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Abstract

Given the great threat of adversarial attacks against Deep Neural Networks (DNNs),
numerous works have been proposed to boost transferability to attack real-world ap-
plications. However, existing attacks often utilize advanced gradient calculation or in-
put transformation but ignore the white-box model. Inspired by the fact that DNNs are
over-parameterized for superior performance, we propose diversifying the high-level fea-
tures (DHF) for more transferable adversarial examples. In particular, DHF perturbs
the high-level features by randomly transforming the high-level features and mixing
them with the feature of benign samples when calculating the gradient at each iter-
ation. Due to the redundancy of parameters, such transformation does not affect the
classification performance but helps identify the invariant features across different mod-
els, leading to much better transferability. Empirical evaluations on ImageNet dataset
show that DHF could effectively improve the transferability of existing momentum-
based attacks. Incorporated into the input transformation-based attacks, DHF gener-
ates more transferable adversarial examples and outperforms the baselines with a clear
margin when attacking several defense models, showing its generalization to various at-
tacks and high effectiveness for boosting transferability. Code is available at https:
//github.com/Trustworthy-AI-Group/DHF.

1 Introduction
Recent studies have shown that Deep Neural Networks (DNNs) are vulnerable to adversarial
examples [47], i.e., the inputs with indistinguishable perturbation can mislead the DNNs.
Such vulnerability brings a significant threat to the security of widely deployed DNNs in
the physical world, e.g., image classification [20, 22, 27, 45, 48], face recognition [42, 50,
62, 70], autopilot [4, 7, 15, 26], etc. However, existing adversarial attacks exhibit excellent
attack performance when the attacker can access the full knowledge of the target model, but
show poor transferability across different models, making it inefficient in the real world.
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To improve the transferability of adversarial examples, many methods have been pro-
posed, such as input transformations [66], ensemble-model attacks [34], and model-specific
methods [63]. Among them, the model-specific methods, which modify or utilize the inner
structure of DNNs, are one of the most effective methods to improve the transferability of
adversarial examples and are compatible with the other two types of methods. For instance,
Wu et al. [63] employ the structure of skip connection in ResNet-like DNNs to generate
highly transferable adversarial examples. Li et al. [31] propose the ghost network, which
virtually ensembles a vast set of diverse models by randomly perturbing the existing model
to boost adversarial transferability. However, both of them lack the full utilization of model
structure and image features, remaining potential for further improvements.

Many researchers have pointed out that DNNs are over-parameterization [1, 3, 6, 9, 13].
The increasing number of layers in DNNs brings better feature extraction and classification
performance, but correspondingly induces a big redundancy of parameters, especially for
the deeper layers. As shown in Fig. 1, when we randomly mask the high-level features of
DNNs, the classification accuracy maintains at a high level. Thus, it naturally inspires us to
exploit the over-parameterization of high-level features for better adversarial transferability.
Unlike Wu et al. [63] and Li et al. [31], we focus on perturbing only the high-level features
and propose a unified perturbing operation in any architectures, not restricted to dropout or
scale operation and ResNet-like DNNs. We summarize our contributions as follows:

• To the best of our knowledge, it is the first work that establishes a relationship between
over-parameterization and adversarial transferability.

• We propose a novel approach called Diversifying the High-level Features (DHF) that lin-
early transforms the high-level features and mixes up them with that of benign samples.
Such transformation helps identify the invariant features across different models.

• Extensive experiments on ImageNet dataset demonstrate that DHF can achieve better ad-
versarial transferability than the existing approaches and is general to other attacks.

2 Related Work
Adversarial Attack: After Szegedy et al. [47] identified the vulnerability of DNNs against
adversarial examples, various adversarial attacks have been proposed, e.g., gradient-based
attack [17, 28, 38], transfer-based attack [10, 37, 61, 68], score-based attack [5, 24, 30],
decision-based attack [2, 29, 58], generation-based attack [54, 65], etc. Among these,
transfer-based attacks do not access the target model, making it popular to attack the deep
models in the real world. To improve adversarial transferability, various momentum-based
attacks have been proposed, such as MI-FGSM [10], NI-FGSM [33], VMI-FGSM [53],
EMI-FGSM [56], etc. Researchers also propose several input transformation methods (e.g.,
DIM [68], TIM [11], SIM [33], Admix [55], SIA [59], STM [16], BSR [52], etc.), which
transform the input image before gradient calculation for better transferability. On the con-
trary, few works focus on the white-box model itself to craft more transferable adversarial
examples. TAP [74] maximizes the difference of the feature maps for all layers between
the benign sample and adversarial example to enhance the adversarial transferability, while
ILA [23] finetunes an adversarial example by enlarging the similarity of the feature dif-
ference at a given layer. Ghost network [31] densely adds a dropout layer [46] after each
convolutional layer to create a huge set of diverse models for better transferability. Wu et
al. [63] argues that adopting more gradient from the skip connections could boost the trans-
ferability of adversarial examples across various ResNet-based models [20]. In this work, we
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try to diversify the high-level feature to craft more transferable adversarial examples, which
are general to any DNNs.

Adversarial Defense: To mitigate the threat of adversarial attacks, various defenses have
been proposed, such as adversarial training [38, 51, 57], input preprocessing [41, 66], feature
denoising [32, 67, 71], certified defense [8, 18, 43], etc. JPEG [19] eliminates the adversarial
perturbation by applying the JPEG compression to the input image. High-level representa-
tion guided denoiser (HGD) [32] trains a denoising autoencoder based on U-Net [44] to
purify the image. Randomized resizing and padding (R&P) [66] randomly resizes the im-
age and adds padding to mitigate the adversarial effect. Bit depth reduction (Bit-Red) [69]
reduces the number of bits for each pixel to squeeze the perturbation. FD [36] employs a
JPEG-based compression framework to defend against adversarial attacks. Cohen et al. [8]
adopt randomized smoothing (RS) to train a certifiably robust ImageNet classifier. Neural
Representation Purifier (NRP) [41] adopts a self-supervised adversarial training mechanism
to eliminate perturbation effectively.

Over-parametering for DNNs: Since Krizhevsky et al. [27] achieved superior perfor-
mance using Convolutional Neural Networks (CNNs) on ImageNet, DNNs are becoming
deeper and wider with millions of parameters [20, 22, 40, 48, 64]. Over-parameterization,
characterized by deeper and wider neuron layers, has been widely recognized to significantly
boost performance [20, 22, 40, 48, 64]. On the other hand, model quantization has been em-
ployed to enable the integration of deep neural networks into mobile phones and embedded
devices. This technique reduces the memory requirements of over-parameterized models by
replacing the floating point weights with low-precision weights [1, 3, 6, 9, 13]. The success
of model quantization suggests that DNNs contain redundant information, as the decrease in
precision does not significantly impact the final results. In this work, we aim to utilize such
redundancy to generate more transferable adversarial examples.

3 Methodology
In this section, we first provide our motivation and detail our proposed approach called Diver-
sifying the High-level Features (DHF). Then we analyze why high-level features are better
than low-level features when diversifying the features and summarize the difference between
DHF and Ghost.

3.1 Motivation
Lin et al. [33] analogize the generation of adversarial examples with the training process of
models. In this case, the transferability of adversarial examples is equivalent to model gener-
alization. Recent studies have demonstrated that input transformation-based methods, akin
to data augmentation in model training, can significantly enhance adversarial transferabil-
ity [11, 55, 68]. On the other hand, Li et al. [31] boosts transferability by densely applying
dropout and random scaling operations on the models (Ghost networks) to diversify the inner
features. It sheds light on the potential to enhance transferability by diversifying the features.
Motivated by the Ghost networks, we further study how to improve transferability through
feature diversification.

It is widely known that DNNs are over-parameterized for superior performance. Such
redundant parameters enable small perturbations among the features to have little impact on
the performance, especially in deeper layers. To validate this argument, we randomly mask
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Figure 1: Classification accuracy of Res-
101 when randomly masking ρ features of
the last l layers among the residual blocks.
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Figure 2: Visualization of the benign im-
ages and their corresponding adversarial ex-
amples generated by DHF.

ρ (0 ≤ ρ ≤ 1) elements of features at the last l (0 ≤ l ≤ 1) layers (we only focus on the fea-
tures of convolutional layers in the residual block) on Res-101 [20] and report the accuracy
in Fig. 1. We can observe that randomly masking 10% elements of the last 16.7% layers
does not significantly decay the accuracy. In particular, the accuracy is still 60.0% when we
mask half elements of the last 16.7% layers. When we mask more layers or elements at each
layer, the accuracy will decrease but can maintain more than 50% most time, highlighting
the possibility of diversifying the features using a single model. Moreover, we argue that de-
spite the models’ diversity in parameters and structures, they share a similar concentration of
features that impacts the performance. Thus, attackers can craft adversarial perturbations on
diverse features by perturbing the features, which are excellent for transferring across mod-
els. This naturally prompts us to diversify the high-level features to identify the invariant
features for better transferability. As shown in Fig. 2, DHF generates high-quality adversar-
ial examples with high transferability. More visualization results can be referred to Sec. 2 in
the supplementary.

3.2 Diversifying the High-level Feature
Given a L-layer DNN f , yl = f (l−1)(x) is the output w.r.t. the input x at the l-th layer (1 ≤ l ≤
L). To generate highly transferable adversarial examples on f , we propose a new approach
called Diversifying the High-level Feature (DHF) with two operations detailed as follows:

Mixing up the feature. To diversify the features of adversarial examples without chang-
ing the recognition performance, we mix up the features with the features of benign samples:

y∗l = (1−η) · yadv
l +η · yl, η ∼ U(0,ηmax), (1)

where yl = f (l−1)(x), yadv
l = f (l−1)(xadv) and U(0,ηmax) indicates the uniform distribution

from 0 to the hyper-parameter ηmax. Different from Admix [55], which mixes up the im-
age from other categories, we only mix up the features with that of the benign samples.
This diversifies the intermediate layers’ features but does not significantly affect the recog-
nition results, making the forward and backward propagation more stable than mixing up
some irrelated features. Furthermore, as the input samples become adversarial in the attack
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progress, the gradients of such samples might be unstable since the neighborhood of adver-
sarial examples mainly consists of correctly classified samples. Leveraging benign images
helps the optimization process to escape such a region, making the gradient more reliable
and stabilizing the optimization.

Randomly adjusting the feature. As shown in Fig. 1, randomly masking the features
does not significantly affect the classification accuracy. This validates the redundancy of
parameters, which would result in multiple local minima when optimizing the cross-entropy
loss for training. Such redundancy would introduce variance into the intermediate features,
which differs in the same models trained twice and is more severe across different models,
making it difficult for adversarial examples to transfer across models. To eliminate such
variance, we randomly replace ρ elements of features at each layer with the mean of features,
which stabilizes the propagation and helps boost the transferability. Note that replacing
the feature with its mean is still differentiable, allowing a more precise gradient w.r.t. the
adversarial examples. Compared with adjusting parameters, which will affect the entire
feature map, replacing features locally will only change specific elements in the feature map.
This distinction makes feature replacement different from parameter adjustment.

Our proposed DHF is a general attack applicable to many existing attacks. It applies
the above two operations on the high-level features to other attack methods, e.g. MI-FGSM,
NI-FGSM, during the forward propagation of features to prevent the adversarial examples
from over-fitting the decision surface of the surrogate model. These two operations help
the attacker eliminate the variance in the features and focus on the invariant features across
different models, which stabilizes the gradient calculation and results in highly transferable
adversarial examples.

3.3 Features under Quantitative Approaches
In this section, we analyze why high-level features are better than low-level features when
diversifying the features. Without considering the memory footprint of models, the learn-
able parameters have a specific distribution of float-point numbers. The quantized neural
networks reduce the size of the models by limiting the float point numbers to finite values:

Q(θi) = q j,θi ∈ (r j,r j+1], (2)

where (r j,r j + 1] represents the range of real values depending on the quantization bits
k, i.e., j = 0, ...,2k −1. The quantization process map this range (r j,r j +1] to the value q j.

However, directly using a low-bit precision to quantize a model will decrease the model
accuracy. A promising approach to achieve a trade-off between model size and accuracy
is to mix different precisions to quantize models. The HAWQ algorithm [12] utilizes the
Hessian eigenvalues as the sensitivity measurement matrix for hierarchical features in the
network and adopts mixed-precision quantization for network layers with divergent sensitiv-
ities. This motivates us to consider sensitivity when modifying network features. In other
words, changing parts of the model at different levels will have different effects on how the
model works. To measure network layers, we adopt the average Hessian trace H proposed
by the HAWQ-V2 algorithm as the sensitivity matrix. We have the following Lemma:
Lemma 1 [13]. Suppose that the model is twice differentiable and converges to a local
minimum when we quantize two layers with the same perturbation, we have:

L(θ∗
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∗
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∗
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where di represents the dimension of the i-th parameter θi and θ ∗
i represents the converging

result of the i-th layer in deep networks. The average Hessian trace of the i-th layer can be
represented by 1

di
Tr(∇2

θi
L(θ ∗

i )).

It can be concluded from Lemma 1 that the average Hessian trace can measure the sensi-
tivity of the layers of the deep model. When the same changes are made, the effect on the loss
function is bigger if the average Hessian trace is bigger. As the network layer increases, the
average Hessian trace descends, the model becomes less sensitive, and the decision boundary
is harder to change, as shown in [13].

A well-designed quantization scheme does not affect the decision boundary of the model
but reduces the computational and memory overhead of the model, indicating that the over-
parameterized model has redundancy. Lemma 1 tells that appropriately changing the point
numbers in the weight matrix will not change the loss function. Hence, we have that:

Corollary 1. Since the over-parameterized network has redundancy, appropriately chang-
ing the high-level features will not change the model outputs.

With Corollary 1, we can obtain diverse features by perturbing the high-level features
without changing model outputs. While enhancing the diversity of features, we should
choose the less sensitive ones so that the deep model’s predictions do not change. We can
use these diverse features to craft more transferable adversarial examples. Hence, we tend
not to change the features of the latter layers.

3.4 DHF vs. Ghost

DHF pays attention to the white-box model by utilizing the redundancy of parameters to
perturb the high-level features for better transferability. Li et al. [31] propose to generate a
set of Ghost networks by densely applying dropout to each convolutional layer or random
scaling on the skip connection for ResNet-based models to enhance the transferability. We
summarize the difference between DHF and Ghost as follows:

• Motivation. DHF diversifies the features based on the redundancy of parameters to obtain
invariant features while Ghost aims to reduce the training cost of ensemble model attack.

• Strategy. DHF perturbs the high-level features since the parameters of lower layers tend
to be less redundant. However, Ghost argues that perturbation on the latter layer cannot
provide transferability and densely perturbs the features.

• Transformation. DHF mixups the feature of current examples and benign samples and
randomly replaces the features with their means while Ghost densely adopts a dropout
layer for convolutional layer or random scaling on the skip connection.

• Generalization. As shown in Sec. 4.2, DHF could consistently boost the transferability of
various attacks while Ghost sometimes degrades the performance.

4 Experiments

In this section, we conduct empirical evaluations to validate the effectiveness of DHF. We
specify the experimental setting, evaluate DHF using momentum-based as well as input
transformation-based attacks, and provide parameter studies.
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Attack Method Res-18 Res-50 Res-101 Res-152 IncRes-v2 DenseNet-121 MobileNet ViT Swin

MI-FGSM

Org. 52.0 54.1 45.7 51.3 40.5 52.6 52.3 23.0 35.1
TAP 62.8 61.6 46.5 50.8 51.9 63.9 59.0 16.7 31.7
ILA 63.9 57.7 45.4 52.1 45.1 58.7 53.2 25.6 33.5
SGM 64.8 73.0 47.7 53.7 51.9 70.5 63.3 29.1 45.5
Ghost 67.3 74.5 47.5 67.0 52.9 71.4 65.3 28.0 45.5
DHF 71.9 76.7 47.9 70.2 57.5 74.7 62.9 35.2 53.2

NI-FGSM

Org. 54.8 58.9 46.8 53.0 44.0 55.9 54.2 23.9 37.6
TAP 63.4 63.9 45.7 58.2 57.6 57.3 59.7 20.1 34.5
ILA 64.7 62.0 47.6 63.9 48.1 57.1 62.4 28.3 48.1
SGM 65.3 75.9 47.8 55.3 50.6 73.9 66.1 30.2 48.7
Ghost 69.3 75.8 47.9 69.5 54.6 72.3 68.9 30.9 48.1
DHF 73.0 77.3 48.5 74.8 60.3 77.1 71.5 35.8 55.9

Table 1: Average black-box attack success rates (%) on nine models by two momentum-
based attacks. The adversarial examples are generated on Res-101, Res-152 and IncRes-v2,
respectively.

4.1 Experimental Setting
Dataset. We adopt 1,000 images [53] in 1,000 categories, which are randomly sampled from
ILSVRC 2012 validation set [27]. All the chosen models can correctly classify the images.

Models. We first evaluate the attack performance on nine models of two popular architec-
tures, namely Convolutional Network Works (CNNs), i.e., ResNet-18 (Res-18) [20], ResNet-
50 (Res-50) [20], ResNet-101 (Res-101) [20], ResNet-152 (Res-152) [20], Inception-ResNet-
v2 (IncRes-v2) [49], DenseNet-121 [22], MobileNet [21], and Transformers, i.e., Vision
Transformer (ViT) [14] and Swin [35]. We also consider several models with defense mech-
anisms, including the top-3 submissions in the NIPS 2017 defense competition: HGD [32],
R&P [66], NIPS-r31, input preprocessing: Bit-Red [69], FD [36], JPEG [19], a certified
defense RS [8], and an adversarial perturbation denoiser NRP [41].

Evaluation Settings. To validate the effectiveness of DHF, we consider two momentum-
based attacks, i.e., MI-FGSM [10] and NI-FGSM [33]. We also adopt two input transfor-
mations, namely DIM [68] and TIM [11]. DIM adopts the transformation probability 0.5,
and TIM utilizes the Gaussian kernel with size 7× 7. Our DHF perturbs the last 5

6 s layers
with the upper bound of mixup weight ηmax = 0.2 and the portion of perturbed elements
ρ = 10%. We set the the perturbation budget ε = 16, which is a typical black-box setting
[10, 23, 31, 63, 74], and the number of iteration T = 10, step size α = 1.6 and decay factor
µ = 1.0.

4.2 Numeric Results
We evaluate our DHF using two momentum-based attacks, namely MI-FGSM [10] and NI-
FGSM [33], and two input transformation-based attacks, i.e., DIM [68] and TIM [11]. We
adopt the original model and several architecture-related approaches as our baselines, namely
TAP [74], ILA [23], SGM [63], ghost network [31]. Since some baselines (e.g., SGM) are
limited to ResNets, we take Res-101, Res-152 and IncRes-v2 as the white-box models but
DHF is general to any architectures. The attack performance is quantified by the attack
success rates, which are the misclassification rates of the corresponding models on the gen-
erated adversarial examples. In Sec. 1.1 of our supplementary, we provide the results of the

1https://github.com/anlthms/nips-2017/tree/master/mmd
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Attack Method Res-18 Res-50 Res-101 Res-152 IncRes-v2 DenseNet-121 MobileNet ViT Swin

DIM

Org. 61.2 58.7 51.5 69.5 47.7 58.9 62.2 30.6 40.5
TAP 68.4 66.9 53.9 57.1 56.6 69.0 63.9 30.1 41.1
ILA 72.5 63.9 52.8 60.2 59.3 69.2 65.4 38.5 46.2

SGM 74.8 75.9 56.6 64.3 62.1 75.6 71.9 40.6 54.9
Ghost 78.1 80.2 61.9 70.8 70.3 85.2 80.9 47.5 59.6
DHF 85.3 86.9 64.2 75.8 72.9 85.7 83.6 52.9 62.7

TIM

Org. 58.3 60.2 49.9 57.1 50.2 60.8 59.5 27.1 43.2
TAP 65.1 68.0 50.2 58.9 60.2 63.8 65.9 28.8 38.4
ILA 69.4 65.7 51.6 65.2 62.6 64.9 65.9 40.3 52.3

SGM 71.9 78.3 55.6 67.5 64.3 70.0 67.2 44.5 54.2
Ghost 76.2 81.9 63.5 68.2 69.3 79.1 75.7 48.3 58.7
DHF 82.6 88.6 67.2 74.0 74.3 86.9 80.7 53.9 61.3

Table 2: Average black-box attack success rates (%) on nine models by two input
transformation-based attacks. The adversarial examples are generated on Res-101, Res-152
and IncRes-v2, respectively.

comparison with more advanced attacks.
Evaluations on Momentum-based Attacks. We first evaluate the performance im-

provement of MI-FGSM and NI-FGSM.
The average attack success rates on the black-box models are summarized in Table 1. We

can observe that all the approaches can boost the adversarial transferability than generating
on the original models, in which our DHF achieves the best attack performance on either
CNNs or transformers. In particular, DHF outperforms the best baseline (Ghost) with a clear
margin of 3.4% and 4.1% on average for MI-FGSM and NI-FGSM, respectively. With the
same computation cost, such superior attack performance and its generality to CNNs and
ViTs support the high effectiveness of DHF.

Evaluations on Input Transformation-based Attacks. Input transformation-based at-
tack is another mainstream approach to boost adversarial transferability. To further vali-
date the effectiveness of DHF, we adopt two input transformation-based methods under the
same setting, namely DIM, and TIM. These two approaches are integrated into MI-FGSM
and the results are presented in Tab. 2. Either DIM or TIM achieves better transferability
than MI-FGSM (in Tab. 1) on the original model and the baselines can consistently boost
the transferability. Among these attacks, DHF outperforms the runner-up method Ghost on
the adversarial transferability with a notable gap of 4.0% and 5.4% on DIM and TIM, re-
spectively. Such superior performance further supports the high effectiveness of DHF and
validates our hypothesis that utilizing the redundance of parameters to perturb the high-level
features can significantly improve the transferability.

Evaluations on Defense Models. Recently, various defense methods have been pro-
posed to mitigate the threat of adversarial examples. To fully evaluate the effectiveness of
DHF, we further consider several models with defense mechanisms, including HGD [32],
R&P [66], NIPS-r3 2, Bit-Red [69], FD [36], JPEG [19], RS [8], and NRP [41]. We generate
the adversarial examples using DIM on Res-101, Res-152, and IncRes-v2 models, respec-
tively and test them on the aforementioned eight defense models. We select Res-18 model as
the target model for the input processing-based defense, i.e., Bit-Red, FD, JPEG, and NRP.
The other four defense approaches adopt the official models provided in the corresponding
papers. The average success attack rates are presented in Tab. 3. Surprisingly, Ghost, which

2https://github.com/anlthms/nips-2017/tree/master/mmd



WANG ET AL.: DHF FOR BETTER ADVERSARIAL TRANSFERABILITY 9

Method HGD R&P NIPS-r3 Bit-Red FD JPEG RS NRP Average

Org. 52.9 45.5 50.9 34.0 48.1 56.2 20.7 36.0 43.1
TAP 54.1 47.2 51.2 45.1 50.6 62.4 25.5 46.4 47.8
ILA 56.3 48.0 53.7 47.6 52.3 64.8 22.9 46.5 49.0

SGM 54.9 48.1 54.6 47.4 52.9 70.2 23.8 48.3 50.9
Ghost 35.1 29.8 30.6 31.4 38.9 49.3 19.0 33.9 33.5
DHF 60.1 54.7 55.6 52.0 61.7 75.3 34.3 55.7 56.2

Table 3: Average black-box attack success rates (%) by DIM on various defense models.
The adversarial examples are crafted on Res-101, Res-152, and IncRes-v2, respectively.

achieves the best performance among the baselines in the above evaluations, achieves the
poorest performance on these defense methods, even poorer than the adversarial examples
generated on the original model. By contrast, DHF consistently performs better than the
baselines and outperforms the runner-up method (SGM) with a clear margin of 5.3% on av-
erage, showing its high effectiveness and generality when attacking the black-box models
with different defense mechanisms.

4.3 Parameter Studies
DHF randomly perturbs the high-level features by mixing up the high-level features with
clean features and randomly adjusting the mixed features. In this section, we conduct pa-
rameter studies to investigate the impact of three hyper-parameters, namely the upper bound
of mixup weight ηmax, the ratio of elements to be adjusted ρ and the number of layers to be
changed. We generate the adversarial examples on Res-101, Res-152, and IncRes-v2, and
report the average attack performance on the other eight models.

On the upper bound of mixup weight ηmax. As shown in Eq. (1), ηmax balances the
feature of clean sample and adversarial example among the mixed feature. To find a proper
value for ηmax, we conduct DHF attack to perturb the last five-sixths layers with ηmax from
0 to 0.5 in a step of 0.05 using ρ = 0.1. As shown in Fig. 3 (a), when ηmax = 0, the mixup
operation cannot take effect and DHF achieves low transferability. When we increase ηmax,
the attack performance consistently increases and achieves the peak around ηmax = 0.2. This
further validates that adopting an appropriate portion of clean features can boost adversarial
transferability. When ηmax continually increases, the clean features take a more significant
portion in the mixed feature, making it hard to calculate the accurate gradient. As a result,
the attack performance starts to decay. Hence, we adopt ηmax = 0.2 in our experiments.

On the ratio of elements to be adjusted ρ . ρ reduces the variance among the features
to identify the invariant features. To determine the value of ρ , we conduct DHF attack to
perturb the last five-sixths layers with ρ from 0 to 0.5 in a step of 0.05 using ηmax = 0.2.
As shown in Fig. 3 (b), when increasing ρ , the overall performance slightly increases when
ρ ≤ 0.1, and arrives at the peak when ρ = 0.1. Larger ρ will replace more elements with
the mean of feature, which decays the classification accuracy as shown in Fig. 1 and results
in the inaccurate gradient. Hence, the attack performance significantly drops and we adopt
ρ = 0.1 in our experiments.

On the ratio of layers to be adjusted r. To determine a suitable ratio of layers for
adjusting the features, we conduct DHF attack to perturb a different number of layers with
ρ = 0.1 and ηmax = 0.2.
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Figure 3: Average black-box attack success rates (%) on nine models by DHF using various
hyper-parameters. The adversarial examples are generated on Res-101, Res-152 and IncRes-
v2, respectively.

As shown in Fig. 3 (c), when DHF does not perturb the features (i.e., r = 0%), DHF
cannot take effect and achieves the lowest transferability. When we start to perturb the
features (e.g., r = 16%), the transferability can be significantly enhanced. The transferability
can be consistently improved when DHF perturbs more features and achieves the peak when
DHF perturbs the last 5

6 layers (i.e., r = 83%). Perturbing all the layers results in lower
performance than perturbing the last five-sixths layers, which is also consistent with our
analysis in Sec. 3.3. In our experiments, we perturb the last five-sixths of layers for better
performance.

5 Conclusion

DNNs are often over-parameterized for good generalization. In this work, we utilize such
property to enhance adversarial transferability. Specifically, we find that small perturbations
in high-level features have a negligible impact on overall performance. Motivated by this
observation, we propose DHF, which perturbs high-level features by randomly transforming
and mixing them with benign sample features during gradient calculation. We also provide
a theoretical analysis of why high-level features are better than low-level features when di-
versifying the features. Our extensive evaluations demonstrate that the proposed method
achieves significantly better adversarial transferability than existing state-of-the-art attacks.
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