruction results during test time.

4.3 Assistive Scan-to-BIM

The final assistive system combines the above modules and works with or without user in-
teraction, from scratch or an existing BIM model. Regardless of the scenario, we first run
the corner enumeration module and cache the result to be used in all subsequent steps.

Automatic mode reconstructs the BIM model without user-interaction by auto-regressively
running the next wall prediction network, while taking the candidate wall with the highest
score every time. Note that when starting from an existing model, we do not have the edit
history information and set t = 10 for all existing walls.

Assistive mode aims to speed up manual modeling by offering wall auto-completions af-
ter each user interaction. A user interaction can be either a corner addition or wall addi-
tion/modification action, the former of which is a new action implemented by our plugin.
Each interaction introduces new or modified corners, and we combine them with our cached
corners and re-run the wall enumeration module to update the wall candidates. The system
then auto-regressively predicts a future modeling sequence of length-N (N changeable by a
user), and displays the sequence as special lines in Revit. The user can choose to accept the
proposal, or instead change the modeling direction by requesting the top-3 next wall pre-
dictions and choosing one as the next step. Auto-completion then resumes. Please see the
supplementary video for the demonstration of the mode.
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Figure 3: Main results, evaluating modeling sequence generated by different methods at
different sequence lengths. Lower is better.

5 Experiments
Our system has been developed in Python 3.8 and PyTorch 1.12.1. The training process
utilizes a single NVIDIA A100 GPU with 40GB of memory. For the hyper-parameters of
the corner and edge networks, we refer to the HEAT model [8]. The learning rate for all
networks is 2× 10−4. The batch sizes are 8, 1, and 128 for the corner, edge, and next wall
prediction networks, respectively. For the edge network, we perform gradient accumulation
every 16 steps, effectively yielding a batch size of 16. The training takes 93,000, 210,000,
and 200,000 steps for the three networks, with the learning rate decaying by a factor of
0.1 every 53,000, 70,000, and 100,000 steps, respectively. For data augmentation, we use
random rotation for corner training. For wall enumeration, we normalize the image and
edges so that the longest edge does not exceed 1000 pixels, after which we apply random
rotation and scaling. For the next wall prediction, we first center and normalize the edges
by a maximum length of 1000, then perform random translation, rotation, and scaling. After
fine-tuning the corner detector of HEAT, we obtain corner precision/recall of 83.70/71.10%
under matching threshold of 30 inches.

5.1 Baseline methods

Heuristic: To determine wall addition sequence, one can greedily pick the candidate wall
nearest to the last edit. Specifically, for each pair of walls, we identify the closest points
and calculate their distance. We apply this process from the last wall in the sequence to all
candidate walls, choosing the candidate wall with the smallest distance.

Classifier: In a more straightforward approach, one could train a classifier to distinguish
between valid and invalid sequences. This classifier could enumerate all potential sequence
candidates, selecting the one with the highest probability. To train such a classifier, we con-
struct positive examples by considering all sub-sequences of the ground truth modeling steps,
starting from the first step. For every positive sequence, we generate a negative example by
substituting the last wall with one from a future step. To overcome class imbalance issue, we
replicate positive examples to that of the negative ones. In terms of binary classification, we
utilize the same architectural framework as the next wall prediction module. However, we
introduce an extra classification token into the transformer network. This token undertakes
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Table 2: Effect of number of reference points for deformable attention

5 inches 15 inches 30 inches Width
Acc.# points Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1 IoU

1 59.29 41.01 48.09 67.1 45.95 54.09 70.23 48.03 56.57 0.3 79.56
8 59.42 43.51 49.6 66.82 48.41 55.4 69.53 50.45 57.7 0.34 78.85

16 59.77 43.63 49.88 67.24 48.55 55.73 70.42 50.9 58.41 0.34 80.16

Table 3: Entropy and accuracy vs history length

Hist. len 1 2 3 4 5 6 7 8 9

Accuracy 25.17 27.41 28.48 29.45 30.21 30.93 31.72 32.35 32.72
Entropy 2.32 2.26 2.19 2.15 2.13 2.09 2.05 2.02 2.01

self-attention with the walls, and a final linear layer is used to output the binary probability.

5.2 Novel order metric
Evaluating next wall prediction solely based on accuracy is overly stringent, given the am-
biguous nature of the task. We propose a new metric to assess the "naturalness" of the
predicted wall modeling sequence. This metric draws inspiration from the Fréchet Inception
Distance (FID) score [10], a measure commonly used to evaluate the quality of samples pro-
duced by image generation models. Given two sets of real and predicted wall sequences, we
initially generate a latent encoding for each sequence using a Temporal Convolutional Net-
work (TCN) [3]. The TCN is trained to auto-encode random subsets of ground truth edges,
with the output from the 6th hidden layer being used. For each set of encodings, we calculate
two Gaussian distributions that capture the mean and variance of each latent dimension. The
final score is determined by computing the Fréchet distance between these two distributions.
A lower score indicates a better model. For more detailed information regarding the TCN
architecture and its training process, please refer to the supplementary materials.

5.3 Quantitative evaluations
Figure 3 presents our main results, wherein we assess the sequences predicted by three com-
petitive methods using our proposed order metric. To generate a sequence, we select one
edge from the candidates as the starting point, and subsequently predict the next N steps auto-
regressively, up to a maximum of 10 steps. The candidate walls can be either ground truth
(GT) or predicted ones. For the latter, we use raw predictions without any post-processing
to maintain high recall. As evident, our method outperforms the others on both sets of walls,
despite being trained solely on GT walls and sequences.

We evaluate the impact of our modifications to the deformable attention module (Sect.
4.1). As shown in Table 2, we vary the number of reference points and calculate preci-
sion/recall at different distance thresholds along with Intersection over Union (IoU) scores.
To compute wall width accuracy, we collect matched walls under threshold of 30 inches, and
consider width prediction to be correct if it’s within 3 inches. The method of sampling only
one point is equivalent to the original HEAT architecture. The results indicate that utilizing
more points generally leads to superior performance.

Lastly, we investigate the effect of history length on the next wall prediction. More
accurate and confident predictions should result from providing a longer historical context.
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Figure 4: Qualitative comparison of predicted sequences. We note that for the right-most
column, the pink walls and ordering are GT as well.

To do so, we provide GT history of different lengths, and predict from the remaining GT
edges. In Table 3, we observe that as the history length increases, both the accuracy of the
predicted next wall and the entropy decrease, thereby confirming our hypothesis.

5.4 Qualitative evaluations
Our system is designed to be interactive. We refer to the supplementary video for a demon-
stration of our system. The video depicts a real-world modeling scenario in which our sys-
tem is integrated within Revit and supports the user by predicting future modeling sequences.
Both automatic and assistive modes are demonstrated to highlight the flexibility of our tool.

Figure 4 illustrates some of the wall sequence predictions, where a ground truth (GT)
sequence is a condition. Across all the columns, the green edges represent GT walls. In the
first three columns, the pink edges correspond to the reconstructed results; for the rightmost
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Figure 5: Failure cases of our method. (a) and (b) suffers from poor reconstruction results;
(c) and (d) demonstrates incorrect predicted order.

column, they signify GT walls. For ease of visualization, the history and predicted lengths
are capped at five. Our method yields a sequence ordering that more closely mirrors the
GT sequence. In the first row, our method intuitively grasps the intention of an architect,
choosing to model the smaller enclosed area first. In the second row, our sequence ordering
closely matches the GT, with the only deviations occurring in the reconstruction results.

6 Limitations and conclusion

In this paper, we have introduced a neural network architecture for the prediction of natural
sequences, a Scan2BIM assistive system seamlessly integrated with professional CAD soft-
ware, and an extensive Scan2BIM dataset. Our method showcases strong performance in re-
construction tasks and surpasses two baseline models in next-wall prediction. However, our
method still exhibits failure cases with reconstructions and order predictions, which need to
be seriously considered before real-world usage (see Figure 5 for examples). With an under-
standing that there is room for further development, we pledge to continue this advancement
by making all relevant data, models, and code accessible to the research community.
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