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Abstract

Dichotomous segmentation is a challenging task that involves recognizing foreground
objects in high-resolution images with varying characteristics. Existing methods often
miss important details of the object or require a long processing time due to multi-stage
process. In this paper, we propose a one-stage effective model that can distinguish ob-
jects in dichotomous segmentation with low computation cost. Unlike most methods that
use two separate branches to first obtain coarse results from low-resolution images and
then refine them with the high-resolution information, our method can directly process
high-resolution inputs with simple operations. We introduce convolutional attentions into
the feature extractor to effectively capture multi-scale features. These features are then
used to generate high-quality results with a specifically designed progressive decoder.
The experimental results demonstrate that our method achieves superior performance on
the DIS5K dichotomous segmentation dataset with fewer model parameters and compu-
tational operations.

1 Introduction
Dichotomous segmentation is a recently proposed task that aims to identify foreground ob-
jects on high-resolution nature images with varying characteristics, e.g., salient, common,
camouflaged and meticulous. This task has high potential impacts on various computer
vision tasks, such as depth estimation, 3D modeling, 3D model editing. The first work on di-
chotomous segmentation, IS-Net [28], has achieved impressive results on the DIS5K dataset.
Although IS-Net introduces intermediate supervision on features to strengthen the model
learning, the prediction still misses some sharp object details, as shown in Fig. 1. Later,
InSpyReNet [20] is proposed achieving the state-of-the-art performance on both saliency
detection and dichotomous segmentation with a pyramid blending schema to enable training
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IS-Net InSpyReNet OursImage GT PGNet

Figure 1: Comparison of different methods (i.e. IS-Net [28], InSyReNet [20], PGNet [32]
and ours) on DIS5K dataset. The compared alternatives segment the house behind the traffic
light as part of the foreground object and mix the part of the wire whisk, while our method
can generate clean prediction with sharp edges.

on low-resolution images (384×384) while testing on high-resolution ones (1024×1024).
However, the multi-stage process of InSpyReNet dramatically increases the processing time
and the number of FLOPs for each high-resolution image. This could greatly limit its appli-
cation in real-world scenarios.

Although some recent high-resolution saliency detection approaches can also be adapted
to the dichotomous segmentation task, they may fail in some cases, as this task includes
more diverse samples than saliency. There have been several recent high-resolution saliency
detection methods that adopt a multi-stage architecture to predict coarse results from low-
resolution images and then add details in high-resolution images, such as HRSOD [36] and
DHQSOD [29]. However, the multi-stage process significantly slows down the prediction
speed. To address this issue, PGNet [32] designs a faster one-stage model. In order to employ
a high computation cost transformer, it still follows the traditional two-branch schema, where
one branch is for the low-resolution input and the other is for the high-resolution one. Using
a transformer might boost the performance, while it would greatly increase the size of the
model and the number of operations simultaneously, making it hard to train.

In this paper, we propose an efficient model that directly works on high-resolution im-
ages without relying on low-resolution inputs. To mitigate the computation complexity, our
model is designed as a one-stage encoder-decoder-structure. As the encoder generates ab-
stract features from the image and decreases the feature map resolution, the low-resolution
image features are inherently included within the encoder feature maps, eliminating the need
to process extra downsampled low-resolution images like HRSOD [36], PGNet [32] or In-
SpyReNet [20]. Another common reason for recent methods to start from low-resolution im-
ages is the high complexity of their feature extractor, such as using transformers, which pre-
vents directly processing high-resolution images due to the limited computation resources,
i.e., GPU memory. Conversely, our encoder is efficient enough to directly process high-
resolution images as we introduce a convolutional attention module into the encoder that
can more effectively encode contextual information than the self-attention mechanism in a
transformer with less computational cost. We extract multi-scale features from the encoder
at different levels and design a progressive segmentation decoder to gradually increase the
resolution for the segmentation map level by level with the extracted features. To strengthen
learning power, multi-scale supervision is adopted during training.

To validate our proposed model, we train and test it on the large-scale dichotomous
segmentation dataset DIS5K and provide a comprehensive experimental comparison with
recent methods. The experimental results show that our proposed model can predict high-
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quality segmentation on high-resolution images. Furthermore, our model outperforms all
single-stage competitors with a relatively small number of computational operations during
prediction. We also conduct ablation studies to reveal the impacts of different modules in
our model.

Our main contributions are summarized as follows:

• We propose a one-stage framework with an efficient yet effective convolutional at-
tention module that could directly work on high-resolution images for dichotomous
segmentation.

• We design the progressive prediction schema into the decoder of the model which
enables the gradual refinement of the segmentation map level by level. A multi-scale
supervision loss is introduced to enhance the model learning.

• We verify our model on the DIS5K dataset [28], where our model achieves the best
performance among all the single-stage methods with lower computation complexity.

2 Related Work
Since the dichotomous segmentation is a relatively new task, there are not many relevant
works. Therefore, besides providing backgrounds of the dichotomous segmentation, we also
review some recent learning-based saliency detection methods and semantic segmentation
methods that could be adapted to the dichotomous segmentation task.

2.1 High-Resolution Foreground Object Segmentation
Recently proposed by Qin et al., dichotomous segmentation is a new task that aims to seg-
ment highly accurate objects from natural images, covering camouflaged, salient, or metic-
ulous objects in various backgrounds [28]. The first attempt IS-Net [28] is based on U22-
Net [27] with intermediate supervision on the feature level, and has achieved impressive
results in the large-scale dichotomous segmentation dataset DIS5K. Limited by the com-
putation resource, many other alternative foreground object segmentation methods adopt
coarse-to-fine schema that gets the global semantics on low-resolution images first and then
refines the details with features from high-resolution. For example, InSPyReNet [20] trains
a large model with low-resolution images and proposes a pyramid blending module that adds
high-resolution details into the low-resolution prediction to get the final segmentation. The
two-stage process in the InSPyReNet for high-resolution prediction is time- and memory-
consuming. PGNet [32] uses a transformer to predict a saliency map from low-resolution
images, and then fuses high-resolution features via a grafting module to improve the predic-
tion. It has been demonstrated through a number of tasks that incorporating a transformer
generally leads to performance improvement [6, 22, 35]. Nonetheless, this enhancement
comes at the cost of increased computational demands.

Besides InSpyReNet and PGNet, HRSOD and DHQSOD are another two popular meth-
ods for high-resolution saliency detection. HRSOD [36] first extracts global features then
optimizes local details by splitting images into patches and finally fuses the prediction. Tang
et al. [29] propose the DHQSOD model to disentangle the task into classification and regres-
sion subtasks. They first design a a low-resolution saliency classification network to capture
sufficient semantics at low resolution and generate the trimap. The high-resolution refine-
ment network is then introduced with an uncertainty loss to refine the low-resolution trimap
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generated in the first stage to a higher resolution one. Although those multi-stage coarse-
to-refine methods can produce precise predictions, they often require significant time and
memory resources, which can pose challenges in certain real-world applications. Further-
more, these methods can lead to significant semantic inconsistencies between low-resolution
and high-resolution networks. Therefore, our goal is to design a one-stage network that
operates directly on high-resolution inputs to address the aforementioned limitations.

2.2 Semantic Segmentation

Apart from dichotomous segmentation and saliency detection, our task is also closely related
to the field of semantic segmentation. The field of semantic segmentation has witnessed
remarkable advancements with the introduction of fully convolutional networks [23], which
employ an end-to-end per-pixel classification approach. Further improvements have been
achieved by incorporating multi-scale features [5, 18], channel- and self-attention blocks
[8, 14, 16, 19], and utilizing edge cues [3, 11].

Recently, there has been a surge of interest in leveraging the vision transformers in vari-
ous tasks, leading to the emergence of dense prediction transformers and semantic segmen-
tation transformers, such as SegFormer [33], TopFormer [37], MaskFormer [7]. Although
vision transformers have demonstrated significant improvements in performance, they also
entail a high memory overhead. Moreover, some researchers have discovered that incorpo-
rating multi-modal and multi-task data can enhance the learning capabilities of a model and
yield further benefits for semantic segmentation tasks [2, 34]. However, the majority of these
models are developed specifically for autonomous driving scenarios, which require at least
RGB images and depth information as paired inputs. While it is possible to employ a seman-
tic segmentation model for dichotomous segmentation, such an approach may be prone to
overfitting. This is because semantic segmentation models are usually tailored for complex
segmentation scenarios that involve multiple classes, whereas dichotomous segmentation
mainly entails distinguishing between foreground and background.

3 Approach

To overcome the challenges associated with dichotomous segmentation, we present a one-
stage learning model based on an encoder-decoder architecture. Our model can directly
work on high-resolution images without requiring a separate branch for processing low-
resolution inputs. Since the encoder keeps extracting abstract features from the image while
simultaneously reducing the feature map resolution, low-resolution image features are inher-
ently integrated into the encoder. We design an efficient decoder that can gradually leverage
the multi-scale features from the encoder to generate the final high-resolution segmentation
maps. As shown in Fig. 2, our proposed method mainly contains two components, an en-
coder, i.e., feature extractor, and a decoder for progressive prediction. Details of the two
components are further discussed below.

3.1 Feature Extractor with Multi-scale Convolutional Attention

Attention mechanism is a kind of adaptive selection process that has proved its effective-
ness in a variety of computer vision tasks [10, 21, 31] by enabling the network to focus on
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Figure 2: The framework of our proposed model, which consists of a feature extractor with
multi-scale convolutioanl attentions to generate effective multi-scale features, and a progres-
sive decoder with hamburger heads to gradually utilize the multi-scale features to achieve
high-resolution results. Multi-scale supervision is introduced to enhance the model’s train-
ing capabilities. An overview of the multi-scale convolution attention is depicted at the upper
left, where D0~Dm denote depth-wise convolutions. More details are presented in the sup-
plementary material.

significant parts. Although transformers have been increasingly employed as feature extrac-
tors due to their impressive learning capabilities from self-attention mechanisms, the high
computation complexity of transformers makes it unsuitable for a practical model that op-
erates directly on high-resolution inputs. Consequently, we carefully choose a CNN-based
backbone with an effective attention mechanism when designing the feature extractor.

The multi-scale convolutional attention module [16] is an effective attention-based mod-
ule that includes a depth-wise convolution to aggregate local information, multi-branch
depth-wise convolutions with different sizes of the receptive fields to capture multi-scale
context, and a MLP layer to model relationship between different channels. The output of
the MLP layer is used as attention weights directly to reweigh the input of the convolutional
attention module. The covolutioanl attention has shown strong impact on the semantic seg-
mentation task, outperforming transformers with less computational cost [16]. We construct
a four-level feature extractor with each level containing multiple multi-scale convolutional
attention modules (as depicted at the upper left of Fig. 2) and a convolutional layer to get
features with decreasing spatial resolution. More details of the multi-scale convolutional
attention are presented in the supplementary material.

3.2 Progressive Decoder

To effectively leverage the multi-scale features obtained from the feature extractor, we design
a progressive decoder with heads for each scale, which generates an initial prediction using
the lowest-level features and then gradually add details from the higher-level features while
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also increasing the resolution to produce the final prediction.
As shown in Fig. 2, the initial prediction is obtained upon the features concatenated

by those from level 3 and 4. Specifically, we adopt a light yet powerful hamburger head
[15] that consists of a matrix decomposition between two MLP layers, as its performance
surpasses various decoder heads with only O(n) complexity. Let Fi denote the output multi-
scale features from the i-th level of the feature extractor, H1 be the first light hamburger
head, and MLP1 be the MLP layer after the first hamburger head, the initial dichotomous
segmentation result (Rinitial) can be computed as

FH1 = H1(Concat(F3,F4)), Rinitial = MLP1(FH1). (1)

After that, the initial prediction result will be refined by a reconstruction operation to-
gether with a Laplacian map generated by another hamburger head (H2) and a MLP layer
(MLP2) from the concatenated features of F2 and FH1 . To address the resolution difference,
FH1 will be upsampled with bilinear interpolation before concatenation. The Laplacian map
(LPrefined) here should contain high-frequency details.

FH2 = H2(Concat(F2,FH1)), LPrefined = MLP2(FH2). (2)

Subsequently, we employ the Laplacian map to reconstruct a refined high-resolution pre-
diction using the initial prediction Rinitial which needs to be upgraded to match the resolution
of the Laplacian map LPrefined by first filling zeros to the empty space of a larger-size map
and then calculating the convolution values with Gaussian weights [4]. The refined result
can be described as

Rrefined = Upgrade(Rinitial)+LPrefined. (3)

The final prediction can be obtained following a similar process of the refined prediction
generation, i.e., Eq.(2) and Eq.(3). First, we collect a Laplacian map LPfinal that comes
from the hamburger head (H3) giving the concatenation of F1 and FH2 . Then the refined
prediction (Rrefined) is upgraded, and the values from the Laplacian map and the upgraded
refined prediction are summed to yield the final results as follows:

FH3 = H3(Concat(F1,FH2)), LPfinal = MLP3(FH3),

Rfinal = Upgrade(Rrefined))+LPfinal.
(4)

3.3 Training Loss
To enhance the learning capabilities of the model, we enforce supervision on the multi-scale
predictions obtained from different levels. Since the dichotomous segmentation involves
only two categories in the segmentation map, we utilize the classic binary cross entropy
(BCE) loss in our model. The loss function can be formulated as

L = argmin λ1BCE(Rinitial,G)+λ2BCE(Rrefined,G)+λ3BCE(Rfinal,G), (5)

where G is the ground truth dichotomous segmentation map, and λ1, λ2 and λ3 are the
weighting hyperparameters.

4 Experiments
In this section, we present an overview of the dataset DIS5K, model implementation details,
the experimental outcomes with comparison to the existing methods, and the ablation studies
to show the impact of each module.

Citation
Citation
{Geng, Guo, Chen, Li, Wei, and Lin} 2021

Citation
Citation
{Burt and Adelson} 1987



ZHU ET AL.: ONE-STAGE PROGRESSIVE DICHOTOMOUS SEGMENTATION 7

4.1 Dataset and Evaluation Metrics
Since the dichotomous segmentation is a relatively new task, to the best of our knowledge,
DIS5K is currently the only dataset available for this task. Collected by Qin et al. [28],
DIS5K includes 5,470 Flickr images covering 225 categories in 22 groups. The images
primarily contain individual foreground objects with intricate and highly precise structures
and details, irrespective of their saliency, commonality, camouflage, meticulousness, and
other attributes. The 5,470 images in DIS5K are divided into three subsets: 3,000 images
in DIS-TR for training, 470 images in DID-VD for validation and 2,000 images in DIS-TE
for testing. The 2,000 images of the DIS-TE are further divided into four subsets (DIS-TE1
~DIS-TE4), each containing 500 images.

In accordance with [28], a total of six metrics have been utilized to comprehensively eval-
uate the performance from different perspectives. The metrics include maximal F-measure
(Fmx) [1], weighted F-measure (Fw) [24], mean absolute error (M) [26], structural measure
(S) [12], mean enhanced alignment measure (E) [13] and human corrections efforts (HCE)
[28]. In the case of Fmx, Fw, S, and E, a higher score indicates better performance. Con-
versely, for M and HCE, a lower score suggests better performance.

4.2 Implementation Details
We train our model with the training subset (DIS-TR) of DIS5K, validate on the DIS-VD
subset and report the performance on the four testing subsets (DIS-TE1 ~DIS-TE4). In order
to balance the performance and the complexity, we use [3,3,12,3] multi-scale convolutional
attention modules for the four levels respectively. The kernel size of the depth-wise convo-
lution layers within each attention modules are set to 1x7, 7x1, 1x11, 11x1, 1x21, 21x1. The
feature extractor is pretrained on ImageNet-1K dataset [9] before training on the DIS5K. We
also adopt some common data augmentation including random horizontal flipping, random
scaling (from 0.5 to 2) and random cropping for training. The batch size is set to 2. AdamW
[17] is used as the optimizer. We set the initial learning rate as 0.00006, and use the poly
learning rate decay for scheduling [38]. We implement our model by using PyTorch and
train it in 152K iterations with input size 1024×1024. λ1, λ2 and λ3 in Eq. (5) are set to 1.

4.3 Quantitative and Qualitative Results
We compare our proposed model with 7 recent deep-learning-based models designed for
different segmentation tasks, including high resolution saliency detection models (HRSOD
[36], PGNet [32] and InSpyReNet [20]), camouflaged object segmentation model (PFNet
[25]), semantic segmentation models (HRNet [30] and SegNeXt [16]) and dichotomous seg-
mentation model (IS-Net [28]). The metric scores were obtained from models trained with
the same DIS-TR training set as our approach. The inference time was calculated using the
same machine with a Tesla V100 GPU for a fair comparison.

Table 1 presents the quantitative results, indicating that our proposed approach signif-
icantly outperforms all the single-stage methods including the dichotomous segmentation
method IS-Net. Furthermore, our method can handle high-resolution inputs with fewer
model parameters and less computational operations. It is evident from the table that multi-
stage models generally require more time for prediction. Among all the multi-stage methods,
InSpyReNet produces the best scores but also has the highest inference time due to its multi-
stage design. Our model performs second-best compared to the multi-stage methods with
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Table 1: Comparison of dichotomous segmentation on four DIS5K [28] testing subsets with
alternative approaches. Overall performance is computed by taking the mean value of the
scores from the four subsets. The best performance has been bolded and the second best
result is marked in blue. Higher Fmx, Fw, S, E scores and lower M, HCE values indicate
the better performance. Our method outperforms all the the single-stage methods with fewer
model parameters and computational operations (FLOPs).

Dataset Metric Multi-stage Single-stage
HRSOD [36] InSpyReNet [20] PFNet [25] HRNet [30] SegNeXt [16] IS-Net [28] PGNet [32] Ours

Params(M) 32.4 90.7 46.5 63.6 27.6 44.0 72.7 28.0
Time (ms) 425.7 733.0 70.5 172.6 275.7 80.5 127.8 287.0
FLOPs (G) 315.7 461.2 59.9 373.8 137.6 159.8 160.3 129.2
Input Size 10242 10242 4162 10242 10242 10242 10242 10242

DIS-TE1

Fmx ↑ 0.726 0.854 0.646 0.668 0.771 0.740 0.821 0.822
Fw ↑ 0.658 0.792 0.552 0.579 0.681 0.662 0.728 0.745
M ↓ 0.079 0.044 0.094 0.088 0.076 0.074 0.070 0.069
S ↑ 0.766 0.873 0.722 0.742 0.789 0.787 0.834 0.845
E ↑ 0.803 0.893 0.786 0.797 0.820 0.820 0.846 0.859
HCE ↓ 198 110 253 262 177 149 173 147

DIS-TE2

Fmx ↑ 0.781 0.895 0.720 0.747 0.826 0.799 0.841 0.857
Fw ↑ 0.714 0.846 0.633 0.664 0.741 0.728 0.782 0.802
M ↓ 0.074 0.038 0.096 0.087 0.068 0.070 0.066 0.066
S ↑ 0.795 0.905 0.761 0.784 0.828 0.823 0.842 0.867
E ↑ 0.832 0.925 0.829 0.840 0.879 0.858 0.888 0.903
HCE ↓ 467 255 567 555 427 340 405 346

DIS-TE3

Fmx ↑ 0.806 0.912 0.751 0.784 0.843 0.830 0.877 0.882
Fw ↑ 0.732 0.868 0.664 0.700 0.765 0.758 0.803 0.831
M ↓ 0.069 0.038 0.092 0.080 0.062 0.064 0.059 0.058
S ↑ 0.819 0.915 0.777 0.805 0.841 0.836 0.857 0.873
E ↑ 0.863 0.942 0.854 0.869 0.899 0.883 0.906 0.912
HCE ↓ 1007 523 1082 1049 871 687 838 680

DIS-TE4

Fmx ↑ 0.789 0.902 0.731 0.772 0.834 0.827 0.859 0.863
Fw ↑ 0.726 0.847 0.647 0.687 0.755 0.753 0.798 0.819
M ↓ 0.072 0.046 0.107 0.092 0.069 0.072 0.067 0.066
S ↑ 0.804 0.902 0.763 0.792 0.823 0.830 0.844 0.870
E ↑ 0.848 0.927 0.838 0.854 0.883 0.870 0.895 0.908
HCE ↓ 3720 2336 3803 3864 3679 2888 3449 2768

Overall

Fmx ↑ 0.776 0.890 0.712 0.743 0.818 0.799 0.849 0.856
Fw ↑ 0.708 0.838 0.624 0.658 0.735 0.726 0.778 0.799
M ↓ 0.074 0.042 0.097 0.087 0.069 0.070 0.065 0.064
S ↑ 0.796 0.898 0.756 0.781 0.820 0.819 0.844 0.864
E ↑ 0.837 0.922 0.827 0.840 0.870 0.858 0.884 0.896
HCE ↓ 1348 806 1427 1432 1289 1016 1216 986

Table 2: The ablation studies on DIS-TE1 to verify the effectiveness of each module. We
can observe the progressive schema has a greater impact on the model’s performance than
the multi-scale supervision, while they together yield the best performance.

Decoder Supervision
Fmx ↑ Fw ↑ M ↓ S ↑ E ↑ HCE ↓Single Head Progressive Single-scale Multi-Scale

✓ ✓ 0.758 0.676 0.079 0.772 0.813 211
✓ ✓ 0.806 0.729 0.073 0.817 0.834 169
✓ ✓ 0.822 0.745 0.069 0.845 0.859 147

nearly one-third of the inference time of InSpyReNet, offering a better balance between per-
formance and speed.

Besides, we visualize the dichotomous segmentation predictions from all the competitors
and list some examples in Fig. 1 and Fig. 3. Our model effectively capture finer object details,
such as chair legs and octopus legs. However, it may struggle with objects have reflection
and are closely aligned with other objects, such as the flagpole in the third row of Fig. 3.
Though InSpyReNet predicts the contour of the flagpole, it also segments the pipe object in
the building behind it. More results can be found in the supplementary material.
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InSPyReNet GT IS-Net PGNetImage Ours 

Figure 3: Qualitative comparison with the state-of-the-art methods on DIS5K dataset. Our
proposed method is capable of capturing finer object details, such as chair legs and octopus
legs. However, it may struggle in cases where an object has a reflection and is closely aligned
to another object, such as the flagpole in the third row. Though InSpyReNet[20] predicts the
contour of the flagpole, it also segments the pipe object in the building behind it.

4.4 Ablation Studies
We conducted ablation studies to investigate the impact of the progressive decoder and the
multi-scale supervision. Firstly, instead of using the progressive decoder, we use one ham-
burger head with the concatenation of the features from level 3 and 4 in the feature extractor
to obtain a prediction (similar to the initial prediction shown in the Fig. 2). Secondly, we
add the progressive decoder but train the model with single-scale supervision only on the
final prediction. Table 2 shows the metric scores from models with different modules, re-
vealing that the progressive schema has a greater impact on the model’s performance than
the multi-scale supervision, while they together yield the best performance.

5 Conclusion
In this paper, we focus on the new and valuable dichotomous segmentation task and present
an efficient one-stage model that works directly on high-resolution images without any
downsampled auxiliary inputs. We introduce a multi-scale convolutional attention mod-
ule to effectively capture multi-scale features with low computation cost, which are used to
gradually refine predictions with a progressive decoder. Multi-scale supervision is adopted
to strengthen the model learning. Experiments on DIS5K dataset demonstrate that our model
outperforms all single-stage competitors with less computation complexity. Ablation studies
suggest the effectiveness of both the multi-scale supervision and progressive decoder.
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