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Abstract
Obtaining high-quality images with high resolution in poor illumination environ-

ments using a limited spatial resolution image sensor poses a significant challenge. Low-
light Enhancement (LLE) and Super-Resolution (SR) are crucial technologies for over-
coming this challenge. However, current approaches usually generate normal-light high-
resolution images with non-uniform brightness and loss of details from low-light low-
resolution images, and suffer from significant performance degradation in cross-dataset
settings. To alleviate these problems, we propose a novel solution for low-light image
super-resolution. For non-uniform brightness problem, we propose a Relative Underex-
posure Level Estimation Module (RUL-EM) that estimates the relative underexposure
levels of input images to adjust the image brightness to a uniform level and avoid arti-
facts. For detail loss and cross-dataset problems, we introduce the Multi-Scale Sampling
(MSS) strategy for sampling multi-scale patches. MSS involves randomly cropping low-
light and low-resolution patches of different sizes and positions and resizing them to a
given patch size. Combining RUL-EM with MSS can improve the model performance
in detail restoration and generalization. Additionally, we also incorporate channel atten-
tion to enable the Joint LLE & SR Network (JLSN) to adaptively adjust the influence of
estimated relative underexposure levels. Our proposed method can be applied to various
backbone architectures. Experimental results show that our proposed method achieves
state-of-the-art performance on the joint LLE & SR task in both within-dataset and cross-
dataset settings. Our proposed solution can convert low-resolution low-light images into
high-resolution images with satisfactory brightness, vivid colors, and more details.

1 Introduction
In the real world, various image degradation problems significantly reduce image qual-
ity [28, 29] and create inconveniences for many kinds of applications, such as autonomous
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driving [48], medical imaging [36], etc. Among these problems, two main issues are low-
light (LL) and low-resolution (LR). Low-light problems are mainly caused by poor lighting
conditions or limited exposure time when capturing images, while low-resolution problems
are mainly caused by limited spatial resolution image sensors and image transmission over
the Internet [34]. In a common scenario, images captured in low-light environments using
regular cameras usually suffer from both low-light and low-resolution problems [2, 34].

In fact, obtaining high-quality images with high resolution in poor illumination envi-
ronments using a limited spatial resolution image sensor is a highly challenging task. Both
Low-Light Enhancement (LLE) [27, 45, 46] and Super-Resolution (SR) [23, 42] are crucial
technologies for tackling this task. However, when inputting LL & LR images, the output
normal-light (NL) & high-resolution (HR) images of current approaches are facing the fol-
lowing problems: (1) non-uniform brightness when inputting images of varying brightness,
(2) loss of details and (3) significant performance degradation on unseen datasets, i.e.,
cross-dataset problem, which limits the generalization to the real world. These problems
present a challenge in solving joint LLE & SR problem.

For the non-uniform brightness problem, it is crucial to incorporate the relative under-
exposure levels into the input to obtain uniform brightness from input images with varying
brightness. Relative Underexposure Level (RUL) reflects the lightness of an image, ranging
from {0,1,2,3,4,5,6}, with higher values denoting darker images and lower values indi-
cating lighter images. Note that RUL is not a precise physical quantity. As such relative
underexposure levels are difficult to obtain in the real world, we propose a Relative Under-
exposure Level Estimation Module (RUL-EM) to predict the accurate relative underexposure
levels from LL & LR images, thereby enabling the model to adjust the image brightness to
a uniform level from the input images of different brightness, and avoid artifacts. However,
the RUL-EM alone cannot tackle the detail loss and the cross-dataset problems. We argue
that these two problems are caused by the use of single-scale patches in the joint LLE & SR
task, which is due to the fixed-size patch sampling strategy used for training (frequently used
in low-level vision tasks). To overcome this, inspired by [50], we introduce the Multi-Scale
Sampling (MSS) strategy [50] into our proposed method, which is used in other fields like
image captioning [50] but rarely used in low-level vision. Different from [50], we randomly
crop LL & LR patches of different sizes and positions, and resize them to a given patch size.
Combining RUL-EM with MSS can improve detail restoration and generalization perfor-
mance of the model, which is imperative for the joint LLE & SR task. Finally, we propose a
Joint LLE & SR Network (JLSN) that incorporates channel attention [14] to enable the net-
work to adaptively adjust the influence of the estimated relative underexposure levels, where
various backbone architectures can be used. Based on these three components, we obtain a
novel solution for low-light image super-resolution, which takes relative underexposure lev-
els and multi-scale patches into consideration. Our proposed joint LLE & SR solution can
alleviate the non-uniform brightness, the detail loss and the cross-dataset problems described
above, as shown in Fig. 2, 3 and 5.

To summarize, our contributions are: 1) We propose a novel joint LLE & SR solution
which can address the above-mentioned problems including non-uniform brightness, detail
loss and cross-dataset problem. 2) We propose RUL-EM to accurately predict relative un-
derexposure levels for adjustment of the image brightness to a uniform level and artifact
avoidance, introduce MSS [50] to sample multi-scale patches of the scene and improve the
ability of detail restoration and generalization with the help of RUL-EM, and propose JLSN
that uses channel attention [14] to enable the network to adaptively adjust the influence of
the estimated relative underexposure levels. 3) Both the quantitative and qualitative results
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show that our proposed method can achieve state-of-the-art (SOTA) performance in the joint
LLE & SR task in both within-dataset and cross-dataset settings, including all evaluation
metrics, and produce high resolution images with satisfactory brightness, vivid colors, and
more details.

2 Related Works
Image Super-Resolution. The Single Image Super-Resolution (SISR) task aims to increase
the pixel density and enrich the details of an image. With the development of deep learn-
ing, SRCNN [6] first applied Convolutional Neural Network (CNN) to SISR. Since then,
many works have made progress by stacking more convolutional layers and designing more
complex network connections, like SRResNet [20], EDSR [24], RCAN [53], RDSR [17]
and DCLS [26]. In order to solve the difficulty of signal-fidelity-oriented methods in repro-
ducing image details, GAN [8] has a wide range of applications in the SISR task, including
SRGAN [19], DBPN [12], ESRGAN [41], Real-ESRGAN [42] and LDL [22]. Recent SISR
researches focus on Transformer [7, 25] architecture, such as SwinIR [23]. These methods
perform well in recovering image details for normal-light low-resolution images. However,
they cannot adjust image brightness and recover details well for low-light low-resolution
images.
Low-light Image Enhancement (LLE). There exist various deep-learning-based LLE ap-
proaches, which are all able to achieve SOTA performance on popular benchmarks. These
techniques typically rely on multi-level feature with multi-branch fusion [27], illumination
cue [40], Retinex [18] theory [35, 44, 51, 52], pixel-wise and high-order curves [9, 21],
multi-resolution features with spatial-wise and channel-wise attention [46], GAN [16], at-
tention [30], self-calibrated illumination [31], Signal-to-Noise-Ratio prior [45], local-and-
global components decoupling [5], local color distribution information [39] and over-and-
under exposure consideration [33]. Although these approaches are able to tackle LLE prob-
lem well, their performance will degrade when applying them to joint LLE & SR tasks.
Joint LLE & SR. To the best of our knowledge, there are only a few methods that tackles
joint LLE & SR task. Rasheed et al. proposed a joint LLE & SR network LSR using both the
Lighten-Projection Unit and Darken-Projection Unit [34]. Aakerberg et al. also proposed a
joint LLE & SR method named RELIEF [2]. Zhang et al. proposed a joint LLE & SR
method for videos [47]. Guo et al. proposed a joint LLE & SR method for face images [10].
Moreover, RELLISUR dataset [1] is specifically designed for the image joint LLE & SR
task. Such joint LLE & SR task is still open, which lacks research.

3 Methodology
In this section, we describe our proposed joint LLE & SR method. We begin by introducing
the Relative Underexposure Level Estimation Module (RUL-EM) in Sec. 3.1, followed by
the Multi-Scale Sampling (MSS) strategy in Sec. 3.2. Finally, we discuss the Joint LLE &
SR Network (JLSN) in Sec. 3.3.

3.1 Relative Underexposure Level Estimation Module (RUL-EM)
Problem Analysis. Directly generating NL & HR images from LL & LR images can re-
sult in non-uniform brightness when inputting images with varying brightness. To tackle
this problem, it is beneficial to use Relative Underexposure Levels (RUL) as input for the
complex, degraded and coupled joint LLE and SR task. Relative underexposure levels are
naturally and strongly correlated with brightness adjustment, which can help to enhance the
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Figure 1: Overview of proposed relative underexposure level guided joint LLE & SR method.

brightness of low-light low-resolution images with varying brightness into a uniform level.
Moreover, such relative underexposure levels can help avoid artifacts.

Obtaining relative underexposure levels for common RGB images distributed widely
across the Internet is difficult. Thanks to the ground truth relative underexposure levels
provided by the RELLISUR [1] dataset, we propose a Relative Underexposure Level Esti-
mation Module (RUL-EM) to tackle such problem. Formally, this strategy can be expressed
as ŷe = E(ILQ), where ŷe is the estimated relative underexposure level and E is the RUL-EM.
Implementation. The RELLISUR dataset [1] provides 7 relative underexposure levels,
which are only accessible in the training set. The goal of RUL-EM is to accurately predict
such relative underexposure level of an input image. To achieve this, we design RUL-EM
as a classification module, which is based on ResNet-50 [13] with Squeeze-and-Excitation
module [14], as shown in Fig. 1. The model is trained using widely-used Cross Entropy
Loss, and used to guide the subsequent MSS (Sec. 3.2) and JLSN (Sec. 3.3).
Discussion. Intuitively, RUL-EM pre-determines a certain relative underexposure level for a
low-light low-resolution image. Based on this, the model learns a restricted problem, which
is easier for avoiding artifacts.

3.2 Multi-Scale Sampling (MSS)
Problem Analysis. Although RUL-EM can help tackle the non-uniform brightness prob-
lem and avoid artifacts, experimental results have shown that RUL-EM alone can not tackle
the detail loss and the cross-dataset problems (see Fig. 5). With the guidance of relative
underexposure levels estimated by RUL-EM, there needs a strategy for detail restoration.
Inspired by [50], we argue that using multi-scale patches with RUL-EM, instead of single-
scale patches, can help alleviate the detail loss problem, further improving the cross-dataset
performance.

Typically, current LLE or SR approaches sample fixed-size image patches for training [2,
21, 23, 45]. Such fixed-size patches are single-scale. For both single LLE or SR tasks,
such single-scale patches contain enough information for color/illumination enhancement
or detail restoration, respectively. However, single-scale patches are not enough for the
joint LLE & SR task. If directly using single-scale patches for training the joint LLE & SR
model, the model tends to generate over-smoothed and detail-lost images, as shown in Fig. 5.
Although RUL-EM (Sec. 3.1) can help to avoid artifacts, using it alone cannot help the model
for detail restoration. Moreover, using single-scale patches can cause the model to overfit as
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they do not contain enough information for the joint LLE & SR task, resulting in significant
performance degradation on unseen datasets. The supplementary material provides evidence
that even large fixed-size patches are unable to address these issues. To tackle these issues,
based on RUL-EM, multi-scale patches need to be applied into the training procedure. Thus,
we introduce the Multi-Scale Sampling (MSS) strategy [50] into our method for sampling
multi-scale patches, which is used in other fields like image captioning [50] but rarely used
in low-level vision.
Overview. Different from [50], in brief, the MSS strategy randomly crops LL & LR patches
with different sizes and positions and resizes them to a given patch size, as shown in Fig. 1.
With the help of both RUL-EM and MSS, the joint LLE and SR model can easily obtain
multi-scale patches, improving its ability of detail restoration and generalization on unseen
datasets, which is imperative for the joint LLE & SR task.
Procedure. Given the full low-light low-resolution image ILQ with size H ×W × 3, we
randomly sample multiple patches P = {P1,P2, ...} with different sizes p× p× 3 where
p ∼ U(plow, phigh) and different top-left positions x ∼ U(0,H − p) and y ∼ U(0,W − p),
where U is the Uniform distribution. Then we resize all the patches Pk in P into the given
size s, which outputs Ps = {Ps

1,P
s
2, ...} with size s× s×3.

Discussion. MSS addresses the cross-dataset generalization problem by sampling patches
with a wide range of scales, making the model learn various scales that may appear in unseen
datasets during training. Without MSS, the model is unable to effectively learn the diverse
scales present in unseen datasets since the training dataset only covers a limited range of
scales across different input images.

3.3 Joint LLE & SR Network (JLSN)
Overview. In the joint LLE & SR procedure, the relative underexposure levels estimated
by RUL-EM (Sec. 3.1) and the multi-scale patches sampled by MSS strategy (Sec. 3.2) are
helpful for restoring NL & HR images ÎHQ from LL & LR images ILQ. Here we propose a
Joint LLE & SR Network (JLSN) to restore NL & HR images with the guidance of such in-
formation, which is shown in Fig. 1. The JLSN consists of a Generator G and Discriminator
D following the classic GAN [8] structure, and can use various backbone architectures.
Generator G. Our proposed method is in the form of add-on (plug-and-play), which con-
stitutes one of its key advantages. We employ commonly-used LLE architecture MIR-
Net [46] (with upsampling module [37], a representative LLE backbone), SR architectures,
including RRDB [41, 42] (a representative CNN-based backbone) and SwinIR [23] (a rep-
resentative Transformer-based backbone), and a cascaded LLE & SR architecture MIR-
Net [46]+RRDB [41, 42] as G. To fully exploit the connection between the relative un-
derexposure levels and the LL & LR image ILQ, we incorporate the Channel Attention (CA)
structure [14] into RRDB, SwinIR and MIRNet+RRDB Module (MIRNet+Upsample orig-
inally contains CA), allowing the JLSN to adjust the influence of the estimated relative un-
derexposure levels adaptively. We refer to the modified generator models as CA-RRDB,
CA-SwinIR and MIRNet+CA-RRDB, respectively. Implementation details can be found in
the supplementary material. Further experiments show that plugging our proposed method
into various backbone can all achieve SOTA results and does not increase the inference time,
as shown in Sec. 4.2 and the supplementary material, respectively.
Discriminator D. Here we use the U-Net Discriminator with spectral normalization follow-
ing [42] to increase the adaptability of the network to real-world scenarios.
RUL-EM and MSS Information Combination. To make use of the information obtained
by RUL-EM and MSS, we replicate the estimated relative underexposure level ye into the
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relative underexposure map M with size s×s×1. We then concatenate M and the multi-scale
patch Pk to obtain the input Ik = Pk ⊕M,Pk ∈ Ps to G, where ⊕ indicates the concatenate
operation. Note that this procedure is only processed in the training phase. To simplify
the implementation, we randomly select one p and one (x,y) for each image in one batch.
In the testing phase, we directly feed the full ILQ concatenated with the estimated relative
underexposure map (replicated using the estimated relative underexposure level ŷe) into the
JLSN to generate the normal-light high-resolution image.
Loss Function. We use L1 Pixel Loss Lpix, Perceptual Loss Lper [41, 42] and Adversarial
Loss Ladv [8] for training G, and the Adversarial Loss LD [8] for training D, which is com-
monly used in both LLE methods and SR methods. The total loss function of the generator
G is LG = Lpix +λperLper +λadvLadv, where λper and λadv are the coefficients to balance
different terms of LG, and we empirically set them as {1.0,0.005} respectively.

4 Experiments
4.1 Setup

Dataset. We use the RELLISUR (DR) dataset [1] for within-dataset evaluation, which pro-
vides real-world LL & LR images of 7 different relative underexposure levels and NL & HR
images with ×1, ×2 or ×4 magnifications, which can be used to model real-world physical
down-sampling and noise. There are 3610, 215, and 425 images for training, validation, and
testing, respectively. Moreover, to evaluate the cross-dataset performance, we also use LOL
(DL) [44], LSRW (DS) [11] and DIV2K (DD) [3, 38] test sets, which provide 15, 50 and 100
images, respectively. This forms 3 cross-dataset tasks: DR →DL, DR →DS and DR →DD,
respectively. Since LOL [44] and LSRW [11] are designed for LLE task, they only contain
NL & LR ground truth images. Since DIV2K [3, 38] is designed for SR task, we perform
Gamma correction with γ ∼ U(2,3.5) on the input LR images following [27].
Comparison Methods. Our task is joint LLE and SR. So it is necessary to compare our
proposed method with SOTA LLE and SR methods. We conduct a comparison with SOTA
and latest methods on single LLE or SR tasks on RELLISUR dataset. Results are shown
in the supplementary material. Based on these results, we select the LLE methods SNR-
Aware [45], MBLLEN [27] and MIRNet [46], as well as the SR methods SRResNet [20],
EDSR [24], Real-ESRGAN [42], SwinIR [23] and LDL [22] which have the best perfor-
mances, for further experiments and comparison. Moreover, we compare our proposed
method with SOTA joint LLE & SR methods LSR [34] and RELIEF [2]. We compare our
proposed method with 6 strategy designs: (I) Apply LLE methods to obtain NL & LR im-
ages from LL & LR images, followed by SR methods to obtain the desired NL & HR images,
(II) Reversed Sequential Process of Type I, (III) Cascaded LLE Network and SR Network,
(IV) LLE Network + Upsampling Module [37], (V) SR Network, and (VI) Joint LLE & SR
Network. Implementation details will be discussed in the supplementary material.

Our proposed method is in the form of add-on (plug-and-play). To demonstrate the
SOTA performance of our proposed method with different backbones, we use 4 versions of
our proposed method with different backbones for comparison, including CA-RRDB, CA-
SwinIR, MIRNet+CA-RRDB and MIRNet+Upsample, as stated in Sec. 3.3.
Evaluation Metrics. We use Peak Signal to Noise Ratio (PSNR) [15] and Structural Similar-
ity (SSIM) [43] to evaluate the similarity between a HR image and its generated SR counter-
part (higher is better), while we use Learned Perceptual Image Patch Similarity (LPIPS) [49]
and Natural Image Quality Evaluator (NIQE) [32] to evaluate human perceptual quality of

Citation
Citation
{Wang, Yu, Wu, Gu, Liu, Dong, Qiao, and Changeprotect unhbox voidb@x protect penalty @M  {}Loy} 2018{}

Citation
Citation
{Wang, Xie, Dong, and Shan} 2021

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2020

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2020

Citation
Citation
{Aakerberg, Nasrollahi, and Moeslund} 2021

Citation
Citation
{Wei, Wang, Yang, and Liu} 2018

Citation
Citation
{Hai, Xuan, Yang, Hao, Zou, Lin, and Han} 2023

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{Timofte, Agustsson, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, Yang, Zhang, Lim, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Wei, Wang, Yang, and Liu} 2018

Citation
Citation
{Hai, Xuan, Yang, Hao, Zou, Lin, and Han} 2023

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{Timofte, Agustsson, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, Yang, Zhang, Lim, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Lv, Lu, Wu, and Lim} 2018

Citation
Citation
{Xu, Wang, Fu, and Jia} 2022

Citation
Citation
{Lv, Lu, Wu, and Lim} 2018

Citation
Citation
{Zamir, Arora, Khan, Hayat, Khan, Yang, and Shao} 2020

Citation
Citation
{Ledig, Theis, Husz{á}r, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017{}

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Wang, Xie, Dong, and Shan} 2021

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Liang, Zeng, and Zhang} 2022

Citation
Citation
{Rasheed and Shi} 2022

Citation
Citation
{Aakerberg, Nasrollahi, and Moeslund} 2022

Citation
Citation
{Shi, Caballero, Husz{á}r, Totz, Aitken, Bishop, Rueckert, and Wang} 2016

Citation
Citation
{Huynh-Thu and Ghanbari} 2008

Citation
Citation
{Wang, Bovik, Sheikh, Simoncelli, etprotect unhbox voidb@x protect penalty @M  {}al.} 2004

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018{}

Citation
Citation
{Mittal, Soundararajan, and Bovik} 2012



XU ET AL.: JOINT LLE AND SR WITH IMAGE UNDEREXPOSURE LEVEL GUIDANCE 7

Type Method RELLISUR (DR) ×2 RELLISUR (DR) ×4 DR →DL ×4 DR →DS ×4 DR →DD ×4
PSNR ↑SSIM ↑LPIPS ↓NIQE ↓ PSNR ↑SSIM ↑LPIPS ↓NIQE ↓ NIQE ↓ NIQE ↓ PSNR ↑SSIM ↑LPIPS ↓NIQE ↓

I

SNR-Aware [45]→SRResNet [20] 20.19 0.75 0.32 7.46 19.49 0.75 0.46 9.29 7.50 7.59 14.02 0.41 0.56 7.41
MIRNet [46]→SRResNet [20] 21.46 0.75 0.47 8.79 20.49 0.76 0.59 10.59 8.78 8.72 15.70 0.56 0.60 7.80
MBLLEN [27]→SRResNet [20] 18.88 0.74 0.46 8.92 18.23 0.74 0.57 10.43 8.53 8.25 14.00 0.51 0.65 8.03
SNR-Aware [45]→EDSR [24] 20.23 0.75 0.33 7.67 19.15 0.75 0.48 9.06 7.11 7.32 13.91 0.42 0.57 7.11
MIRNet [46]→EDSR [24] 21.45 0.75 0.46 8.96 20.08 0.75 0.59 9.88 8.34 8.33 15.53 0.55 0.60 7.71
MBLLEN [27]→EDSR [24] 18.88 0.75 0.46 8.95 17.79 0.74 0.58 9.82 8.39 7.94 13.87 0.51 0.66 7.99
SNR-Aware [45]→Real-ESRGAN [42] 20.02 0.75 0.30 6.91 19.32 0.74 0.41 7.40 5.13 5.20 13.38 0.37 0.52 5.69
MIRNet [46]→Real-ESRGAN [42] 21.50 0.74 0.41 7.65 20.48 0.75 0.51 8.85 6.66 6.49 15.71 0.54 0.52 5.99
MBLLEN [27]→Real-ESRGAN [42] 18.78 0.74 0.42 7.90 18.12 0.73 0.51 8.67 6.49 5.90 13.63 0.49 0.59 6.52
SNR-Aware [45]→SwinIR [23] 20.31 0.75 0.33 7.46 19.46 0.75 0.48 9.32 7.43 7.41 13.91 0.40 0.58 7.03
MIRNet [46]→SwinIR [23] 21.44 0.75 0.46 8.94 20.48 0.76 0.59 10.37 8.88 8.74 15.88 0.55 0.61 7.66
MBLLEN [27]→SwinIR [23] 18.83 0.75 0.46 8.91 18.21 0.74 0.57 9.94 8.44 7.82 13.93 0.51 0.66 7.55
SNR-Aware [45]→LDL [22] 19.99 0.75 0.30 6.78 19.35 0.74 0.41 7.53 4.91 4.99 13.56 0.38 0.51 5.24
MIRNet [46]→LDL [22] 21.43 0.74 0.41 7.37 20.40 0.75 0.51 8.84 6.94 6.43 15.51 0.54 0.52 5.83
MBLLEN [27]→LDL [22] 18.80 0.74 0.42 7.73 18.11 0.74 0.51 8.71 6.66 5.85 13.66 0.49 0.59 6.20

II

SRResNet [20]→SNR-Aware [45] 20.00 0.75 0.40 7.53 18.52 0.72 0.57 8.29 6.74 6.53 14.39 0.48 0.49 5.94
SRResNet [20]→MIRNet [46] 21.32 0.74 0.49 8.17 20.01 0.74 0.62 9.23 6.96 7.31 15.31 0.56 0.54 6.68
SRResNet [20]→MBLLEN [27] 18.60 0.73 0.50 8.40 17.74 0.72 0.65 9.61 6.78 7.17 13.72 0.53 0.57 6.65
EDSR [24]→SNR-Aware [45] 19.14 0.73 0.45 7.18 18.40 0.74 0.58 9.11 5.86 6.18 14.05 0.48 0.53 5.37
EDSR [24]→MIRNet [46] 20.18 0.73 0.52 8.28 19.64 0.74 0.60 9.83 7.16 7.32 14.90 0.55 0.57 6.93
EDSR [24]→MBLLEN [27] 17.84 0.71 0.55 8.54 17.44 0.73 0.65 10.17 6.92 7.09 13.23 0.50 0.61 6.34
Real-ESRGAN [42]→SNR-Aware [45] 20.00 0.76 0.35 7.73 18.34 0.71 0.46 7.29 4.79 5.23 14.44 0.42 0.50 5.23
Real-ESRGAN [42]→MIRNet [46] 21.11 0.75 0.37 7.26 19.59 0.72 0.47 7.27 5.95 6.12 15.28 0.50 0.54 6.12
Real-ESRGAN [42]→MBLLEN [27] 18.65 0.74 0.41 8.11 17.61 0.71 0.50 8.57 6.04 6.23 14.08 0.49 0.57 6.04
SwinIR [23]→SNR-Aware [45] 18.00 0.72 0.46 7.64 18.55 0.73 0.62 8.79 6.33 6.51 14.50 0.48 0.51 5.58
SwinIR [23]→MIRNet [46] 19.35 0.72 0.51 8.10 19.45 0.74 0.66 9.14 7.29 7.40 15.48 0.56 0.56 6.69
SwinIR [23]→MBLLEN [27] 17.42 0.71 0.54 8.67 17.67 0.72 0.68 9.49 7.06 7.34 13.89 0.53 0.58 6.69
LDL [22]→SNR-Aware [45] 19.87 0.75 0.35 7.77 18.84 0.74 0.45 7.79 5.12 5.40 14.93 0.46 0.51 5.24
LDL [22]→MIRNet [46] 20.59 0.73 0.38 6.96 20.01 0.74 0.47 7.46 6.13 6.25 15.56 0.53 0.55 6.13
LDL [22]→MBLLEN [27] 18.23 0.73 0.42 8.00 17.73 0.73 0.50 8.85 6.24 6.40 14.40 0.49 0.59 6.04

III
SNR-Aware [45]+RRDB [41] 20.76 0.77 0.35 8.21 19.22 0.76 0.45 7.98 6.80 6.36 15.44 0.47 0.53 6.86
MIRNet [46]+RRDB [41] 22.24 0.79 0.26 7.69 20.93 0.78 0.38 8.35 6.63 6.59 15.08 0.51 0.52 6.73
MBLLEN [27]+RRDB [41] 19.00 0.76 0.29 7.57 18.36 0.75 0.41 8.62 6.60 6.58 15.77 0.49 0.53 6.86

IV
SNR-Aware [45]+Upsample 20.98 0.77 0.34 7.73 20.06 0.76 0.49 9.00 7.64 7.42 13.68 0.22 0.72 10.06
MIRNet [46]+Upsample 22.57 0.78 0.37 8.07 20.81 0.78 0.52 9.11 7.04 6.88 17.03 0.50 0.52 5.83
MBLLEN [27]+Upsample 19.24 0.77 0.38 8.46 18.39 0.76 0.53 10.26 7.69 7.94 16.48 0.52 0.57 6.95

V

SRResNet [20] 18.94 0.72 0.45 7.09 18.15 0.74 0.56 7.42 5.78 5.78 15.39 0.52 0.54 5.17
EDSR [24] 19.03 0.74 0.45 8.02 18.13 0.74 0.60 9.53 9.16 7.99 7.00 0.43 0.78 8.24
Real-ESRGAN [42] 19.30 0.77 0.28 7.45 18.59 0.76 0.40 8.32 6.52 6.40 15.61 0.47 0.53 6.58
SwinIR [23] 19.49 0.74 0.49 9.71 18.44 0.74 0.63 9.71 8.28 8.01 15.23 0.55 0.57 6.65
SwinIR [23]+GAN [8] 19.13 0.75 0.30 7.91 18.58 0.75 0.41 8.35 6.47 6.49 16.58 0.56 0.51 6.74
LDL [22] 18.98 0.76 0.28 6.94 18.28 0.74 0.40 7.67 5.06 5.09 13.73 0.43 0.52 5.71

VI

LSR [34] 19.50 0.74 0.47 8.06 18.65 0.75 0.61 8.91 7.13 6.98 16.49 0.51 0.64 5.95
LSR [34]+GAN [8] 18.70 0.74 0.29 7.60 17.90 0.74 0.41 8.16 6.55 6.30 16.49 0.54 0.54 6.27
RELIEF [2] 21.18 0.75 0.46 8.63 20.10 0.76 0.59 9.85 8.11 8.31 16.48 0.58 0.63 7.47
LCUN [4] 22.39 0.78 0.34 6.81 21.23 0.77 0.50 8.75 6.61 7.58 15.90 0.49 0.57 6.94
Ours (CA-RRDB) 22.55 0.75 0.32 5.39 21.52 0.77 0.39 6.77 5.90 4.91 17.29 0.58 0.34 4.73
Ours (CA-SwinIR) 22.74 0.78 0.25 6.32 21.30 0.77 0.37 6.41 4.31 4.03 17.33 0.61 0.32 4.29
Ours (MIRNet+CA-RRDB) 23.06 0.79 0.26 6.58 21.56 0.78 0.38 7.21 4.18 4.30 17.25 0.59 0.36 4.35
Ours (MIRNet+Upsample) 23.08 0.79 0.27 6.79 21.60 0.78 0.38 6.77 4.75 4.49 17.48 0.59 0.35 4.70

Table 1: Quantitative results of SOTA methods. ↑ indicates larger is better, ↓ indicates lower
is better. Red, blue and green denotes the first, second and third best results, respectively.

an image (lower is better). Note that PSNR, SSIM and LPIPS are full-reference metrics,
whereas NIQE is a no-reference metric.
Implementation Details. We use PyTorch to conduct all the experiments on NVIDIA GPUs.
All proposed models are trained for 200,000 iterations with a batch size of 24. For both G
and D, we use the Adam optimizer with lr = 10−4, β1 = 0.9 and β2 = 0.99, and set the
weight decay as 0. The LR patch size s is set to 64 for all the experiments. We set the
dimension of the feature of both G and D as 64. For CA-RRDB, we use 7 blocks, and the
channel growth of the dense block is set to 32. For other architectures, we use their original
settings. We use the same setting of Perceptual Loss as Real-ESRGAN [42]. For MSS, we
set plow as 64 and phigh as 512. For RUL-EM, the model is pretrained before training other
modules. The input size is 625 as it is not cropped, and the model is trained for 200 epochs
with the SGD optimizer with lr = 0.002, γ = 0.9, and we set the weight decay as 5×10−4.

4.2 Comparison with SOTA Methods

To show the superior performance of our proposed method on joint LLE & SR task, we con-
duct comparison experiments with SOTA methods on RELLISUR dataset [1]. Quantitative
and qualitative results are shown in Tab. 1 and Fig. 2, respectively. In Tab. 1, our proposed
joint LLE & SR methods can outperform all types of SOTA methods on all evaluation met-
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GTSwinIR+GAN

Real-ESRGANInput

Ours (CA-SwinIR)

MIRNet+RRDB SNR-Aware+UpsampleSNR-Aware→Real-ESRGAN Real-ESRGAN→SNR-Aware 

LSR+GAN RELIEF Ours (MIRNet+Upsample)

Real-ESRGANInput MIRNet+RRDB SNR-Aware+UpsampleSNR-Aware→Real-ESRGAN Real-ESRGAN→SNR-Aware 

GTSwinIR+GAN Ours (CA-SwinIR)LSR+GAN RELIEF Ours (MIRNet+Upsample)

Figure 2: Qualitative results on RELLISUR dataset (x4). Zoom for best view. Our proposed
methods tend to generate vivid colors and more details.

rics, indicating that our proposed methods can generate NL & HR images from LL & LR
images with superior quality. Furthermore, in Fig. 2, our proposed methods produce more
vivid colors, realistic textures and fewer artifacts than other methods, closely approximating
the ground truth images.

4.3 Real-World Results
The above experiments focused on evaluating joint LLE & SR methods all on a within-
dataset setting. However, some methods tend to overfit on one single dataset. As it is im-
portant to apply joint LLE & SR methods in the real world, it is necessary to evaluate them
in the real-world setting (cross-dataset setting). In this section, we evaluate joint LLE & SR
methods on LOL [44], LSRW [11] and DIV2K [3, 38] datasets. Note that we directly use
the model trained on the RELLISUR dataset for evaluation without re-training. Qualitative
results are shown in Fig. 3. Due to the space limitation, we only present some examples from
LOL dataset, while additional examples are available in the supplementary material. The re-
sults indicate that other methods tend to generate over-smoothed images with more artifacts
and detail loss. This is due to overfitting on the training dataset. Thanks to the proposed
RUL-EM with MSS, our proposed methods tend to produce clearer images with more de-
tails and vivid colors, demonstrating their superior performance in solving such a challenging
joint LLE & SR problem in the cross-dataset setting. Moreover, the quantitative results in
the 6 rightmost columns of Tab. 1 show that in cross-dataset setting, our proposed methods
also achieve the best performance (as there is no HR ground truth HR images available in
LOL and LSRW datasets, we only report NIQE results, which is a no-reference metric).

4.4 Understanding of Our Proposed Method
Effectiveness of RUL-EM. During the testing phase, relative underexposure levels cannot be
obtained. Therefore, accurately estimating relative underexposure levels is required. When
testing on the RELLISUR test split, our RUL-EM can achieve 77.8% accuracy. Meanwhile,
we draw the confusion matrix (Fig. 4(a)). As the figure shows, even though RUL-EM cannot
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Ours (MIRNet+Upsample) GT (LR)SwinIR+GANLDL LSR+GAN

Input

Ours (CA-SwinIR)

MBLLEN+RRDB MIRNet+UpsamplingSNR-Aware→LDL Real-ESRGAN→SNR-Aware SRResNet

Input MBLLEN+RRDB MIRNet+UpsamplingSNR-Aware→LDL Real-ESRGAN→SNR-Aware SRResNet

Ours (MIRNet+Upsample) GT (LR)SwinIR+GANLDL LSR+GAN Ours (CA-SwinIR)

Figure 3: Qualitative results on LOL dataset (x4). Zoom for best view. Our proposed meth-
ods tend to generate vivid colors, more details and fewer artifacts on unseen datasets.

always accurately predict the relative underexposure levels, it can predict them similar to
ground truth for most of the time. So RUL-EM can be used in subsequent procedures.
Ablation Study. To further show the efficacy of our proposed method and the necessity of all
its components, we conduct an ablation study using different combinations of components.
All the experiments are conducted using the CA-RRDB backbone, which is a common and
simple-structured CNN in LLE or SR and can represent prevalent cases. Quantitative and
qualitative results are shown in Fig. 4(b) and Fig. 5 respectively. With the help of the RUL-
EM, the quality of output ÎHQ significantly increases, as indicated by the increased PSNR
and SSIM values, and the joint LLE & SR network tends to adjust the input low-light images
to uniform brightness. Additionally, RUL-EM can help the network to avoid some artifacts.
However, using RUL-EM alone cannot tackle the detail loss problem. Based on RUL-EM,
if MSS is combined into the network, an image with uniform brightness with more details
and fewer artifacts can be obtained than RUL-EM alone. Moreover, using RUL-EM with
Channel Attention (CA) can further improve the PSNR, SSIM and LPIPS values, and make
the network product more vivid colors and fewer artifacts. This is mainly because CA can
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(a)

Strategy PSNR↑ SSIM↑ LPIPS↓ NIQE↓
Vanilla 18.59 0.76 0.40 8.32
RUL-EM 20.97 0.78 0.40 8.18
RUL-EM + MSS 20.76 0.76 0.42 5.85
RUL-EM + CA 21.66 0.79 0.39 8.62
RUL-EM + MSS + CA 21.52 0.77 0.39 6.77

(b)

Figure 4: (a) Confusion matrix of RUL-EM on the test split of RELLISUR dataset, per-
centage is shown. (b) Ablation study on different strategies on joint LLE & ×4 SR task. ↑
indicates larger is better, ↓ indicates lower is better.
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(a) Comparisons of different strategies on adjustment brightness to a uniform level (b) Comparisons of different strategies on detail recovery and artifact avoidance

Figure 5: Qualitative results of ablation study (x4). Zoom for best view.

help the network better handle the relationship between the relative underexposure levels and
the input. Finally, using both RUL-EM and MSS with CA can obtain the most details and
the colors closest to the ground truth with the most uniform brightness. Note that MSS may
cause a slight decrease in PSNR and SSIM values. This is because details and PSNR/SSIM
values are a pair of trade-off as noted in [19]. Higher PSNR/SSIM values tend to be related
to over-smoothing problems, while more details may cause lower PSNR/SSIM values [19].
It can be concluded from the ablation study that all the components are necessary for the
joint LLE & SR task.

5 Conclusion
In this paper, we propose a novel solution for the joint LLE and SR task. We propose a
Relative Underexposure Level Estimation Module (RUL-EM) to accurately estimate relative
underexposure levels for adjusting the image brightness to a uniform level and artifact avoid-
ance. Furthermore, we introduce the efficient Multi-Scale Sampling (MSS) strategy [50] that
enables the network to sample multi-scale patches of one scene. Cooperating RUL-EM and
MSS can improve the detail restoration and generalization performance. Lastly, we design
a Joint LLE & SR Network (JLSR), incorporating Channel Attention (CA) into the various
architectures to adaptively adjust the influence of the estimated relative underexposure lev-
els. Experimental results show that our proposed method achieves the SOTA performance on
RELLISUR, LOL, and LSRW datasets with the highest quality, vivid colors, more details,
and fewer artifacts in both within-dataset and cross-dataset settings. This paper can help for
more robust applications of computer vision techniques in extreme environments.
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