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Abstract
Hyperspectral image classification is gaining popularity for high-precision vision tasks

in remote sensing, thanks to their ability to capture visual information available in a wide
continuum of spectra. Researchers have been working on automating Hyperspectral image
classification, with recent efforts leveraging Vision-Transformers. However, most research
models only spectra information and lacks attention to the locality (i.e., neighboring
pixels), which may be not sufficiently discriminative, resulting in performance limitations.
To address this, we present three contributions: i) We introduce the Hyperspectral Locality-
aware Image TransformEr (HyLITE), a vision transformer that models both local and
spectral information, ii) A novel regularization function that promotes the integration
of local-to-global information, and iii) Our proposed approach outperforms competing
baselines by a significant margin, achieving up to 10% gains in accuracy. The trained
models and the code are available at HyLITE.

1 Introduction
Hyperspectral Imaging (HSI) is capable of remotely capturing a large field of view by
sampling the continuum of the electromagnetic spectrum. As a result, HSI provides fine-
grained information that is not typically available in conventional RGB images. This ability
to leverage such fine-grained information has led to breakthroughs in various industries,
including monitoring plants in agriculture [6, 10, 21, 30, 30, 32], remote sensing of the
Earth’s surface [11, 27], and better navigation and vision in robotics [16, 28].

The first deep HSI-based techniques adopted Convolutional Neural Networks (CNNs)
to learn representations, either in a discriminative [17, 21, 22, 35, 36, 37, 39] or generative
manner [8, 30]. However, the performance of CNNs has been limited, due to the limited
receptive field of CNNs [2, 9], which cannot model long-range dependencies across spatial-
spectral dimensions. To model long-range dependencies, self-attention is incorporated into
CNNs [20, 24, 33, 38, 40], significantly increasing the receptive field of CNNs by enabling
any pixel or spectrum to aggregate information from any other pixel or spectrum within the
input cube. However, the receptive field of the backbone CNN representation is still too
limited for HSI.

To overcome this limitation, most recent techniques rely solely on the Vision-Transformer
[9], which is a stack of multi-head self-attention modules. One notable example is Spectral-
Former, which models the interactions across spectral bands to classify an input pixel [14].
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Figure 1: (Left) A Hyperspectral image cube, with the spectral signals of two pixels from
separate categories (‘notill’ and ‘mintill’) from the Indian Pines dataset [12]. Observe how
their spectral signature is highly similar. (Right) Confusion matrices of SpectralFormer [14]
and HyLITE (Ours). SpectralFormer confuses these two classes, as it solely relies on the
spectral signal. HyLITE disambiguates the classes by incorporating locality information.

However, modeling spectral interactions alone can be insufficient for classification when
pixels with different classes have very similar spectral signatures.

For instance, in Figure 1, we show the spectral signal of two pixels from the Indian Pines
dataset [12], belonging to the ‘notill’ and ‘mintill’ classes, respectively. These pixels exhibit
highly similar spectral signatures, which confuses the SpectralFormer [14]. Fortunately,
besides the spectral signal, Hyperspectral images also provide the local information around a
pixel, such as the representation of nearby pixels, which may help in disambiguating the target
categories. Additionally, the global information within the Hyperspectral signal, such as the
set of potential categories present within the input image, could be useful. Hence, modeling
the relationship between local and spectral information can help discriminate between the
possible classes for a given pixel.

We propose a Hyperspectral Locality-aware Image TransformEr (HyLITE), which ex-
tends SpectralFormer in three major ways. Firstly, HyLITE models the relationships between
local (spatial) and spectral representations, so that when spectral information is insufficient,
local information can come into play. Secondly, we model the relationships between local and
global representations with a novel regularization objective. Our regularization loss enforces
local and distant pixels and spectra to aggregate information from each other, effectively
improving representational capacity. Finally, we extensively evaluate our method on three
standard HSI benchmarks and show that HyLITE establishes a new State-of-the-Art in HSI
classification.

In summary, this paper makes three main contributions:

I. We propose Hyperspectral Locality-aware Image TransformEr (HyLITE), a novel
architecture that can model the local-spectral relationships in Hyperspectral data.

II. We equip HyLITE with a novel local-global regularization objective, to balance global
and local spectral information.

III. We conduct experiments on three well-established benchmarks, and show that HyLITE
significantly improves over the competitive SpectralFormer baseline, across all bench-
marks and metrics. For example, we improve the overall accuracy by 10.83% on Indian
Pines [12], by 3.41% on Houston2013 [1], and by 6.64% on Pavia [12].
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2 Related Work
Vision Transformers. Vision-Transformers (ViTs) are a direct translation of language
transformers in NLP [7, 19] to computer vision [9]. The key building block of ViT is the
self-attention layer [29], which consists of three subnetworks, namely Query, Key and Value
networks. Query and Key networks compute the attention across the input signal, which
is then used to modulate the input signal using the Value network. Since the release of
ViT, many variants have been proposed [4, 5, 18, 26, 31, 34]. However, the majority of
these are limited to processing RGB images. In this work, our model input consists of
pre-processed Hyperspectral image patches, which have a much lower spatial resolution (i.e.,
7×7 vs. 512×512) and much higher spectral resolution (i.e., 200 vs. 3). These fundamental
differences demand specialized architectures and loss functions. To that end, in this work,
we develop new components combined with a novel loss function to learn the relationships
between local and spectral information.

Hyperspectral Image Transformers. ViTs have previously been used in state-of-the-art
Hyperspectral image classification architectures [14, 15, 25]. Hong et al. [14] propose
SpectralFormer, which treats each spectrum as a distinct token, and models spectrum-to-
spectrum attention. However, HSI offers much more than spectrum-only information: it also
contains spatial information, such as the local neighborhood of a pixel. To that end, Sun et
al. [25] augment SpectralFormer with spatial attention. However, the mere combination of
spectral and spatial attention is suboptimal. As we will demonstrate, regularizing local pixel
representations with respect to global information matters greatly. Finally, Ibanez et al. [15]
propose MAEST, which pre-trains a transformer backbone by predicting masked wavebands
with Masked-AutoEncoders [13] prior to labeled fine-tuning. Such pre-training promotes
locality and improves performance. However, self-supervised pre-training is computationally
costly [23]. Our HyLITE model combines spectral and spatial attention while also introducing
local-global regularization, which achieves better performance without requiring pre-training.

3 Hyperspectral Locality-aware Image TransformEr
An overview of HyLITE is given in Figure 2. We strictly follow the protocol in [14], treating
HSI as an image-level classification task. Given an image-label pair (XXX ∈ Rp×p×m,yyy ∈ Rc)
where input XXX is a low-resolution square image with spatial resolution p× p (i.e., 7× 7)
and spectral resolution m (i.e., 200), sampled from a high-resolution Hyperspectral image
by overlapping patchifying. Each patch is labeled by the category of its center pixel from c
potential classes, such as grass, road, etc. The goal is to train a vision transformer fθ with
parameters θ to predict the image label yyy′ = fθ (XXX), where yyy′ ∈ Rc denotes the predictions.
We train our network in four main steps, which are detailed below.

1) Preprocessing. We first transform the input image by transposing and flattening it in
the spatial dimension: XXX ∈ Rm×p2

, thus yielding m spectral tokens with dimensionality p2:
XXX = [zzz1;zzz2; ...;zzzm] where zzzi ∈ R1×p2

. We use XXX i
j to denote the spectral token zzzi at the jth

transformer block. Next, we embed the tokens in Rd using a linear projection W ∈ Rp2×d ,
insert a learnable global classifier token zzz0 ∈ R1×d , and add a learnable position tensor
P ∈ R(m+1)×d to each token. As such, the first transformer block takes the form:

XXX0 = [zzz0;zzz1W ; ...,zzzmW ]+P (1)

Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2018

Citation
Citation
{Manning and Schutze} 1999

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Bao, Dong, Piao, and Wei} 2021

Citation
Citation
{Chen, Radford, Child, Wu, Jun, Luan, and Sutskever} 2020

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and J{é}gou} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Yuan, Chen, Wang, Yu, Shi, Jiang, Tay, Feng, and Yan} 2021

Citation
Citation
{Hong, Han, Yao, Gao, Zhang, Plaza, and Chanussot} 2021

Citation
Citation
{Ibanez, Fernandez-Beltran, Pla, and Yokoya} 2022

Citation
Citation
{Sun, Zhao, Zheng, and Wu} 2022

Citation
Citation
{Hong, Han, Yao, Gao, Zhang, Plaza, and Chanussot} 2021

Citation
Citation
{Sun, Zhao, Zheng, and Wu} 2022

Citation
Citation
{Ibanez, Fernandez-Beltran, Pla, and Yokoya} 2022

Citation
Citation
{He, Chen, Xie, Li, Doll{á}r, and Girshick} 2022

Citation
Citation
{Singh, Duval, Alwala, Fan, Aggarwal, Adcock, Joulin, Doll{á}r, Feichtenhofer, Girshick, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023

Citation
Citation
{Hong, Han, Yao, Gao, Zhang, Plaza, and Chanussot} 2021



4 ZHOU ET AL. : LOCALITY-AWARE HYPERSPECTRAL CLASSIFICATION

LAHIT-v3

10

Transformer Encoder 

Patchify

 B x

Linear Projection

Block1 Block2 …...
B x

Block3

LayerNorm

Spectral MHA

LayerNorm

Local MHA

LayerNorm

FeedForward

positional 
embedding

class token

each 
patch

…...

m * p * p

p*p

1 2 3 mm-1m-2

p*p p*p p*p p*p p*p

m

RegularizationClassification 
Head

Figure 2: An overview of HyLITE. i). Preprocessing: The input image is patchified, linearly
projected, and appended with a classifier token and a positional embedding. ii). Represen-
tation: The input is processed by identical spectral and local multi-head attention (MHA)
blocks. iii). Classification: At the end, the representation of the classifier token is mapped to
a distinct category, such as {grass,road}. iv). Regularization: To further promote locality,
we apply our novel regularization on top of the learned token representations.

2) Representation. Each of the B transformer blocks consists of three subsequent layers,
namely Spectral-Attention S(·), Local-Attention L(·) and Feed-Forward F(·) layers, applied
one after the other: XXXb = F(L(S(XXXb−1))) ∈ R(m+1)×d where b = 1 . . .B. Before each layer, a
LayerNorm [3] is applied, which we omit for clarity. Below, we detail each layer.

First, the spectral Multi-Head Attention (MHA) layer combines information from across
the spectral dimension. It is implemented via self-attention. Formally:

S(XXX) = softmax(
(XXXW s

q)(XXXW s
k)

T

√
d

)(XXXW s
v) (2)

where {W s
q,W

s
k,W

s
v} are the linear query-key-value projections, respectively, all with tensor

dimensionality Rd×d , where
√

d is a scaling factor, and softmax(·) is the softmax operator.
Second, the local MHA layer combines information across the local (spatial) dimension.

It is also implemented via self-attention. Formally:

L(XXX) =

(
softmax(

(XXXT W l
q)(XXX

T W l
k)

T

√
d

)(XXXT W l
v)

)T

(3)

where {W l
q,W

l
k,W

l
v} are again linear query-key-value projections, with tensor dimensional-

ity R(m+1)×(m+1).
Finally, the feed-forward layer consists of two linear layers and generates the output of

each block with dimensionality R(m+1)×d . After the last block, the token representations are
passed to both a classification and regularization head.
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3) Classification. We generate predictions by learning a linear mapping from the global token
representation of the last layer to the classification labels: yyy′ = XXX0

BC, where C ∈ Rd×c is the
classifier head. Using the predictions and the final representations, the model is trained by
minimizing the following objective:

O = CE(yyy,yyy′)+λ ·Reg(XXXB) (4)

where CE(·) is the standard cross-entropy loss, Reg(·) is our novel local-global regularization
objective, and λ attenuates the regularization strength. In the remainder of this paper, we set
λ = 1. The effects of different λ values are reported in the supplemental materials.

4) Regularization. During the training of HyLITE, we observed that the spectral tokens
mostly attend to their self -representation, hence focusing on the local context and ignoring the
global context. Moreover, the global token mostly attends to a few specific tokens, ignoring
the rest of the local context. This indicates that the spectral and global token representations
diverge throughout the blocks, and hence we name this phenomenon "attentional divergence".
To prevent such divergence and improve performance, we propose the following regularization
objective:

Reg(XXXB) =

∥∥∥∥∥XXX0
B −

1
m

m

∑
i=1

XXX i
B

∥∥∥∥∥
2

2

(5)

To minimize this loss function, the global output token XXX0
B should be close to the center of

the spectral tokens. Hence, the gradients will nudge the representations of the global and
spectral tokens closer together, causing them to converge rather than diverge, and aggregating
information from each other, thus incorporating globality in the learning process. Notably,
the use of a learned global token works differently (and performs much better) than simply
applying average pooling over all spectral tokens. It better balances acquired global and local
knowledge, while average pooling might cause information loss. As we will demonstrate, this
approach has a significant positive effect on classification performance.

4 Experimental Setup
We evaluate our method on multiple datasets, with multiple metrics, and against multiple
strong baselines. The supplementary provides further details on implementation and setup.

▷Datasets: We evaluate our model on three well-established HSI datasets. i). Indian
Pines [12]: consists of 224 spectral bands with 145×145 spatial resolution. It includes 16
classes, 695 training, and 9k testing samples. ii). Houston2013 [1]: consists of 144 spectral
bands with 349×1905 spatial resolution. It includes 15 classes, 2k training, and 12k testing
samples. iii). Pavia University [12]: consists of 103 spectral bands with 610×340 spatial
resolution. It includes 15 classes, 3k training, and 40k testing samples.

▷Metrics: We rely on the standard metrics, namely Overall Accuracy (OA), Average
Accuracy (AA) and Kappa Coefficient (k). OA denotes the total number of correctly predicted
samples over all samples, while AA denotes the average accuracy of each class.

▷Baselines: We mainly compare HyLITE against the state-of-the-art methods Spectral-
Former [14] and MAEST ∗ [15]. We also compare against conventional methods (i.e., kNN,
RF), and CNN-based techniques (N-D CNNs) for the sake of completeness.
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Indian Pines Houston2013 Pavia University

OA AA Kappa OA AA Kappa OA AA Kappa

kNN 59.17 63.90 0.54 77.30 78.28 0.75 70.53 79.68 0.62
RF 69.80 76.78 0.65 77.48 80.35 0.75 69.67 80.18 0.62
SVM 72.36 83.16 0.68 76.91 78.99 0.79 70.82 84.44 0.64

1-D CNN 70.43 79.60 0.66 80.04 82.74 0.78 75.50 86.26 0.69
2-D CNN 75.89 86.64 0.72 83.72 84.35 0.82 86.05 88.99 0.81
RNN 70.66 76.37 0.66 82.23 85.04 0.81 77.13 84.29 0.71
miniGCN 75.11 78.03 0.71 81.71 83.09 0.80 79.79 85.07 0.73

ViT 71.86 78.97 0.68 80.41 82.50 0.78 76.99 80.22 0.70
SpectralFormer 78.97 85.39 0.76 85.08 86.39 0.83 84.64 86.75 0.79
HyLITE (Ours) 89.80 94.69 0.88 88.49 89.74 0.87 91.28 92.25 0.88
∆ 10.83 9.30 0.12 3.41 3.35 0.03 6.64 5.50 0.08

MAEST 82.12 87.63 0.79 83.61 84.89 0.82 87.20 89.91 0.83

Table 1: Comparison against the State-of-the-Art. We provide the results from all baselines,
as well as the performance gap (∆) with SpectralFormer. Our model consistently outperforms
all techniques by a wide margin across all datasets and evaluation metrics. Notably, our
model most significantly outperforms SpectralFormer when the training set is small (e.g.,
only 695 training instances in Indian Pines). Surprisingly, our model even outperforms the
computationally much more expensive self-supervised pre-training approach of MAEST .
These findings support our hypothesis that spatial locality plays a crucial role in Hyperspectral
image classification.

5 Hyperspectral Image Classification

5.1 Comparison to the State-of-the-Art

Firstly, we compare our method against several baselines from the HSI literature in Table 1. We
use the exact same evaluation procedure as used in [14] to get a fair comparison. We can make
four observations based on these results: i). HyLITE achieves State-of-the-Art performance
by a significant margin across all three datasets and all three metrics. ii). Our performance
surpasses that of the most competitive baseline, SpectralFormer, by 3− 10% in overall
accuracy in the respective benchmarks, confirming our hypothesis that SpectralFormer lacks
crucial locality information. iii). Third, the improvement of HyLITE is particularly noteworthy
on the Indian Pines dataset, with Overall Accuracy and Average Accuracy improving by
10.83% and 9.30%, respectively. This suggests that adding locality information helps to learn
more effectively from small amounts of training data, since Indian Pines has the smallest
amount of training data among the three benchmarks, with only 695 instances. We will further
explore this in the next section. iv). HyLITE even outperforms MAEST [15], which performs
computationally expensive self-supervised pre-training prior to fine-tuning. This indicates that
once discriminative inductive biases are present within the model, self-supervised pre-training
is no longer needed.

We conclude that incorporating locality is highly valuable for Hyperspectral image classi-
fication, as evidenced by the significant improvement over competitive baselines across all
benchmarks.
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Figure 3: Comparing the sample efficiency of HyLITE and SpectralFormer [14] on Indian
Pines [12]. HyLITE outperforms across all subsets, confirming the efficacy of locality for
learning from limited examples.

5.2 Evaluation of Sample Efficiency
In the previous section, we focused on learning on all available data. However, in Hyperspec-
tral imaging, sample efficiency matters greatly, as data collection and annotation are costly.
To that end, we compare the performance of HyLITE with SpectralFormer on Indian Pines, by
varying the size of the training set within {10%,20%, ...,100%}. We repeat the experiment 4
times with different random training samples, and present the mean and standard deviation in
Figure 3.

From this, we can make two observations: i). The performance of both models degrades
drastically as the size of the training set shrinks (i.e., 10%). This is expected, as Vision-
Transformers require a sufficient number of exemplars to generalize. ii). HyLITE is always
superior to SpectralFormer across all subsets. This indicates that incorporating locality is
useful in improving the sample efficiency of Hyperspectral image classifiers.

Hence, we conclude that incorporating locality not only improves accuracy, but also
improved sample efficiency of Hyperspectral imaging, which is promising for low-shot
learning applications.

5.3 Ablation Analysis
We ablate the position and the components of HyLITE in Table 2.

Positional Embedding. Here, we try to understand the contribution of positional information
in HyLITE. First, removing positional information leads to a drastic performance drop, as
expected. This indicates HyLITE greatly utilizes location information. Secondly, learning
positional information yields much better performance than fixing positional information.
This indicates HyLITE learns to adjust the relative contribution of each token within the input.

Components. We ablate the local attention (local-att) and regularization (local-reg) com-
ponents to understand their relative contribution. Firstly, including either local attention or
local-global regularization helps greatly. However, incorporating both leads to a significant
gain, indicating that regularizing the local-attention representation matters in Hyperspectral
image classification.
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Indian Pines Houston2013 Pavia University

OA AA Kappa OA AA Kappa OA AA Kappa

Positional Embedding

No Embedding 79.63 85.35 0.77 84.09 85.96 0.83 84.69 87.18 0.79
Fixed Embedding 85.30 88.56 0.83 83.46 85.26 0.82 87.36 85.64 0.83
Learned Embedding 89.80 94.69 0.88 88.49 89.74 0.88 91.28 92.25 0.88

Components

local-att(✗) & local-reg(✗) 78.97 85.39 0.76 85.08 86.39 0.83 84.64 86.75 0.79
local-att(✓) & local-reg(✗) 85.37 90.09 0.83 87.69 89.18 0.87 87.78 91.06 0.84
local-att(✗) & local-reg(✓) 83.00 89.40 0.81 87.13 88.33 0.86 87.76 91.72 0.84
local-att(✓) & local-reg(✓) 89.80 94.69 0.88 88.49 89.74 0.88 91.28 92.25 0.88

Table 2: Ablation Study. Learning the positional embedding, as well as combining our local
attention (local-att) with local-global regularization (local-reg) matters.

We conclude that HyLITE is able to incorporate positional information efficiently, and
regularizing the local-attentional representation is critical for classification accuracy.

5.4 Category-level Analysis

Here, we provide a category-level comparison with SpectralFormer on Indian Pines. Results
are presented in Figure 4. The comparison results on Houston2013 and Pavia University
datasets are presented in Section 3 of the supplementary material.
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Figure 4: Category-level comparison to the SpectralFormer on Indian Pines. The contribution
of HyLITE is generic, with fine-grained categories of ‘Alfalfa’, ‘Buildings-Grass-Trees-
drives’, and ‘Soybean-mintill’ receiving the highest benefits.

As can be seen, the contribution of HyLITE is generic, as it improves over all (non-
saturated) categories. The improvement is more pronounced for easily misclassified classes
by SpectralFormer, such as ‘Alfalfa’, ‘Buildings-Grass-Trees-drives’, and ‘Soybean-mintill’.
This indicates that local, fine-grained details matter to distinguish such categories.
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Indian Pines Houston2013 Pavia University

OA AA Kappa OA AA Kappa OA AA Kappa

Order of Attention

Local-to-Spectral 87.44 92.25 0.86 87.14 88.18 0.86 85.60 91.29 0.81
Spectral-to-Local 89.80 94.69 0.88 88.49 89.74 0.87 91.28 92.25 0.88

Global Token

Local-token 83.54 92.61 0.81 85.85 87.26 0.85 91.05 92.16 0.88
Spectral-token 89.80 94.69 0.88 88.49 89.74 0.87 91.28 92.25 0.88

Fusion

Class-level 81.05 89.86 0.79 86.05 87.83 0.85 87.41 88.20 0.83
Feature-level 89.80 94.69 0.88 88.49 89.74 0.87 91.28 92.25 0.88

Table 3: Architectural Analysis. It is important to incorporate spectral attention prior to
local, using a global spectral token as opposed to local, and combining representations at the
feature-level rather than class-level.

5.5 Architectural Analysis
In this section, we provide further analysis to justify architectural choices in this paper (see
Section 3). The results are presented in Table 3.
Order of Attention. Firstly, we observe that the order of attentional blocks matters. Including
spectral information prior to spatial information leads to better performance. This is expected,
since in Hyperspectral imaging, most of the information is present within the spectrum, and
the input image may exhibit low spatial resolution.
Global Token. Originally, the additional global classifier token for HyLITE is spectral. Here,
we test the performance with local tokens by transposing the dimensions and adding a global
classifier token to the local dimension. We observe that pooling the representation from the
spectral token matters, as opposed to local. This indicates that even though locality matters,
spectral information carries more discriminative information for classification.
Fusion. In HyLITE, we combine spectral and local information directly within the block (i.e.,
feature-level). We also experiment with late-fusion, where one model only includes spectral
attention and the other only local attention, whose output is combined at the class-level. As
is evident from Table 3, feature-level fusion outperforms the class-level counterpart by a
large-margin, indicating the importance of spectral-to-local interactions for HSI.

6 Conclusion
In this paper, we tackled Hyperspectral image classification. Motivated by the limited local
information in state-of-the-art Hyperspectral image transformers, we incorporated the locality
by attending to the local pixels as well as regularizing the local-to-global representations with
our novel loss function. Evaluated on three well-established benchmarks, we observe that
HyLITE is highly accurate, as it improves state-of-the-art across all datasets and all metrics.
Secondly, we observe that HyLITE is highly efficient, as it learns much better from less
number of examples. Finally, we highlight the importance of our architectural choices, for a
principled inclusion of locality into Hyperspectral transformers. We conclude that locality is
crucial for Hyperspectral image classification.
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