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Abstract

Understanding pedestrian behavior patterns is key for building autonomous agents
that can navigate among humans. We seek a learned dictionary of pedestrian behavior to
obtain a semantic description of pedestrian trajectories. Supervised methods for dictio-
nary learning are often impractical since pedestrian behaviors may be unknown a priori
and manually generating behavior labels is prohibitively time consuming. We utilize a
novel, unsupervised framework to create a taxonomy of pedestrian behavior observed in
a specific space. First, we learn a trajectory latent space that enables unsupervised clus-
tering to create an interpretable pedestrian behavior dictionary. Then, we show the utility
of this dictionary for building pedestrian behavior maps to visualize space usage pat-
terns and for computing distributions of behaviors in a space. We demonstrate a simple
but effective trajectory prediction by conditioning on these behavior labels. While many
trajectory analysis methods rely on RNNs or transformers, we develop a lightweight,
low-parameter approach and show results outperforming SOTA on the ETH and UCY
datasets.

1 Introduction
The success of computer vision in robust recognition has paved the way for vision-guided
autonomous agents in real world environments. For embodied agents, an understanding of
pedestrian behavior is important for navigating in a non-disruptive manner. Trajectory pre-
diction of pedestrians has received significant attention in recent years, with algorithms that
learn time-series representations of trajectories while taking into account both scene context
and other nearby pedestrians. While trajectory prediction algorithms are powerful, they out-
put sequences of x-y coordinates which do not provide high level, interpretable knowledge
of the scene or explain scene dynamics in terms of human behavior.

How do pedestrians use this space? Where do people congregate and socialize? What
are the dominant patterns in pedestrian behavior? Addressing these questions enables iden-
tification of social waypoints and a spatial mapping of the space in terms of social behavior.
This mapping can be used in robot motion planning. For example, just as a robot should
avoid running into a mailbox, it should also be cognizant of social waypoints such as patios,
bus-stops, map kiosks, and other places where people congregate and socialize.
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Figure 1: Understanding the underlying so-
cial behaviors inherent in pedestrian trajecto-
ries makes predicting them easier. We create
PT-Net to predict social behaviors, like those
shown above, given historical pedestrian loca-
tions.

We create PT-net, a network that learns
a pedestrian behavior dictionary in an un-
supervised, data-driven manner to provide
explainable, semantic social behavior la-
bels for pedestrian trajectories in a scene.
These can be used to characterize global
trends in space usage and pedestrian be-
havior habits, as well as assist in down-
stream tasks like trajectory prediction, so
that very shallow networks can be used to
predict accurate paths. Trajectories are al-
ready low-dimensional as a sequence of x-
y values with limited long-range dependen-
cies. Consequently, the computational tools
used in past trajectory prediction such as
RNNs with attention [34, 41] and without
[1, 47], transformers [15, 49], and spatio-
temporal graph networks [19, 49] may be
unnecessarily complex for the task.

Unsupervised methods are integral to our framework because they do not require pro-
hibitively time consuming labelling of large datasets like their supervised counterparts. More-
over, the labels themselves are unknown in this domain, requiring them to be learned from
pedestrian data. We are inspired by methods [51] that learn networks to reproduce preex-
isting embeddings using a student-teacher framework to circumvent this problem. PT-net
creates a stationary latent space embedding of trajectories to create a pedestrian behavior
dictionary. This dictionary groups trajectories with similar social behaviors into homoge-
neous clusters corresponding to interpretable behavior that can be readily human-labelled by
observing a small sampling of trajectories within each cluster.

Unsupervised clustering to discover social behaviors avoids the shortcomings of man-
ually defining presumed behaviors. For example, consider the cluster that corresponds to
leader-follower behavior where two pedestrians travel approximately the same path, one in
front of the other, separated by a distance. This behavior cannot be easily manually defined
because the inter-person distance is randomly distributed and varies among environments.
Our approach supports the discovery of diverse behaviors within a specific environment
without the explicit definition of these properties, while having the advantage of being light-
weight, unsupervised, and relying on very basic networks to achieve useful characterizations
and accurate predictions of pedestrian behavior.

We show the utility of our method on the ETH [30] and UCY [23] datasets. Mapping
semantic pedestrian behaviors from the dictionary to specific locations in scenes results in
a pedestrian behavior map that can answer key questions about an environment. While tra-
jectory prediction is not our main goal, we additionally demonstrate that our social behavior
dictionary simplifies the task of pedestrian trajectory prediction and maintains comparable
performance with current SOTA that use much larger, more complex networks.

Our main contributions are threefold: (1) introduction of PT-net: an unsupervised method
for computing a semantically meaningful pedestrian behavior dictionary using a novel t-
SNE imitator network; (2) construction of interpretable pedestrian behavior maps to charac-
terize environment usage patterns in terms of pedestrian behavior; (3) competitive pedestrian
trajectory prediction results with a much simpler network than current SOTA.
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Figure 2: To make the social behavior dictionary, velocity and proximity-based features
are computed from groups of trajectories.The t-SNE algorithm creates a 2D trajectory la-
tent space embedding from these features, and PT-net learns to reproduce this embedding
by directly predicting corresponding feature coordinates.This learned coordinate embedding
separates distinct pedestrian social behaviors into clusters, forming a pedestrian behavior
dictionary. During inference, PT-net uses the processed trajectories to get the embedding
coordinates and matches them to the closest social behavior cluster.

2 Related Work
Prior work has clustered groups of similar trajectories [17, 39] based on similar motion pat-
terns [7, 10, 20] and group shapes [12], similar probabilistic distributions [52], or using deep
clustering [3, 38]. However, most of these clustering methods do not provide interpretable
labels for their behavior and rely on hand crafted similarity metrics, with the exception of
the deep clustering methods. Recent work in unsupervised guidance for pre-training pro-
vides a solution to these problems by building networks to learn good representations of data
in a self-supervised manner. For example, [13, 14] learns a representation that matches vi-
sual bag-of-words output; [48] trains a network to match 2D t-SNE output, creating a latent
space for texture recognition; [8, 9] train networks to generate clusters for unsupervised fea-
ture learning; and [39] trains a 3D convnet to match the k-means clustering of an embedding
space. We follow this trend of using unsupervised methods to train clustering networks to
build PT-net, a t-SNE-imitator network for projecting pedestrian paths to an interpretable
latent space. Our approach is more lightweight than previous work and produces clusters
corresponding to distinct pedestrian social behaviors.

Early work in trajectory prediction focused on scene-level reasoning using LSTMs [34],
intra-trajectory attention [11] with transformers [15], and scene reasoning with trajectory
waypoints [22]. Recent work incorporates social information to impact model performance
using hand-defined social relationships, such as social pooling based on occupancy maps
[1, 26, 46] and relative pedestrian distances [16], or trajectory categorization and social
pooling based on similar motion trends [6, 20, 36]. Due to the limitations of hand-crafted
features, work began to focus more on learned social features. Social attention with GANs
[32], CVAEs [28, 45], and transformers [40] allowed networks to focus on input informa-
tion specifically pertaining to learned social groups. Concurrently, social interactions were
modeled using graphs, and graph networks learned edge features characterizing the social in-
teractions between pedestrians in a scene for both fixed [25, 29, 41] and varying [33, 37, 44]
group sizes. Some methods combine social attention and social graph networks [5, 19, 49]
to improve learned social features, or propose new loss functions [27] to allow networks to
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implicitly learn to predict trajectories that are more socially compliant. While these methods
produce reasonable results, they do not provide interpretable reasoning behind their trajec-
tory predictions or explainable social behaviors.

3 Methods
3.1 PT-net for a Trajectory Latent Space
We devise PT-net to act as a t-SNE imitator by using a student-teacher framework to obtain
a stable embedding from multi-pedestrian trajectories, which are particularly well-suited for
t-SNE-embedding because of their low dimensionality. Given trajectories X i

t = {xi
t ,y

i
t} for

each person i in a scene over t time steps, we split the trajectories into overlapping segments
of length T where each segment is offset by ∆t, and each pedestrian is present for the duration
of the time steps in each trajectory segment. This provides environment specific pedestrian
behavior examples that are limited by features such as sidewalks, entryways, and roads. The
trajectory segments are augmented by rotation (θ = 30,45,60 degrees) to insert synthetic
variation into the data to make the learned latent space more generalizable. This allows us to
learn a more complete social behavior dictionary without the need for more training data.

The relative velocity, vi, for each pedestrian is computed as follows:

vi = [xi
t − xi

t−1,y
i
t − yi

t−1] (1)

Subsequently, the distance, di, between person i at time t and the N −1 nearest pedestrians
in the scene at time t −1, are computed for each time step in the segment as follows:

di = [xi
t − x j

t−1,y
i
t − y j

t−1] ∀ j ∈ N where j ̸= i (2)

where N is the total number of people in the trajectory segment. We choose raw distances to
form di, as opposed to absolute or squared distances, to preserve direction in our proximity
estimations. These two vectors, vi and di, are computed for each person in the trajectory and
concatenated to form

D = [αvi | di] ∀ i ∈ N (3)
where α is a scaling factor included to combat the difference in scale between the relative
velocities vi and the proximity-based features di and | denotes the concatenation operation.
This process is repeated for each multi-person trajectory segment from the raw data.

From there, we split the data into groups containing equal numbers of pedestrians and use
t-SNE to create a trajectory embedding for each group from its flattened D representation.
The t-SNE embedding output is clustered using k-means, where k is chosen through visual
inspection of the t-SNE embedding manifold. The cluster assignments of each point in t-
SNE space are paired with their corresponding raw trajectories. Sampling small numbers of
these points per cluster and comparing the associated raw trajectories reveals a taxonomy of
semantically meaningful behaviors like leader-follower, walking in pairs, or standing around
in small groups, as shown in Figure 4. See Figure 2 for an overview of this process.

This trajectory embedding learned directly from the pedestrian velocities using t-SNE is
useful, but t-SNE embeddings are irreproducible, which is undesirable in the event that it is
necessary to predict the social behavior clusters of previously unseen pedestrian trajectories
or add to the number of social clusters by processing new data. To combat this, PT-net, a
feed-forward MLP network, learns to mimic the resulting t-SNE embeddings. Each cluster
in the pedestrian behavior embedding corresponds to one unique social behavior. This effec-
tively quantizes a continuum of behaviors to reduce the dimensionality of an infinite set of
social behaviors, thus providing a tractable lexicon for high level scene reasoning.
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Figure 3: For pedestrian trajectory prediction, PT-net predicts the social behavior cluster
assignment corresponding to the behavior of the pedestrians in the scene. This assignment
dictates which of the MLPs will be used to predict the future trajectories of the pedestrians.
We train one MLP per cluster in the pedestrian behavior dictionary and deterministically
condition the prediction upon the social behaviors of the pedestrians in the scene.

3.2 Utilizing the Pedestrian Behavior Dictionary

Once the pedestrian behavior dictionary is created, it can be used to answer questions about
human behavior and environment utilization. A particular environment can be characterized
by enumerating the social behaviors that occur and computing the frequency and locations
of these behaviors. That is, pedestrian behavior histograms and pedestrian behavior maps
allow characterization of space usage and discovery of pedestrian behaviors (see Figures 5
and 6). Analysis of space in this manner is directly applicable to social science issues such
as public space assessment [18, 35, 42, 43] and pedestrian behavior analysis [2, 21, 31]. Key
questions in pedestrian behavior can be answered such as: what is the average distance in
leader-follower relationships? Is this distance culturally dependent? What is the radius of
movement when people are congregating during conversation or waiting?

Using a set of trajectories X as input, we also predict future trajectories X̂ deterministi-
cally conditioned on the predicted, semantically meaningful, social behavior cluster, ci, from
PT-net as shown in Figure 3. First, the pedestrians in the scene are clustered into groups of at
most N based on relative distance. If the number of pedestrians in the scene exceeds N, then
combinations of pedestrians are created based on proximity such that each group contains
at most N people and each pedestrian is included in at least one group. Then, the velocity
and proximity input D from Equation 3 is assembled for each group in the current scene
and flattened. PT-net directly uses this flattened representation to predict the social behavior
cluster from the pedestrian behavior dictionary. Based on this cluster assignment, a specific
feed-forward MLP network is chosen from an ensemble to make the pedestrian trajectory
prediction. We train one MLP to predict future trajectories per cluster in the pedestrian be-
havior dictionary. This light-weight approach is possible because the dictionary effectively
limits the possible state space of the trajectory prediction problem to a manageable range.

4 Results
4.1 Datasets and Training

PT-net is tested against SOTA methods using the ETH [30] and UCY [23] datasets. The tra-
jectories are normalized based on the scene sizes and centered on the origin. Note that each
of the datasets occur on sidewalked areas. This limits the types of behaviors that pedestrians
can exhibit. For example, it’s highly unlikely that a pedestrian will walk in circles or mean-
der directionlessly because the social convention is to walk parallel or perpendicular to the
buildings. Subsequently, the trajectories are augmented with several rotations to introduce

Citation
Citation
{Honey-Ros{é}s, Anguelovski, Chireh, Daher, Konijnendijk vanprotect unhbox voidb@x protect penalty @M  {}den Bosch, Litt, Mawani, McCall, Orellana, Oscilowicz, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Small and Adler} 2019

Citation
Citation
{Whyte} 2015

Citation
Citation
{Whyte etprotect unhbox voidb@x protect penalty @M  {}al.} 1980

Citation
Citation
{Antonini, Martinez, Bierlaire, and Thiran} 2006

Citation
Citation
{Kothari, Sifringer, and Alahi} 2021{}

Citation
Citation
{Robin, Antonini, Bierlaire, and Cruz} 2009

Citation
Citation
{Pellegrini, Ess, Schindler, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2009

Citation
Citation
{Lerner, Chrysanthou, and Lischinski} 2007



6 JOHNSON, DANA: LEARNING A PEDESTRIAN SOCIAL BEHAVIOR DICTIONARY

Figure 4: Visualizing the Social Behavior Dictionary. (Top) Each dot represents the t-SNE
embedding of a 3.2 second (8 frame) trajectory. The colored clusters denote distinct social
behaviors for N=1,2,3 people (corresponding colors across the graphs do not denote related
behaviors). Cluster diagrams near each cluster illustrate the pedestrian behavior. (Bottom)
Trajectory diagrams showing a temporal integration of video to see the movement (for a
selection of behaviors) in one frame. Red arrows show pedestrian direction.

more behavior variety with the training data available, allowing for the learning of a more
complete social behavior dictionary.

To create the input data for t-SNE, we use sliding windows of size T = 8 timesteps and
∆t = 1 to learn behaviors that would be relevant to existing work and to allow for more
granular detection of social behavior changes. We choose α to be 15, and the maximum
number of people in each trajectory used for our experiments is N = 3. PT-net is a collection
of three, four layer MLPs, one for each N, with ReLU activations trained for 300 epochs.

For the trajectory prediction task, positions X i
t = {xi

t ,y
i
t} for each person i in a scene

over t = 8 timesteps are input to the ensemble of MLPs which predict X̂ i
t = {x̂i

t , ŷ
i
t} positions

over t = 12 timesteps into the future for each person. This choice of input and prediction
horizon is standard in multiple SOTA methods [1, 16, 50]. The ensemble networks consist of
four linear layers with ReLU activation functions and residual connections each trained for
1000 epochs on only the data corresponding to their respective cluster assignments. Because
PT-net is a scene-specific model, we train on 80% (2880 trajectories) of the data from all
scenes and test on the remaining 20% (720 trajectories) for each environment. While some
applications require no pre-training on the scene, the observation of a scene before algorithm
deployment is quite reasonable in numerous applications, such as IOT, smart buildings, and
traffic monitoring, due to a ubiquitous fixed camera.

4.2 Interpretable Pedestrian Behavior Dictionary
The learned latent space for N = 1,2,3 pedestrians is shown in Figure 4. Drawings with rep-
resentative example trajectories are superimposed on each graph next to their corresponding
clusters. Distinct clusters appear for each N which indicates that our velocity and proximity-
based trajectory processing is sufficient for learning distinct behaviors. Because we use
velocity-based features, similar behaviors that are executed in different directions (ie. left-
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Figure 5: Pedestrian Behavior maps. Colored boxes indicate select social behaviors occur-
ring over the entire data collection period for ETH. We infer a rich story about environment
usage for varying numbers of pedestrians and social behavior clusters. Left: (Green) Per-
son entering the building; (Orange) Person leaving the building. People leave the building
in a more constrained path, indicating they are giving right-of-way to those entering. Mid-
dle: (Yellow) Two people standing still together; (Red) Two people leaving the building in
a leader-follower formation. People standing still tend to congregate off to the sides or at an
island in the middle, and people exiting fit into the gaps left behind. Right: (Purple) Two
people walking side by side to exit the building passing one person entering the building;
(Blue) Three people standing still. Notice there is a bottleneck around the door that prevents
pedestrians from moving, but movement becomes easier further from the door.

right vs top-bottom) often form different clusters. We show composite images of multiple
frames of movement from the ETH and UCY datasets beneath each latent space graph to
illustrate example trajectories from a selection of clusters. The red arrows in each image
denote the directions of movement for the pedestrians.

For N larger than 3, it is still possible to find social behavior clusters, but their inter-
pretability becomes more challenging as their number increases significantly with each sub-
sequent increase of N and behaviors become more complex. Behavior separation is smaller
for high dimensions (see N = 3 in Figure 4); however, the embedding space still groups sim-
ilar pedestrian behaviors in a sufficient manner for the downstream tasks of predicting future
pedestrian trajectories and interpreting behavior patterns in a space.

4.3 Pedestrian Behavior Maps

We use the pedestrian behavior dictionary to characterize space usage and social behavior
patterns by creating pedestrian behavior maps for each social behavior cluster in an envi-
ronment. Clusters exhibiting the same behaviors with different pedestrian permutations are
combined into the same behavior maps. For example in N = 2, clusters C = 2 and C = 3
show the same semantic and directional behavior, but with the pedestrian order switched.
The behavior maps of different clusters are superimposed to analyze the inter-pedestrian and
inter-social group interactions that take place.

Figure 5 shows a selection of behavior maps in the ETH environment depicting the lo-
cation that a particular behavior was exhibited over the duration of the entire dataset. Figure
5 (Left) shows the map for one pedestrian entering the building (green) juxtaposed with one
pedestrian leaving the building (orange). There are more people entering the building from
the right, thus forcing the people exiting to stay to the left and give right of way to those
entering. Figure 5 (Middle) overlays the behavior map of two people standing still together
(yellow) and two people leaving the building leader-follower (red). People tend to stand still
off to the sides, or at an island in the middle of the walkway. The people leaving the building
are forced to travel in the gaps between these congregators. Figure 5 (Right) combines the
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Figure 6: The predicted histogram of behaviors in each environment (ETH, ETH Hotel,
UCY Zara1, UCY Zara2) for N = 2 (top) and N = 3 (bottom) people. Pedestrians utilize
a different distribution of behaviors in ETH as opposed to all other environments. Because
ETH depicts people walking in and out of a building, it is a much more constrained space
than the open sidewalks in the other environments. Even between Zara1 and Zara 2, which
take place in the same environment at different times, there is still variation due to differing
numbers of pedestrians and different pedestrian behavior patterns as the day progresses.

behavior maps of two people walking side by side to exit the building passing one person
entering the building (purple) and that of three people standing still together (blue). The
behavior map for three people standing still is localized around the entrance to the building,
implying there is a bottleneck around the door preventing people from moving freely. This
bottleneck dissipates further away from the door where there is more free space to move.
This signals that there may be a need for additional entryways for this building to improve
pedestrian traffic flow.

Historically, there have been no avenues to discover these social patterns outside of man-
ual observation of a space, as done frequently in behavioral mapping applications in urban
planning and design [4, 24, 43], which can be time consuming and have the potential for in-
creased biases and inaccuracies. Our automated behavioral mapping allows for better quality
results with a higher throughput, enabling interpretable social behavior analyses of environ-
ments for social scientists.

4.4 Pedestrian Behavior Histograms
Environment usage and social behavior characterization can also be done by observing the
distribution of behaviors in each space. Figure 6 shows the predicted pedestrian behavior his-
tograms for ETH, ETH Hotel, UCY Zara1, and UCY Zara2 (along the column dimension)
for N = 2,3 people (along the row dimension). The histograms for ETH are significantly dif-
ferent from those of the other environments due to the difference in space usage (entryway
to a building vs regular sidewalks). Pedestrians in ETH mainly exhibit horizontal leader-
follower and walking side-by-side behaviors (N2:C15,23 and N3:C4,7) that allow them to
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Figure 7: Comparison of the ADE/FDE (lower is better) of PT-net and SOTA for the ETH
and UCY datasets. Our method (red) outperforms comparable SOTA shown in blue. We
show 53% decrease in ADE over SGAN despite similar FDE results. Trajectron++ performs
similarly to our method, but does not provide intepretable social behavior labels. The SOTA
methods in grey are multi-pass methods that choose the best of multiple (k=20) sampled
predictions when reporting statistics, which is unrealistic in many real world applications.
(Note: * denotes an unavailable parameter number which has been set equal to ours for
ADE/FDE comparison.) These results are summarized in tabular form in Figure 9.

enter or exit the building, while the other environments allow for more diversified move-
ment. ETH Hotel, UCY Zara1, and UCY Zara2 have higher concentrations of pedestrians
exhibiting the group congregating (N2:C6,7 and N3:C13,24), walking side-by-side upwards
(N2:C28 and N3:C25), and walking leader-follower or side-by-side diagonally downward
(N2:C27 and N3:C16) behaviors than ETH. The spatial structure of ETH Hotel predisposes
it towards side-by-side vertical behavior because it has a train stop at the top of the frame.
However, UCY Zara1 and UCY Zara2 are more primarily dominated by horizontal leader-
follower or side-by-side behaviors because the sidewalk in front of the building is a more
popular avenue than the alley at the edge of the frame.

Even with this similarity, UCY Zara1 and UCY Zara2 have much more pedestrian con-
gregation than ETH, showing that pedestrians in the ETH environment are more purposed
in their movement or that loitering is not accepted in the space. Additionally, between UCY
Zara1 and UCY Zara2, which take place in the same environment at different times, there is
variation in pedestrian quantity showing a preference for which time of day they prefer to be
more active in the space. Knowing the social behavior distribution in a space has potential
for behavior anomaly detection. Specifically, once a behavior baseline has been established,
the distributions of different observation periods can be compared for outliers.

4.5 Pedestrian Trajectory Prediction
Figure 7 and figure 9 show a comparison of PT-net and SOTA methods, where we show
improved performance on the ETH [30] and UCY [23] datasets. We provide metrics for
the average displacement error (ADE) and final displacement error (FDE) of our method in
red. Some SOTA methods report ADE20 and FDE20, which require running inference for
k=20 times and choosing the best prediction from these multiple passes. These multi-pass
methods (shown in grey in Figure 7) are impractical in many real world applications, where
no ground truth is available to determine the best output and acceptable computation latency
may be low. Additionally, they all have significantly more parameters than our approach.
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Figure 8: Our framework provides accurate trajectory prediction by conditioning on learned
social behaviors. Input trajectories (blue), ground truth future trajectories (green), and pre-
dictions (orange) are shown above. Grey arrows show relative pedestrian directions.

Figure 9: Our method outperforms all other
comparable SOTA (on deterministic/unimodal
prediction) in Average FDE and ADE on the
ETH and UCY datasets.

The SOTA methods comparable to our
approach (shown in blue in Figure 7) do not
use the multi-pass strategy, and are referred
to as unimodal or deterministic in the litera-
ture. Observe that our method outperforms
most of these as shown in Figure 7. Social
GAN [16] is the only one that has a slightly
better FDE, but note that it has a 53% higher
ADE (lower is better). Additionally, our
method provides some improvement com-
pared to Trajectron++ in terms of ADE and
FDE while also adding the functionality of
interpretable social behavior labels. Figure
8 shows example trajectory predictions for
our method. The input trajectories are in
blue, the ground truth future trajectories are
in green, and the predictions are in orange. We predict plausible future trajectories for a
myriad of socially complex scenarios using simple MLP networks.

5 Conclusion
In this paper, we propose PT-net, a lightweight, unsupervised method for learning an inter-
pretable pedestrian behavior dictionary for a given environment through trajectory cluster-
ing. Unsupervised methods remove the need for costly dataset labeling while allowing for
the discovery of a dictionary containing diverse behaviors. With this dictionary, it is possible
to characterize space usage and social behavior patterns to answer key questions in social
science fields, like psychology and urban planning, using behavior maps and histograms to
visualize the distribution of behaviors. While, the completeness of this distribution is limited
by the diversity of the observed behaviors from the pedestrian datasets used during training,
this can be partially abated through data augmentation. We also demonstrate comparable
performance to SOTA in trajectory prediction on the ETH and UCY datasets with a much
simpler network. Decreasing the complexity and size of trajectory prediction methods is
important for mobile computing and applications with limited computational resources.
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