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Abstract
Few-shot point cloud semantic segmentation aims to train a model to quickly adapt to

new unseen classes with only a handful of support set samples. However, the noise-free
assumption in the support set can be easily violated in many practical real-world settings.
In this paper, we focus on improving the robustness of few-shot point cloud segmentation
under the detrimental influence of noisy support sets during testing time. To this end, we
first propose a Component-level Clean Noise Separation (CCNS) representation learning
to learn discriminative feature representations that separates the clean samples of the
target classes from the noisy samples. Leveraging the well-separated clean and noisy
support samples from our CCNS, we further propose a Multi-scale Degree-based Noise
Suppression (MDNS) scheme to remove the noisy shots from the support set. We conduct
extensive experiments on various noise settings on two benchmark datasets. Our results
show that the combination of CCNS and MDNS significantly improves the performance.
Our code is available at https://github.com/Pixie8888/R3DFSSeg.

1 Introduction
Few-shot point cloud semantic segmentation (3DFSSeg) [23, 51] is a pragmatic direction
as it is able to segment novel classes during testing stage with only few labeled samples. In
contrast to the fully-supervised methods [27, 28, 39] which only work for close set, 3DFSSeg
has better generalization ability. However, it assumes that the learning samples of the novel
classes are correctly labeled during online testing time.

Unfortunately, the assumption of completely clean data could be violated in practice due
to a variety of reasons. First, human labeling is error-prone. The irregular data structure, low-
resolution, and subtle inter-class geometric difference make human annotators themselves
hard to correctly recognize objects [37]. The crowdsourcing labeling further stresses the
annotation quality [36]. As a consequence, ScanNet [6] still contains annotation mistakes
[46] after manual refinement over an extended period of time. Second, the industry is actively
seeking cheaper and more efficient annotation system to replace human labeling, e.g. semi-
automatic labeling [16, 41] and fully automatic annotation [3, 5, 10]. It further challenges
the curation of high-quality data.
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As shown in Fig. 1, we can refine the noisy annotations of the static base class dataset
offline by either manual checking or data-driven algorithm [46] given enough time and bud-
get. However, it is impossible to invest the same amount of human supervision to guarantee
noise-free in every support set after model being deployed because the number of new classes
in the real world is infinite [9, 26]. Neither can we use data-driven algorithm [46] to auto-
matically clean the noise due to severe overfitting to the small number of training samples
per new class (cf. Tab. 1).

To this end, we tackle with the noisy labels in the testing stage of 3DFSSeg, which is chal-
lenging but with high practical value. In 3DFSSeg, a few support point clouds are provided
as learning samples for each new class during meta-testing. Each support sample (i.e. shot)
is provided with a binary mask indicating the presence of the corresponding class. Based on
the given support set, the model segments the new class in any unlabeled (i.e. query) point
clouds. As pointed out by [10, 46] that the instance-level noise is most common in the an-
notation, objects of other classes are wrongly annotated as the target class and collected in
the support set. We define shots with incorrectly labeled foreground object as noisy shots.
Thus, the goal of robust few-shot point cloud semantic segmentation (R3DFSSeg) is to learn
a robust few-shot segmentor that is less influenced by the noisy shots.

floorwall doorcabinet floorwall doorcabinet

Noisy Base Class Dataset Clean Base Class Dataset

chair chair

CCNS
+

MDNS

shower curtain shower curtain

Noisy support set 1 Clean support set 1

CCNS 
+

MDNS

Noisy support set 2 Clean support set 2

(a) Stationary Base Class Dataset

… …

Manual 
checking

or 
Data-driven
Algorithm

(b) Non-Stationary Novel Class Dataset

Figure 1: Comparison between noisy base and
novel class dataset of 3DFSSeg. (a) Base class
dataset is static with finite samples. (b) Novel class
dataset is non-stationary as new classes are continu-
ously collected in the online testing stage. An exam-
ple where a sofa and a curtain are wrongly annotated
in support set 1 and 2, respectively.

In this paper, we first propose a
Component-level Clean Noise Separation
(CCNS) representation learning to learn
robust representation that is discrimina-
tive between features of clean and noisy
points. Inspired by [51], we adopt the
meta-learning paradigm for few-shot point
cloud segmentation. During meta-training,
we randomly inject noise into the sup-
port set by sampling point clouds contain-
ing foreground objects from other classes
to mimic the noisy meta-testing environ-
ments. We introduce a class-wise super-
vised contrastive learning on the noisy sup-
port set to separate the clean samples of the
target classes from the noisy samples. To
obtain more fine-grained and diverse con-
trastive features, we further propose the
use of farthest point sampling to decom-
pose the masked points in the feature space into multiple components. Intuitively, our CCNS
is designed to encourage features from different classes to be well-separated, such that the
clean shots in the support set would form the largest cluster in the feature space when learn-
ing converges.

We further propose a Multi-scale Degree-based Noise Suppression (MDNS) scheme to
remove the noisy shots from the support set during testing stage. Our MDNS separates clean
from noisy samples by checking the degree of each sample in a fully connected pair-wise
similarity graph. Clean samples tend to form well-defined clusters with higher degrees in
the pair-wise similarity graph. In contrast, noisy samples are relatively scattered with lower
degrees of connectivity in the feature space.

Our main contributions can be summarized as follows: 1) To the best of our knowledge,
we are the first to study the problem of robust few-shot point cloud semantic segmentation,
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which is important in real-world applications since noisy labels are inevitable in practice. 2)
We propose a component-level clean noise separation method for representation learning to
enhance the class-level discrimination in the embedding space. 3) We propose a multi-scale
degree-based noise suppression scheme that is able to effectively remove noisy samples from
the small support set for each new class during testing. 4) We conduct extensive experiments
on two benchmark datasets (i.e. S3DIS and ScanNet) with various noise settings and show
superior results over the baselines.

2 Related Work
Few-shot Learning. Few-shot learning aims to transfer knowledge learned from the abun-
dant samples of the seen class to a set of unseen classes with only few labeled samples. One
of the dominant approach is the metric-based [30, 35] methods, which meta-learns a trans-
ferable feature embedding that coincides with a fixed metric. The pioneer work ProtoNet
[30] predicts query label by finding the nearest class prototype under the Euclidean distance.
The key to the metric-based method is the discriminative feature embedding with compact
class clusters [7, 22, 44, 45]. Ye et al. [45] apply the contrastive objective to align the train-
ing instances close to its own class center after the embedding adaptation. Although we also
use contrastive learning in the episodic training, we adopt fine-grained contrastive objective
(i.e. feature components) to better capture the diverse intra-class distribution of point cloud.

Few-shot Semantic Segmentation. Few-shot semantic segmentation segments semantic
objects in an image [20, 38, 50] or a point cloud [13, 23, 51] with only few annotated sam-
ples. The 2D image semantic segmentation can be categorized into relation-based method
[32, 48, 49, 50] and prototype-based method [20, 38, 43]. Zhao et al. [51] propose the first
work on 3D few-shot point cloud semantic segmentation. They generate multi-prototypes via
farthest point sampling to better capture the complex data distribution of the point cloud. The
transductive inference is conducted between multi-prototypes and query points to infer the
label for each query point. However, all these works assume that the annotation in the given
support are accurate during testing time. In practice, this is a very strong assumption given
that the pixel-level and point-level annotation are extremely tedious and error-prone. In view
of this limitation, this paper studies the problem of robust few-shot point cloud semantic
segmentation and proposes a effective model that can better adapt to real world applications.

Learning with Noisy Labels. Learning with noisy labels is gaining increasing attention as
the deep neural networks are shown to be extremely vulnerable to the noisy labels [2, 8, 14].
There are three major approaches: label correction using the prediction of the model as
the new label [14, 19, 29, 31], sample selection using small loss criterion to selectively
update model [8, 40, 47] and learning robust representation [11, 15, 17, 25, 42]. PNAL [46]
proposes robust point cloud semantic segmentation (R3DSeg) that studies label noise in the
fully-supervised setting. It stores the prediction history of every point in the training dataset
and corrects point labels in the cluster-wise manner epoch by epoch. All these noise-robust
methods deal with static dataset in the offline training stage and require massive samples to
train (data-driven). In contrast, R3DFSSeg addresses noise in the online testing stage, where
new classes appear continuously with small support set. The data-driven algorithms would
thus overfit in R3DFSSeg.

Existing methods dealing with noisy label of novel classes in the few-shot learning are
only for 2D image classification (R2DFSL) [18, 21, 24]. RNNP [24] proposes a non-
parametric test method by combining data augmentation with k-means to refine the class
prototype. Liang et al. [18] learn a robust prototype generater by relying on the self-attention
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Figure 2: The architecture of our framework. ‘S’ represents the support point cloud and ‘Q’ repre-
sents the query point cloud. The left figure shows the pipeline during meta-training, where we conduct
component-level clean noise separation representation learning for each episode class. Components of
different classes are pushed away from each other. The right figure shows the pipeline during meta-
testing, where we perform multi-scale degree-based noise suppression to remove the noisy shots.

module inside the Transformer [34] to weigh down the noisy shots. Compared to 2D classi-
fication, 3D point cloud segmentation is more challenging as it requires per-point classifica-
tion and point cloud has much larger intra-class variance. Thus, the 2D methods, which only
generate one robust prototype per class, fail on the R3DFSSeg.

3 Our Method
Problem Formulation. The few-shot point cloud segmentation consists of two datasets:
Tbase and Tnovel sampled from disjoint classes Cbase and Cnovel , respectively. The goal is
to learn a model from Cbase and generalize to the Cnovel . Following previous work [51],
we adopt the episodic training on the Cbase to emulate the few-shot setting during testing.
In each N-way K-shot episode, N is the number of classes to be learned, and K is the
number of labeled samples per class. The labeled samples are termed as the support set:
S =

{(
P1

k ,M
1
k

)K
k=1 , . . . ,

(
PN

k ,MN
k

)K
k=1

}
. Each point cloud Pn

k ∈Rm× f0 contains m points with

input feature dimension of f0. The Mn
k ∈ Rm×1 is the corresponding binary mask indicating

the presence of class n.
We are also given a set of T unlabeled point clouds, termed as the query set: Q =

{(Ri,Li)}T
i=1. Each query point cloud Ri ∈ Rm× f0 is associated with the ground truth la-

bel Li ∈ Rm×1 only available in the training stage. During testing, Mn
k can wrongly assign

object of another class to class n due to the instance-level labeling error [46]. We denote the
noisy mask M̃n

k and the corresponding point cloud P̃n
k as the noisy sample, and its correct

class assignment as Yk. Consequently, the support set S becomes the mixture of clean and
noisy shots. The goal of robust few-shot point cloud semantic segmentation is to correctly
predict the query label by learning from the noisy support set S.

Framework Overview. Fig. 2 illustrates our proposed framework. We choose AttMPTI
[51] as our few-shot segmentor since it achieves state-of-the-art performance in the few-
shot point cloud segmentation. In addition, AttMPTI is potentially robust to the noise
when a good feature embedding is guaranteed (Sec. 3.1). In view of this, we propose
the Component-level Clean Noise Separation (CCNS) representation learning during meta-
training to enhance the discrimination and generalization of the feature embedding for AttMPTI
(Sec. 3.2). We further propose the multi-scale degree-based noise suppression (MDNS) to
remove the noisy shots during meta-testing based on their similarity graph (Sec. 3.3).
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3.1 Why Choose AttMPTI?

AttMPTI [51] is the state-of-the-art few-shot point cloud segmentation method. It consists
of a feature extractor to embed the support and query point cloud into the same metric space,
a multi-prototype generation module to generate prototypes from support set, and a label
propagation module to infer query label. Compared to ProtoNet [30], AttMPTI has sev-
eral unique components that gives it the potential to be robust, in addition to showing more
superior performance. First, AttMPTI generates multi-prototypes via FPS [28], while Pro-
toNet uses mean aggregation of all the relevant class feature. The sampled seed points via
FPS are able to represent the diversity of the feature space, and the local prototype is gen-
erated by clustering each point to the nearest seed point based on the Euclidean distance in
the feature space. In this way, the multi-prototypes can inherently separate the clean and
noisy points in the prototype-level. As shown in Fig. 3, the clean ratio of local prototypes
is either 1 (100% clean) or 0 (100% noise), but it seldom produces a half-clean prototype.
In comparison, the global prototype used in the ProtoNet leads to a clean-noise compound.

Ours

0 0-0.1 1

ProtoNet

0.33

AttMPTI

0 0-0.1 0.1-0.2 0.9-1.0 1

Figure 3: Comparison of prototype cleanness
from different methods on a 5-shot with 40%
out-episode noise setting. ‘1’ means the proto-
type only containing clean-labeled points, and ‘0’
means the prototype only containing points that
are incorrectly labeled as the target class. Val-
ues in between 0-1 represent the portion of clean-
labeled points in the prototype.

Second, AttMPTI infers query labels via la-
bel propagation [52] in a transductive fashion,
while ProtoNet infers each query point in-
dependently with the set of class prototypes.
The label propagation is based on the man-
ifold smoothness, i.e. nearby samples in the
feature space share the same label, and it has
the ability to correct the noisy label [11, 42].
In contrast, ProtoNet independently and iden-
tically predicts the label for each query point
based on the global prototypes that are poten-
tially noisy. The lack of reasoning the rela-
tionships among the support and query pre-
vents the model from being able to correct
the support noise. Although the design of
AttMPTI shows a better potential than ProtoNet in resisting the noise existing in the support
set, the performance of both multi-prototype generation and label propagation are subjected
to the discriminativity of the feature embeddings. To enhance the representation learning,
we propose to perform component-level clean-noise separation.

3.2 Component-level Clean Noise Separation

Our component-level clean noise separation (CCNS) representation learning aims to enhance
the class-wise discrimination in the feature space. We randomly replace some of the K
support shots with shots sampled from other classes during episodic training and induce the
model to differentiate clean and noisy shots in the feature space. With these synthesized
support sets with noisy labels, we perform a clean-noise separation representation learning
for each way (i.e. class) by optimizing the model with the class-wise contrastive learning
among the K support shots as follow:

LCNS =
1
K

K

∑
k=1

 −1
|A(zk)| ∑

zg∈A(zk)

log
exp

(
zk · zg/τ

)
∑

h\k
exp(zk · zh/τ)

 , (1)
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where zk ∈ Rd is the L2 normalized average foreground feature of the support point cloud
Pk in the projection space. A(zk) =

{
zg | Yg = Yk

}
is the set of positive samples zg with its

semantic label Yg the same as the semantic label Yk of zk. |A(zk)| is the cardinality and τ is the
temperature. By training with LCNS, the shots with same foreground class are encouraged to
stay together while staying away from samples of other classes.

Noisy Class 1
Noisy Class 2
Target Class

Figure 4: t-SNE [33] visualization of the CCNS
on a 5-shot support set with 2 noisy shots. Each
dot represents a point in the feature space and
each triangle represents a feature component.
Different colors represent different classes with
blue indicating the target class. The arrow shows
the direction to pull the feature components.

Unfortunately, a simple mean aggregation
of the foreground area tends to be sub-optimal
in representing the class distribution since the
distribution of point features of each class is
very large as shown in Fig. 4. To this end,
we conduct class-wise contrastive learning in
a more fine-grained way by dividing the fea-
tures in each foreground area into local com-
ponents. The feature components aggregate
local patterns that exhibit similar fine-grained
semantics, and have better coverage of the
feature space compared to the naive mean ag-
gregation. Specifically, we first perform FPS
in the feature space and then locally aggre-
gate the point features into a set of feature
components

{
z1

k , · · · ,zR
k

}
, to replace the origi-

nal holistic zk. Consequently, the component-
level clean noise separation LCCNS is formu-
lated as:

LCCNS =
1

KR

K

∑
k=1

R

∑
i=1

 −1
|A(zi

k)|
∑

z j
g∈A(zi

k)

log
exp

(
zi

k · z
j
g/τ

)
∑

h,b\(k,i)
exp

(
zi

k · zb
h/τ

)
 , (2)

where the A(zi
k) =

{
z j

g | Yg = Yk

}
is the set of positive samples with the same semantic label

Yg as Yk, and the |A(zi
k)| is the cardinality. As shown in Fig. 4, each component repre-

sents a different aspect of its corresponding shot in the feature space. Essentially, it forms
a multi-view self-supervised contrastive learning for each shot, where the ‘view’ is a local
component in the feature space. Correspondingly, the components at the boarder of the class
distribution automatically serve as the hard negative samples to other classes and hard posi-
tive samples to its own class, which are the key to a successful contrastive learning [4, 12].

The final optimization objective during the training stage is given by:

L= LCE +λLCCNS, (3)

where λ is a hyper-parameter to weigh the contribution of LCCNS. LCE is the original cross-
entropy loss in AttMPTI.

3.3 Multi-scale Degree-based Noise Suppression
Although the clean and noisy points can separate under the well-learned embedding space,
the prototype generation and label propagation module are still exposed to the mislabeled
shots during testing time. To reduce their negative influence during testing, we design a
degree-based noise suppression scheme to automatically remove the suspicious noisy shots.
Specifically, we build a fully connected graph G on the K support shots for each way. We
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average the foreground feature xi ∈ Rd of the i-th shot as the feature of node i. The weight
Wi j of the edge encodes the affinity between the two end nodes i and j as follow:

Wi j :=

{[
x⊤i x j

]γ

+
, if i ̸= j

0, otherwise
. (4)

We then compute the degree di = ∑ j Wi j for each node i. Essentially, the degree reflects the
nodes connection in the graph. The noisy shots tend to have lower degree since the clean
shots usually form a cluster with the largest size and the noisy shots are scattered in the
feature space. Consequently, we identify them based on the clean indicator:

Ii :=

{
1 if di > thr
0, otherwise

, (5)

where we set the thr as the mean of the {di}K
i=1. The shots with I = 0 are treated as noise

and removed.
Some point clouds may have complex data distribution that cannot be sufficiently rep-

resented by a global representation. To mitigate this problem, we extend the single-level
degree-based noise suppression scheme to multi-level, thus yielding the Multi-scale Degree-
based Noise Suppression (MDNS). Our MDNS can be more robust to some complex samples
and consequently improve the accuracy of clean sample identification. Specifically, we add
an additional level to perform noise suppression. We evenly split the foreground object along
the x/y/z coordinates, and denote the number of cuts along the x/y/z coordinates as nx/ny/nz.
The foreground feature in each sub-shot is locally aggregated and the feature set for each
shot is enlarged to

{
x1

i,s, · · · ,xe
i,s

}
, where e = nx × ny × nz. The single representation xi is

the case of
{

nx = 1,ny = 1,nz = 1
}

and is considered as the coarsest scale with s = 1. We

then send them into the noise suppression module to get the clean indicator
{

I1
i,s, · · · , Ie

i,s

}
,

where the majority voting is performed get the shot-level indicator Ii,s. Lastly, we assemble
the final prediction Ii as the majority voting of the prediction at each scale {Ii,1, . . . , Ii,s}.

4 Experiments

4.1 Datasets and Noise Settings

Datasets. We conduct experiments on S3DIS [1] and ScanNet [6]. S3DIS contains point
clouds of 272 rooms collected from six indoor areas with annotation of 12 semantic classes.
ScanNet contains point clouds of 1,513 scans from 707 unique indoor scenes with annotation
of 20 semantic classes. Following [51], we split each room into non-overlapping blocks with
size of 1m× 1m on the xy plane. Consequently, S3DIS and ScanNet contains 7,547 and
36,350 blocks, respectively. We sample m = 2,048 points as the input point cloud from a
block. The input feature f0 corresponds to XYZ, RGB and normalized XYZ values. During
training, we randomly sample one episode by first sampling N classes from Cbase and then
sampling NK point clouds as the support set and T point clouds as the query set. The support
mask M and the query label L are modified from its original annotation to only indicate the
presence of the target classes with irrelevant classes as the background. The testing episodes
are formed in a similar way, except for that we exhaustively sample 100 episodes for each
combination of N classes from the Cnovel . We use the data split 0 of [51] as the test classes on
both datasets. We adopt the mean Intersection over Union (mIoU) as the evaluation metric.
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model 0% In-episode Noise Out-episode Noise
20% 40% 40% 60%

2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way
PNAL [46] 13.67 8.12 8.94 5.45 5.95 3.13 8.08 4.28 4.77 2.87

Tra-NFS [18] 44.98 31.67 43.44 30.68 37.27 27.39 41.72 28.43 35.67 23.20
ProtoNet [30] 57.02 46.78 54.21 43.57 42.57 36.71 50.01 39.31 44.96 36.08
AttMPTI [51] 65.90 51.71 60.01 47.96 38.81 37.56 58.60 44.76 51.18 40.32

Ours 68.21 54.79 66.02 52.91 58.01 48.72 66.09 50.71 58.84 46.19

Table 1: Results on the S3DIS using mIoU metric on 2-way 5-shot and 3-way 5-shot.

model 0% In-episode Noise Out-episode Noise
20% 40% 40% 60%

2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way
Tra-NFS [18] 41.89 31.56 39.72 29.20 34.25 25.07 38.42 27.29 34.68 23.78
ProtoNet [30] 47.55 38.97 44.19 36.46 34.57 30.23 42.47 33.88 36.64 28.55
AttMPTI [51] 54.16 44.52 46.63 38.83 31.57 27.62 43.31 34.33 36.45 26.79

Ours 53.50 43.84 49.78 41.01 38.70 34.03 47.90 38.93 38.42 28.81

Table 2: Results on the ScanNet using mIoU metric on 2-way 5-shot and 3-way 5-shot.

Noise Settings. We explore two types of label noise: 1) In-episode noise samples noisy
shots from other N-1 classes of the current episode. It studies how the mix of the N fore-
ground classes affects the prediction of query point. We test the models on in-episode noise
ratio of 20% and 40%. 2) Out-episode noise samples noisy shots from outside of the N
classes in the Cnovel . It studies how the outliers affect the prediction of the query point. We
test the models on out-episode noise ratio of 40% and 60%.

The noise rate is defined as the percentage of the K support shots. Following existing lit-
erature of learning with noisy labels [8, 14, 18], we define the noise ratio with the restriction
that the percentage of clean labeled samples is larger than any noisy class. We thus can only
consider up to 40% noise for the in-episode noise and up to 60% noise for the out-episode
noise in both 2-way 5-shot and 3-way 5-shot point cloud segmentation.

4.2 Implementation Details
We adopt the AttMPTI [51] as the few-shot segmentor and follow the same training pro-
cedure as AttMPTI. We first pre-train the feature extractor 100 epochs on the Cbase with
learning rate of 0.001 and Adam optimizer. In the episodic training, the feature extractor
is fine-tuned with learning rate of 0.0001 and other learnable modules are optimized with
learning rate of 0.001. The projection head consists of one fully-connected layer with the
output dimension d as 128. Both λ and τ are set to 0.1, and R is set 4 in LCCNS. We randomly
generate noisy shots in each episode during training by sampling shots from Cbase. The noise
ratio is randomly chosen from {0,0.2,0.4}. In MDNS, the γ is set to 3 for scale s=1 and to
1 for any other scale. The MDNS is conducted in two scales:

{
nx = 1,ny = 1,nz = 1

}
and{

nx = 2,ny = 2,nz = 1
}

. All the experiments are done using one GTX 3090 GPU.

4.3 Main Results
We compare with 3DFSSeg methods AttMPTI [51] and ProtoNet [30], R2DFSL method
Tra-NFS [18] and R3DSeg method PNAL [46]. All methods use the same feature extractor
as AttMPTI for fair comparison.

Tab. 1 and Tab. 2 presents the experiment results on the noisy 2-way 5-shot and 3-way
5-shot point cloud segmentation on S3DIS and ScanNet, respectively. AttMPTI [51] usually
has better performance than ProtoNet [30] in terms of various noise setting, but both methods
suffer considerably with increasing noise ratio. It suggests that few-shot segmentor is indeed
vulnerable to the support noise. On the other hand, our method is able to largely improve
the robustness of the AttMPTI over all noise settings on both datasets. Fig. 5 presents the
qualitative results of a 2-way 5-shot point cloud segmentation with 40% out-episode noise
on the S3DIS. It shows our method can correctly segments the target classes in the query
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Background Beam Ceiling Noisy Mask
Input Query Ground Truth AttMPTI OursNoisy Support Set

Figure 5: Qualitative comparison of a 2-way 5-shot point cloud segmentation with 40% out-episode
noise on S3DIS.

point while AttMPTI fails. We notice that our model is slightly worse than AttMPTI in
the 0% setting in Tab. 2. We postulate that our method can predict correct labels, but the
noisy ground truths of ScanNet [46] cannot reflect the true performance of our method. This
postulation is evidenced by the great superiority of our method over baseline methods on
S3DIS, which is a dataset with clean ground truths. It suggests that our method can adapt
to the unknown test environment (both clean and noise test), which is important for model
deployment in real world.

2D robust few-shot learner Tra-NFS [18] performs poorly on R3DFSSeg due to severe
modality gap, i.e. point cloud has larger intra-class viriance than 2D images, making Tra-
NFS hard to detect clean shots. 3D robust point cloud segmentor PNAL [46] also fails in the
few-shot setting due to small support set in each episode.

We further notice that the in-episode noise has larger negative influence than the out-
episode noise, e.g. 40% in-episode noise vs 40% out-episode noise. We believe the reason
is that the features in each foreground class usually form a compact cluster. The in-episode
noise causes the labels in this compact cluster to be different, which severely confuses the
model of which class this cluster belongs to. In contrast, the out-episode noise are usually
separated from the foregrond classes in the feature space, and is less likely to influence them.

4.4 Ablation Study

model 0% In-episode Noise Out-episode Noise
20% 40% 40% 60%

AttMPTI 65.90 60.01 38.81 58.60 51.11
AttMPTI+CCNS 68.50 63.10 41.75 63.77 56.79
AttMPTI+MDNS 64.80 63.03 52.78 61.73 52.98

Ours 68.21 66.02 58.01 66.09 58.84

Table 3: Effectiveness of CCNS and MDNS
on the S3DIS on 2-way 5-shot. ‘Ours’ consists
of both CCNS and MDNS.

Effectiveness of CCNS and MDNS. We
analyze the effectiveness of our proposed
component-level clean noise suppression (CCNS)
and multi-scale degree-based noise suppression
(MDNS) on S3DIS in Tab. 3. It is worth not-
ing that the robustness of AttMPTI is improved
by simplely adding our feature representation
learning, i.e. CCNS. It verifies our claim that AttMPTI has the potential to be noise ro-
bust (by FPS based multi-prototype generation and label propagation), yet is subject to how
discriminative the feature embedding is. MDNS improves performance on most settings
and its performance gains are also subjected to the discriminativity of the feature space. By
further equipping with CCNS, our final model achieves consistent and significant improve-
ments under all settings. The ablation study on hyperparameter choosing is provided in the
supplementary material.
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model 0% In-episode Noise Out-episode Noise
20% 40% 40% 60%

AttMPTI 32.75 27.96 20.72 23.89 17.54
Ours 32.74 30.79 26.73 28.13 21.22

Table 4: 5-way 5-shot setting on ScanNet.

High way setting. Tab. 4 shows results of 5-
way 5-shot setting on ScanNet. Our model
again can significantly outperform AttMPTI on
all noise settings.

5 Conclusion
In this paper, we address the new task of robust few-shot point cloud segmentation, which is a
more general setting that considers label noise in the support set. We design the Component-
level Clean Noise Separation (CCNS) representation learning to learn a discriminative fea-
ture embedding. Our CCNS encourages the features from different classes to stay away from
each other, and concurrently induces the clean shots to form the largest cluster in the fea-
ture space. Leveraging the clean samples identified from our CCNS, we further propose the
Multi-scale Degree-based Noise Suppression (MDNS) to remove the noisy shots before the
prototype generation based on their affinity with other samples in the support set. Experi-
ment results that outperform the baselines show the feasibility of our proposed method.
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