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Abstract

Partial Person Re-identification (Partial RelD) is a challenging task which aims to
match partially visible images with holistic images of the same pedestrian. One of the
significant challenges of this task is scale misalignment between holistic and partial per-
son images, which makes it difficult for models to adapt to the scale gaps of different
images. Previous methods used pooling or convolutional layers with various sizes to
extract features of different scales. However, it is essential to note that each person’s
image has specifically suitable feature extraction scales, and some scale features may be
unnecessary or even detrimental. Based on this finding, an adaptive feature extraction
paradigm could be more suitable for Partial ReID. To this end, we propose a novel Scale
Adaptive Network (SANet) to dynamically extract scale-adaptive features to counter-
act scale variance. Specifically, we introduce an Adaptive Feature Enhancement module
(AFE) to adaptively extract multi-scale features and address scale misalignment. Further-
more, since a partial image only contains a portion of body parts in holistic images, the
body parts exclusive to holistic images could introduce noise for image matching. Thus,
we utilize a segmentation head to indicate the available human parts in each image and
use the common visible body parts for feature comparisons between images. Extensive
experiments demonstrate the effectiveness of our SANet network, which achieves com-
parable performance on partial and holistic person RelD datasets. Our code is available
on https://github.com/chenjiangniao/SANet

1 Introduction

Person re-identification (ReID) aims to match the same individual captured by non-overlapping
cameras, widely used in video surveillance and criminal investigation. In recent years, with
the development of deep learning and the publication of large-scale holistic person datasets,
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(b)
Figure 1: The scale variation between holistic and partial images. As denoted in the red
boxes, the same local patterns in different images demonstrate significant visual variance,
which requires RelD models to adapt to inputs with different scales during feature extraction.

holistic person RelD has demonstrated remarkable success. However, partial images are in-
evitably captured in real-world scenarios due to occlusion, camera range, and viewpoint. In
these situations, directly applying holistic person ReID methods could lead to an inaccurate
matching. Thus, partial person RelD was proposed in [39], which aims to match an identical
person’s partial and holistic images.

In partial person RelD, one of the main challenges comes from the scale variation be-
tween partial and holistic person images. As illustrated in Figure 1, identical local patterns,
indicated by the red boxes, exhibit significant visual differences in various images. When
a predefined model is employed to extract human features from these images, the image
deformation caused by scale variation can pose substantial challenges in feature extraction,
subsequently impacting feature comparison.

To address this problem, some methods propose locating the partial image within a holis-
tic reference image using a learned position [8, 18]. However, this approach requires each
compared image to serve as the reference image for a partial image to be located within. The
pairwise comparison can be inefficient during the referencing stage, especially in a large im-
age gallery. Alternatively, some methods [4, 5, 6, 17] design a spatial pyramid architecture
to extract and fuse features of different scales, called multi-scale features, to combat scale
misalignment. Although these methods can mitigate the scale misalignment issue by fus-
ing multi-scale features, the predefined static architectures still lack adaptability to diverse
scaled inputs encountered in real-world environments.

In this work, we introduce a novel network called Scale Adaptive Network (SANet) for
Partial ReID. The network includes an adaptive feature extraction (AFE) module, which em-
ploys dynamic routing [14] to learn scale-adaptive features for partial person images with
varying scales. Specifically, the AFE module takes the features from intermediate layers of
ResNet-50 [3] as input and utilizes a series of scale-path selection cells to generate scale-
adaptive features. Under the weak supervision of identity information, the AFE module
learns to select the most suitable scale paths, resulting in more optimal feature representa-
tions.

Additionally, given that partial images contain only a portion of body parts compared to
holistic images, the body parts exclusive to holistic images can introduce noise during image
matching. To tackle this issue, we first employ human parsing masks to indicate the presence
of each body part and extract the corresponding local features. Then, we utilize the features
of commonly visible body parts to calculate the similarity between compared images.

The main contributions of our work can be summarised as follows:
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* We propose an Scale Adaptive Network (SANet) for Partial ReID, which is designed
to extract scale-adaptive features for partial images with arbitrary scales and extract
shared local features for image matching.

* We propose an adaptive feature extraction (AFE) module with a series of scale-path
selection and feature refinement cells. This module dynamically generates scale trans-
formation paths and refines features layer by layer, ultimately enhancing their semantic
richness.

* Our extensive experimental results demonstrate the effectiveness of the proposed AFE
module. Moreover, the SANet network achieves comparable performance on partial,
and holistic person RelD datasets.

2 Related Work

2.1 Holistic Person Re-Identification

Holistic person re-identification (ReID) focuses on matching images of the same pedestrian
captured by different cameras. Existing ReID methods can be briefly classified into three
categories, including feature representation learning methods, deep metric learning meth-
ods, and ranking optimization methods. Feature representation learning methods [25, 32, 37]
are devoted to extracting robust and discriminative features from pedestrian images. Deep
metric learning methods [19, 27, 29] try to design novel and effective loss functions to reg-
ulate the distance between positive and negative image pairs. The ranking optimization
methods [1, 21, 34] introduce similarity ranking in the testing phase and re-optimizing the
ranking list based on the similarities between images. In real-world scenarios, obstacles or
limited camera range may result in images showing only a portion of a pedestrian, negatively
impacting the performance of ReID models.

2.2 Partial Person Re-identification

Partial person re-identification (Partial ReID), proposed by [38], aims to match partial im-
ages with holistic images of the same pedestrians. The scale misalignment between partial
and holistic images is one significant challenge for this task. To solve this problem, existing
methods could be briefly divided into two categories [8], i.e., multi-scale feature extraction
methods [6, 8, 35] and feature reconstruction methods [4, 17, 26]. Multi-scale feature ex-
traction methods aim to mitigate the effects of scale variance by extracting robust multi-scale
features using pooling or convolutional layers of different sizes. For example, He et al. [6]
leverage pyramid pooling to extract spatial pyramid features of different scales. Feature
reconstruction methods aim to mitigate the effects of information asymmetry by extracting
features common to both local and global images through image transformations or auxiliary
models. Luo et al. [17] employ the predicting of affine parameters and samples the patches
from the holistic images to match partial images. For Multi-scale feature extraction methods,
existing methods of fixed structure have difficulty adapting to different scales. In this work,
we propose a scale-adaptive network to tackle the scale misalignment problem by generating
scale-adaptive features for each input image.
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Figure 2: The overall architecture of our proposed SANet. It consists of an adaptive fea-
ture extraction (AFE) module and a multi-branch feature extraction (MFE) module. First,
the AFE module adaptively generates dynamic multi-scale features against scale variations.
Subsequently, we extract the visible information for matching.

2.3 Dynamic Routing

Dynamic routing is a dynamic network that adapts to samples of different scales by changing
model structure. It aims to solve the problems like scale variance or limited computational
resources [2, 13, 14]. Shen et al. [22] introduce dynamic routing in the field of medical image
processing, which enhances feature maps by dense connections. Zhou et al. [41] introduce
dynamic routing to visual question answering by dynamically selecting the attention span
of the transformer. Considering that the RelD task is a real-time interactive task demanding
high efficiency, our approach is more specific to Partial ReID. we thus choose to utilize the
dynamic routing algorithm for extracting scale-adaptive features in this study.

3 Methods

As illustrated in Figure 2, the SANet network consists of an adaptive feature enhancement
(AEF) module and a multi-branch Feature Extension (MFE) module. The AFE module
adaptively generates scale transformation paths for each image to obtain dynamic multi-
scale features. The MFE module extracts local and global pedestrian features with the aid
of human parsing masks and only calculates the similarity of common visible body parts
between holistic and partial images.

3.1 Adaptive Feature Extraction Module

In Partial RelD, scale misalignment between holistic and partial images, as one of the signifi-
cant challenges, brings considerable difficulty for a ReID model in extracting human features
for image matching. To alleviate this problem, some previous methods use a spatial pyramid
architecture to extract multi-scale features. However, this pre-defined static network still has
difficulty adapting diverse scaled inputs.

In this work, we propose an adaptive feature enhancement (AEF) module, which utilizes
dynamic routing [14] to generate scale-adaptive features dynamically. In terms of structure,
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Figure 3: (a) The interconnections between the various layers in AFE. (b) The construction
of each cell. It aggregates the features from the hiL’1 and generates scale transformation
score o through a gating mechanism, and the basic operation further refines the features f*
to hidden features 1.

we insert the AFE module between the first three layers and the 4-th layer of the backbone
model ResNet-50 [3]. It comprises five layers containing three cells that produce different
scale selections. The cells are interconnected between the layers to achieve scale transfor-
mations. After 5 layers of scale transformation selection, the generated multi-scale features
are summarized together as the final scale-adaptive features for the image.

As illustrated in Figure 3 (a), ¢ in L layer incorporates scale features from cells cf’l and
c%’l in L — 1 layer, refining the features at layer L. Subsequently, an up-sampling operation
is applied to activate c%“ in L+ 1 layer. As shown in Figure 3 (b), each cell in the AFE
module is composed of three parts: scale transformation operation, gating mechanism, and
base operation. The scale transformation operation includes up-sampling, down-sampling,
and keeping resolution. In each cell, the exact process can be divided into four steps.

First, we summarize the features from the cells of the previous layer to get the aggregated
feature fL = ):fv hiL’I, where hfﬁl is the feature of the previous layer, and N represents the
number of prior activated cells. Secondly, we design the gating mechanism to generate
the probability of selecting different scale transformation paths, which comprises a 1 x 1
convolutional layer, a max-pooling layer, and a gumble softmax function [11]. It can be
represented as follows:

al = GS(MaxPool((Gyx1 (wF, f)))), (1)

where ol is the scale transformation score of i-th cell in the L-th layer, Gix is the 1 x 1
convolution operation, wlL represents the parameters of convolution layer, MaxPool repre-
sents the maxpooling layer, GS represents the gumble softmax operation. Thirdly, the base
operation consists of 3 x 3 convolution layer for feature refinement to improve the semantic
richness. It can be represented as follows:

Fh fine = Gaxa(WE, 1), )

where G3x3 is the 3 x 3 convolution operation, erefine represents the features refined by
base operation. Finally, we select the scale transformation paths using &, and perform the

corresponding scale transformation, this process can be written as:

hlL = 0 X Tseqale (erefine)7 ®


Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Jang, Gu, and Poole} 2016


6 CHEN ET AL: SANET

where h,-L denotes the final output of the cell, 7., represent the corresponding scale trans-
formation operation. In each layer, cells activated by the previous layer select the scale
transformation paths to activate the cells of the next layer. We obtain scale transformation
paths by passing and activating layer-by-layer and generating dynamic multi-scale features.

3.2 Multi-branch Feature Extension Module

Partial images, containing only sections of pedestrian figures, present an inherent informa-
tion asymmetry compared to holistic images, significantly complicating image matching.
Therefore, when computing similarities between image pairs, focusing on the features of
commonly visible human body parts becomes crucial. To discern the presence of each body
part and accurately extract the corresponding part-level features, we utilize human parsing
masks as auxiliary information in this work.

In order to reduce the computational cost, we do not use an additional pre-trained human
parsing model to generate human parsing masks, as in [10, 23]. Instead, we use 5 parameter-
unshared branches to generate the masks for the human body parts (including the head, upper
body, lower body, and feet) and the whole human content, as shown in Figure 2. Here, the
global branch is utilized as a residual path. In each branch, a block initialized with the 4-
th layer of ResNet-50 is first utilized. Then, a specific segmentation head, which consists
of two convolutional layers, is utilized to produce human parsing masks. To optimize the
segmentation heads, a human parsing loss is utilized, where the annotations are obtained
from [12]. After that, the features for each branch can be calculated by:

Fi = MaXPOOl(mi X fléex4)’ (4)

where fh, 4 € R>wXC represents the feature of the 4-th layer of ResNet-50 extracted from
the i-th branch, m’ € R?>**! and F' € RC denote the mask and the generated feature of
the i-th branch, and MaxPool means a max-pooling layer. Besides, following [10, 23], the
visible coefficient v/ for each body part can be calculated by,

Vv = max(0, sum(m' > 0.5)) > 1, )

where sum means the summation of pixel by pixel. After generating the visual feature and
visible coefficient V' for each body part, we can compute the similarities between images
with the features of commonly visible body parts.

3.3 Training and Test

In the training stage, three loss functions, including human parsing loss, identity classifica-
tion (ID) loss, and triplet loss [9], are utilized to optimize the SANet network. Specifically,
we follow [10] to use focal loss [16] Lg,cq as the human parsing loss to obtain the masks for
each body part. Besides, following [10, 23, 25], we employ ID loss L;p and triplet loss Lr;
on the features of each branch to teach the model to re-identity. The overall loss functions
can be represented as,

L= (Lin(fl) + Ll f2) + Lroca (m', DS(M))) 6)

where M € R¥*W>1 denotes the mask label for i-th branch, and DS means down-sampling
to produce mask labels with the same size as m'. We set the weight of triplet loss to 0.1, the
other losses’ to 1.
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In the test phase, we choose the scale transformation path with the max probability in
Equation | instead of using Gumbel-Softmax [11] to generate the scale-adaptive features for
each input. We take the extracted F' and use the V' obtained by Equation 5 to determine
whether the current local or global features are visible, and only calculate the Euclidean
distance of visible parts. It can be represented as,

"8
5 i
i:ll]'

5 iy (Fi i i i
> 1" Dist(F!, F}! . 1L,v, >1& v, > 1, . )
p— Zi=! ( ), 11’_{ a 8 vi>landvi,>1  (7)

0, else.

where F,F, represent the features of the i-th local branch belonging to the query image and

gallery image, vf] and vg, mean the corresponding visible coefficient, and 1’ is an indicator.
We only calculate the distance between images when the body parts are both available.

4 Experiments

4.1 Datasets and Experiments Protocol

Partial-REID [38] dataset comprises 600 photographs of 60 distinct pedestrians, each with
five holistic and five partial body images. Partial-iLIDS [4] is a dataset designed for par-
tial person re-identification and contains 476 photos of 119 individuals. The partial-iLIDS
dataset consists of two distinct forms [31]: Partial-iLIDS-O and Partial-iLIDS-P. Partial-
iLIDS-O includes the barriers, whereas Partial-iLIDS-P crops the barriers to concentrate
exclusively on pedestrians. Market1501 [36] contains 1501 IDs which are captured by six
different cameras, the training set contains 750 identities, and the test set contains 751 iden-
tities. DukeMTMC-relID [40] consists 16522 training images of 702 identities, 2228 query
images of the other 702 identities and 17661 gallery images.

Experiment protocol. Following the standard evaluation setting, we adopt mean Aver-
age Precision (mAP) and Rank-k accuracy as the experimental protocol.

4.2 Implementation Details

As the Partial-REID and Partial-iLIDS are very small, we follow the previous works [4,
6, 8, 26] to train the network on the Market1501 [36] and test on the Partial-REID and
Partial-iLIDS. We trained on two NVIDIA 3090 TI with 150 epochs, We scaled all photos to
384 x 128, then enhanced the data with flipping, color improvement, and random cropping.
Before the training stage, following [24], we train our network with SGD optimizer, setting
the learning rate to 0.01 and batch size to 64. We set the weight of triplet loss to 0.1, the
other losses’ to 1

4.3 Comparison with State-of-the-art Methods

Comparisons on Partial Person ReID Datasets. To exhibit the effectiveness of our pro-
posed SANet, we compare the RelD performance of our SANet with the holistic, occluded
and partial person ReID methods on the Partial-REID, Partial-iLIDS-O and Partial-iLIDS-P
datasets. The experimental results are given in Table 1. From this table, we can find that
our SANet achieves state-of-the-art Rank-1 and mAP performance on these three datasets.
Compared to the best competitor FRT [30], our SANet outperforms by 6.2% in Rank-1 on


Citation
Citation
{Jang, Gu, and Poole} 2016

Citation
Citation
{Zheng, Li, Xiang, Liao, Lai, and Gong} 2015{}

Citation
Citation
{He, Liang, Li, and Sun} 2018{}

Citation
Citation
{Yang, Zhang, Yu, Jiang, Zhang, Sun, Chen, and Zheng} 2021

Citation
Citation
{Zheng, Shen, Tian, Wang, Wang, and Tian} 2015{}

Citation
Citation
{Zheng, Zheng, and Yang} 2017{}

Citation
Citation
{He, Liang, Li, and Sun} 2018{}

Citation
Citation
{He, Wang, Liu, Zhao, Sun, and Feng} 2019

Citation
Citation
{He, Shen, Huang, Chen, and Hua} 2021{}

Citation
Citation
{Sun, Xu, Li, Zhang, Li, Wang, and Sun} 2019

Citation
Citation
{Zheng, Shen, Tian, Wang, Wang, and Tian} 2015{}

Citation
Citation
{Somers, Deprotect unhbox voidb@x protect penalty @M  {}Vleeschouwer, and Alahi} 2023{}

Citation
Citation
{Xu, He, Liang, and Sun} 2022


8 CHEN ET AL: SANET

Category Method Partial-REID Partial-iLIDS-O Partial-iLIDS-P
Rank-1 Rank-3 mAP | Rank-1 Rank-3 mAP | Rank-1 Rank-3 mAP
Holistic PCB (ECCV18) [25] 66.3 - 63.8
TransReID (ICCV21) [7] 71.3 - 68.6 - - - - - -
FPR (ICCV19) [6] 81.0 - 76.6 - - - 68.1 - 61.8
HPNet (ICME2018) [10] 85.7 - 81.8 72.0 - 58.9 68.9 80.7 722
Occluded LKWS (ICCV21) [31] 85.7 93.7 - 80.7 88.2 - -

ASAN (TCVST21) [28] 86.8 93.5 78.8 81.7 88.3 85.9 71.4 81.9 72.5

PAT (CVPR21) [15] 88.0 92.3 -
FRT (TIP22) [30] 88.2 93.2 - 73.0 87.0 - - -
DSR (CVPRI18) [4] 53.7 72.3 - - - - 55.5 68.0
VPM (CVPR19) [26] 67.7 83.6 - - - - 67.2 76.5
Partial STNRelID (TMM20) [17] 66.7 80.3 - - - 54.6 71.3
PMN (AI22) [20] 76.7 79.0 - - - - 62.2 74.8
FSA (ICME22) [33] 73.7 82.7 - - - - 68.9 82.4
PPCL (CVPR21) [8] 83.7 88.7 - - - - 71.4 85.7 -
SANet (Ours) 88.7 92.3 81.5 84.9 89.1 86.5 74.8 84.0 77.3

Table 1: Performance comparison with state-of-the-art methods on three Partial RelD
datasets, i.e., Partial-REID, Partial-iLIDS-O and Partial-iLIDS-P.

Market1501 DukeMTMC

Method Rank-1 mAP | Rank-1 mAP
DSR [4] 835 642 - -
VPM [26] 93.0 808 | 836 1726

PGFA [18] 91.2 76.8 82.6 65.5
STNRelD [17] 93.8 84.9 - -
SANet (Ours) 93.7 80.1 85.5 67.1
Table 2: Performance comparison with state-of-the-art methods on two holistic person ReID
datasets, i.e., Market1501 and DukeMTMC datasets.

average. The reason could be that our employed scale-adaptive feature enhancement strategy
could adaptively generate effective features for inputs with variance scales.

Comparisons on Holistic Person ReID Datasets. To evaluate the effectiveness of our
SANet on holistic person RelD, we also conduct experiments on two holistic person ReID
datasets, i.e., Market1501 and DukeMTMC. The experimental results are exhibited in Ta-
ble 2. Although the scale variation problem in holistic images is not as salient as in partial
images, our SANet still achieves compatible performance on both holistic datasets, which
indicates that our scale adaptive strategy is also effective for holistic images.

4.4 Ablation Studies

Effectiveness of the Components in SANet network. To demonstrate the effectiveness
of the modules of SANet network, we conduct ablation experiments on the Partial-iLIDs-P
dataset. The experimental results are exhibited in Table 3. For comparison, we first give
the results of the baseline model, i.e., HPNet [10], which uses ResNet-50 as the backbone

| AFE  MFE | Rank-1 Rank-3 Rank-5 mAP

HPNet [10] X Local 68.9 80.7 82.4 72.2
+ Global Branch X v 72.3 81.5 85.7 75.3
+ Fixed FE Fixed v 73.9 79.0 83.2 76.3
SANet v v 74.8 84.0 84.9 77.3

Table 3: The effectiveness of the AFE module and MFE module.
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Layer Number | Rank-1  mAP [| Cell Operation | Rank-1 mAP

3 74.8 76.8 Convl x 1 73.1 75.9
5 74.8 71.3 Conv3 x 3 74.8 77.3
7 72.3 75.2 Conv5 x 5 73.1 75.6

Table 4: Ablation studies about the number of layers in the AFE module, and the base

operations in a cell.
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Figure 4: (a) The visualization of different inference paths of instances in AFE. (b) The

comparison of activation maps generated by models using or not using AFE module.

and four local branches. Then we additionally employ a global branch in the multi-branch
feature extraction module, which improves the Rank-1 accuracy and mAP by 3.4% and
3.1%. Additionally, we use a fixed version of the feature enhancement (FE) module where
the model is static and all scale transition paths are activated. It brings an improvement of
1.6% in Rank-1 and 1.0% in mAP, which means multi-scaled features are effective for this
task. Furthermore, a scale-adaptive FE module, i.e., AFE module, is utilized in our SANet,
which further improves the Rank-1 accuracy and mAP by 0.7%/1.0%, respectively. The
performance improvement shows the effectiveness of adaptive path transformation selection
for scale variation.

Analysis of the deployment of our AFE module. Here, we analyze the impact of
different layers on AFE modules. In the left part of Table 4, we set the number of layers
as 3, 5, 7. The 5-layer of AFE performs best, with both too deep and too shallow layers
detrimental to the dynamic scale transformation.

Analysis about the convolution sizes in AFE module. We compare different base
operations of the cell, setting the size of the convolution kernel from 1 x 1 to 5 x 5. The
experimental results are shown in the right part of Table 4. A larger convolution kernel tends
to miss small information, while a smaller kernel is hard to capture more comprehensive
information. According to the results, we set the convolution kernel to be 3 x 3.

4.5 Qualitative Analysis

In this section, we present the qualitative experimental results and demonstrate the superi-
ority of our SANet. Figure 4 (a) exhibits that the AFE module generates adaptive inference
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paths for different inputs. For the holistic pedestrian images, the shallow features are ex-
tracted to prevent the loss of detailed information by continuous down-sampling. For the
partial images, the deep features are extracted to alleviate large scaling. Besides, we demon-
strate the activation maps of our AFE module in Figure 4 (b). It shows that the AFE module
can adapt to different scales of pedestrians. Our AFE module is able to extract finer pedes-
trian areas and adaptively extract pedestrian features.

5 Conclusion

In this paper, we propose a novel Scale Adaptive Network (SANet) for Partial ReID. Our
SANet addresses the scale misalignment problem by adaptively extracting dynamic multi-
scaled features and refining them layer by layer, we also utilize a multi-branch feature extrac-
tion module to mitigate the information asymmetry between comparing partial and holistic
images. Experiments demonstrate that our SANet achieves comparable performance on par-
tial and holistic person RelID datasets.
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