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Abstract

Human is one of the most essential classes in visual recognition tasks such as de-
tection, segmentation, and pose estimation. Despite considerable efforts in addressing
these tasks individually, their integration within a multi-task learning framework has
been relatively unexplored. In this paper, we explore a compact multi-task network ar-
chitecture that maximally shares the parameters of the multiple tasks via object-centric
learning. To this end, we introduce a novel human-centric query (HCQ) that effectively
encodes human instance information, including explicit structural information such as
keypoints. Besides, we utilize HCQ in prediction heads of the target tasks directly and
also interweave HCQ with the deformable attention in Transformer decoders to exploit a
well-learned object-centric representation. Experimental results show that the proposed
multi-task network achieves comparable accuracy to state-of-the-art task-specific mod-
els in human detection, segmentation, and pose estimation tasks, while it consumes less
computational costs. The project page is available at this https URL

1 Introduction
Core tasks in visual recognition, such as detection, segmentation, and pose estimation, play a
crucial role in diverse applications, including video surveillance and human-computer inter-
action. Adopting a multi-task learning strategy with a unified architecture, rather than train-
ing individual models for each task, offers cost-efficiency and promotes inter-task synergy. In
this paper, our focus lies in developing an effective unified architecture tailored specifically
for human-related multi-task learning.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Query design comparison. We visualize the cross-attention part in Transformer
decoders, highlighting the main differences in green. Compared to DETR [2], Deformable
DETR [29] and DAB-DETR [15] embed explicit positional information of an object to a
learnable query. Our human-centric query additionally incorporates object structural infor-
mation as keypoints, allowing it to effectively carry diverse information for multiple tasks.
In contrast to other methods, these learnable keypoints are directly fed into task-specific
heads, providing high-level positional and structural information and enabling each head to
jointly consider it. Moreover, learnable keypoints serve as sampling locations in deformable
attentions, accelerating the learning process and boosting multi-task performance.

Recent advances in object-centric learning [2, 17] use the Transformer architecture to
encode per-instance representations by mapping Transformer queries to image object in-
stances. Due to its per-instance representation capabilities, object-centric learning can be
well-suited for human instance-level recognition tasks. Although some studies apply object-
centric learning to multi-tasking of detection and segmentation [11], few have extended this
concept to human recognition problems. Moreover, human recognition tasks, unlike general
object recognition, necessitate pose estimation, which conveys the structural information
of human instances. A naïve application of object-centric learning to multi-task learning
could cause performance degradation, as different types [25] of information are implicitly
encoded in a mixed manner. This prevents each query from possessing task-specific infor-
mation, which is essential for effective multi-task learning in human recognition problems.

To tackle this problem, we propose a novel human-centric query (HCQ) design to extract
more representative information of human instances. We segregate the structural information
from the decoder embedding and represent it in explicit forms called learnable keypoints
(Fig. 1d). The learnable keypoints contain the bounding box and the body joints of a hu-
man while the decoder embedding encodes the general representation of an instance. This
separation enables different pieces of information of a human instance to be encoded in a
decoupled way, allowing multiple target tasks to effectively utilize useful information from
the query for their own purposes.

Thanks to the decoupled design of HCQ, only the light-weight prediction heads are
needed because the information is already disentangled enough for each task. In addition,
utilizing the decoupled learnable keypoints in the prediction heads further improves the per-
formance because it gives extra pre-computed and high-quality structural information that
the other query does not possess. For example, human pose can help segmentation [27] and
vice versa. While some previous methods (e.g., DAB-DETR [15]) explicitly represent coarse
information like bounding boxes, this representation may not provide enough structural in-
formation to assist with other tasks, such as segmentation. Hence, most previous methods
feed only decoder embeddings containing general information into the prediction heads to
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perform target tasks even though they have explicit box coordinates.
Furthermore, our learnable keypoints can be interweaved with deformable cross-attention

seamlessly. Deformable attention [29] predicts sample locations directly from decoder em-
beddings rather than computing similarity between the query and image features. Our learn-
able keypoints can be directly applied to deformable cross-attention as sampling locations. In
other words, pre-computed learnable keypoints carrying bounding box and pose information
can be reused as attention, reducing redundant computations. We discovered several bene-
fits: attention learning supervised by poses accelerates the training process, and structural
information in human poses provides additional clues for occluded regions.

We evaluate our method on the COCO dataset [13] through various experiments. To our
best knowledge, ours is the first Transformer-based unified architecture for human-related
multi-tasks, which are considered less correlated in task taxonomy (e.g., Semantic Segmen-
tation vs. 2D Keypoints) [25]. Our approach achieves comparable accuracy to state-of-the-art
task-specific models while maintaining a compact design.

2 Related Work
Object-centric query design Locatello et al. [17] introduce the concept of object-centric
representation learning to separate image information based on individual object instances.
They use a set of object representations, called slots, and map them to image object in-
stances using slot attention. DETR [2], a concurrent work, applies the Transformer archi-
tecture for object detection using object-centric representations. They employ a fixed-size
set of learnable object queries to infer object relations and image features (Fig. 1(a)). Many
follow-up approaches [10, 15, 19, 23, 26, 29] have tackled the object detection task based on
DETR. We focus on representative methods concerning object query designs. Deformable
DETR [29] uses 2D reference points from learned linear projection (Fig. 1(b)), enabling
faster convergence and improved object detection. DAB-DETR [15] replaces queries with
dynamic anchor boxes containing position and size information (Fig. 1(c)), allowing de-
coders to concentrate on regions of interest. Distinct from the previous works, our learnable
query explicitly and compactly carries the structural information of an object as the form of
keypoints (Fig. 1(d)). Furthermore, we present effective ways to exploit the high-level infor-
mation learned in the query for performing deformable attention and task-specific heads.

Object-centric multi-task learning Object-centric representation has been applied to gen-
eral object multi-task learning for detection and segmentation. DETR [2], an object detector
utilizing object queries to communicate with image features, can be easily extended to seg-
mentation tasks by attaching mask heads. However, its segmentation performance is inferior
to task-specific models. From a segmentation perspective, semantic, instance, and panop-
tic [9] segmentation can be considered distinct tasks, with some research efforts [4, 5, 28]
aiming to address all of them within a unified architecture. Mask2Former [4, 5] attends only
the masked regions in cross-attention for fast convergence and K-net [28] introduces learn-
able kernels with update strategy where each kernel is in charge of each mask. Recently,
Mask-DINO [11] investigates joint performance improvement for detection and segmenta-
tion tasks using anchor box-guided cross-attention [26] and a denoising training scheme [10].
However, none of these approaches have explored object-centric query design for multi-task
learning that includes more heterogeneous tasks, such as pose estimation.

Multi-task learning for human instances Multi-person instance segmentation and pose
estimation [1, 21, 27] are essential for human-related visual tasks. PersonLab [21] adopts
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Figure 2: Our unified network architecture for various instance-level vision tasks; human
detection, segmentation and pose estimation.

a bottom-up approach, first extracting multiple feature maps and then associating them to
obtain instance-wise segmentation and pose. Pose2seg [27] uses human poses instead of the
bounding boxes to normalize interest regions for better alignment and performs the target
task for each proposal. PosePlusSeg [1] uses a shared backbone to get intermediate maps for
each task and each task pipeline combines those maps to get the results. In contrast to the
aforementioned convolution-based methods, we employ a Transformer decoder architecture
with human-centric queries to perform these tasks simultaneously.

3 Method
Overall architecture The overall architecture (Fig. 2) has three components: an image
feature extractor, a Transformer decoder, and task-specific heads. The image feature extractor
takes an image as input and produces multi-resolution features. These features are fed into
the Transformer decoder for attention. The decoder processes human-centric queries with
various human instance information, which are then fed into lightweight task-specific heads
for final prediction. This design results in a lightweight multi-task model.

3.1 Human-centric query design
Since a single query vector for training multi-tasks represents tangled information and usu-
ally causes performance degradation, we design a novel human-centric query to decouple
the structural information from the tangled embedding vector. The proposed human-centric
query consists of two distinct parts, decoder embeddings and learnable keypoints (Fig. 3).
The decoder embedding E l

q ∈ R1×D is the representation vector for each human instance
where q and l are indices for query and layer, respectively, and D is the hidden dimension
for each query. The learnable keypoints Kl

q ∈ R1×2(n+1) are the decoupled positional and
structural information of a human instance and defined as

Kl
q =

[
xl

q,0, yl
q,0, · · · , xl

q,n, yl
q,n

]
=
[
pl

q,0, · · · , pl
q,n

]
,

where pl
q,i := (xl

q,i, yl
q,i) is a 2D coordinate of the i th keypoint. Emphasizing that the for-

mulation is identical for all queries and layers, we omit the indices q and l without loss of
generalities.

The learnable keypoints K contains two different types of information; a bbox part
(p0, p1) and a pose part (p2, . . . , pn). Keypoints p0 and p1 in the bbox part give xy-coordinates
of left-top and right-bottom of the bounding box, respectively. These two diagonal points are
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Figure 3: Our transformer decoder
architecture.

Figure 4: Sampling locations of deformable attention
w/o and w/ keypoints.

sufficient to represent a given bounding box and we define the center and side lengths of the
bounding box using these two points:

pc =
p0 +p1

2
and d = p1 −p0 . (1)

Unlike the bbox part, keypoints in the pose part are regarded as coordinates in a canonical
space defined by the bounding box, i.e., the set J of xy-coordinates of joints in the human
pose are computed as

J = {p0 +piT | i = 2, . . . , n} , (2)

where T := diag(d) is a dilation operator. We represent the joint cooridnates of pose in the
canonical space which is normalized by the box. It reduces the pose variance according to
the size of the human so that it lessens the burden of the network. The effectiveness of the
canonical space can be found in the supplementary material.

Inspired by the DAB-DETR [15], the corresponding structural embedding P ∈ R1×D is
obtained by successive operations over K. First, a sine encoding σ : R→ R1×D′

maps each
element of K to a vector and then, a multi-layer perceptron MLP is applied. In other words,

P = MLP(σ(K)) = MLP(Cat (σ(x0), σ(y0), . . . , σ(xn), σ(yn))) , (3)

where Cat is a concatenation operator along with the last dimension. Here, MLP is a three-
layer perceptron:

MLP(x) = ReLU(ReLU(xW1 +b1)W2 +b2)W3 +b3 ,

where W1 ∈ R2(n+1)D′×D, W2,W3 ∈ RD×D, and b1, b2, b3 ∈ R1×D are learnable weights and
biases. One notable point is that our learnable keypoints carries salient coordinates for not
only bounding box but also joints of human pose. This allows each human-centric query to
become an expert on position and structure of the corresponding human object.

3.2 Query utilization in task-specific heads
Previous works do not use a learnable query as an input of task-specific head networks, even
though the query contains high-level information pre-computed from previous layers, such as
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the coordinates of a bounding box (and also the joints of a pose in our approach). We simply
feed the concatenation of the coordinates along with decoder embeddings into task-specific
heads as the form of conditional information. By doing so, each task head can consider useful
information in other tasks (bbox and pose estimation) for improving its accuracy.

In Fig. 3, regarding object detection and pose estimation tasks, as learnable keypoints
themselves are the results of the tasks, their task heads perform in every layer in the trans-
former decoder. Other task heads perform only once, after the transformer decoder. For all
these task heads, we provide the information of learnable keypoints.
Pose estimation head While other task-specific heads employ conventional structures used
in DETR [2] and MaskFormer [4], our pose estimation head network has a simple archi-
tecture, distinguished from previous pose estimation methods. Our head network receives
object queries and produces the coordinates of pose joints directly. Off-the-shelf pose esti-
mation methodologies [3, 22, 27] used auxiliary expedients such as bounding box cropping
& resizing or heat map extraction. While existing methods offer performance advantages,
they have limitations in reducing computational cost. Our approach, benefiting from object-
centric queries, employs a vector-to-vector head network that directly regresses pose joints
from the human-centric query. This results in lower computational cost compared to conven-
tional task heads that process cropped images and produce heat maps (e.g., 304-to-34 in our
head vs. 256×256×3-to-56×56×17 in [3] for each instance).

3.3 Query utilization in deformable attentions
Our learnable query carries keypoint coordinates with high accuracy for a bounding box and
a pose, and keypoints refer to salient points by definition. By reusing such information as
sampling points in an attention module, we can reduce redundant computations for attention
calculation. In this regard, we directly use our learnable keypoints as sampling locations in
a deformable attention layer (Fig. 4 right).
Deformable attention with keypoints Let m be an attention head index and let Q ∈R1×D

be the query vector which is sum of P and an output of self-attention module. The set of
proposed sampling locations Sm is a union of two subsets; the set Dm of Deformable DETR
sampling locations and the set Jm of joint coordinates for pose (Fig. 4). The sampling lo-
cations in Dm are decided by sampling offsets ∆pm which are generated by MLP over the
query vertor Q:

Dm = {pc +∆pm | ∀generated ∆pm} . (4)

Note that the center of the bounding box pc in Eq. (1) plays role of the reference point. The
joint coordinates for each head Jm are equally split from J in Eq. (2). For the number Nh of
attention heads and the number Np of all sampling locations in each head, let x ∈ RH×W×D

be an image feature map, and let Wm ∈ RD×D/Nh be a learnable weight. The value Vm ∈
RNp×D/Nh is defined as a stack of sampled features at xWm:

Vm =Cat
(
(xWm(p))T

)T
, (5)

where the concatenation is applied across for all p ∈ Sm. From this, the output of the de-
formable attention with keypoints can be represented as

DeformAttKey(Q,V, P) =Cat
(
A1V1, . . . , ANhVNh

)
W , (6)

where Am ∈ R1×Np is an attention coefficient obtained by linear operator over Q and W ∈
RD×D is a learnable weight. Eq. (6) can naturally be used to the case of multi-scale attention
module. The mathematical derivation can be found in the supplementary material.
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Model
Components Accuracy (mAP)

Learnable keypoints Query util. in T.H. Query util. in D.A. Det. Pose. Seg.

BaseNet-DS 56.4 ✗ 51.1
BaseNet-DPS 53.5 55.7 49.3

HCQNet-α ✓ 55.9 33.3 50.9
HCQNet-β ✓ ✓ 56.8 60.2 51.5

HCQNet ✓ ✓ ✓ 56.1 64.4 51.7

Table 1: Ablation study on query design. Query util. in T.H. and Query util. in D.A. mean
query utilization in task-specific heads and in deformable attentions, respectively.

To address potential regions not covered by keypoints, we also use original sampling
locations alongside, predicted by an MLP as in Deformable DETR [29]. Specifically, for
32 sampling locations per object query, we obtain 16 locations from the keypoints and the
remaining 16 locations following Eq. (4) (Fig. 4 left).

4 Experimental Results
Settings We use MS COCO 2017 dataset [13] for network training and validation as all
labels for human pose estimation, detection, and segmentation tasks are provided. There
might be a task-specific augmentation technique to obtain the best performance for each
task. However, we applied one common data augmentation technique in [5] because the
results of three tasks are obtained from a single image and we need to train all tasks at the
same time. We use the AdamW [18] optimizer with the initial learning rate of 10−4 and the
batch size of 16. We train each model for 368,750 iterations, and apply a learning rate decay
at the two iterations of 327,778 and 355,092 with the decay value of 0.1. More details of the
experimental setting including loss functions can be found in the supplementary material.

4.1 Component analysis
Ablation study Our baseline network is a careful combination of Mask2Former [5], De-
formable DETR [29], and DAB-DETR [15]. In summary, we replace their cross-attention
layers in Mask2Former with deformable attention layers. To predict reference points for de-
formable attention, we replace learnable query with the bbox part of learnable keypoints.

Utilizing the described architecture, we define two baseline models, BaseNet-DS and
BaseNet-DPS (Table 1). BaseNet-DS handles detection and segmentation tasks only. No-
tably, due to our careful design, it achieves detection and segmentation performance compa-
rable to state-of-the-art task-specific models (Mask2Former and DAB-DETR). In addition to
BaseNet-DS, we consider multi-tasking with an additional human pose estimation task. We
add a head network and an RLE loss function [12] for human pose estimation to the baseline
model, which we refer to as the baseline multi-tasking model (BaseNet-DPS).

In this ablation study (Table 1), from BaseNet-DPS, we add our components of 1) learn-
able keypoints including also the joint coordinates of a pose, 2) query utilization in task-
specific heads (Query util. in T.H.), and 3) query utilization in deformable attentions (Query
util. in D.A.) one by one, and analyze their performance.

Simply adding a heterogeneous task causes the significant degradation of overall perfor-
mance, showing a difficulty of learning shared representation for multi-tasking (BaseNet-DS
vs. BaseNet-DPS). Using our query design, detection and segmentation accuracy increases
(BaseNet-DPS vs. HCQNet-α), showing that explicit separation of mixed information im-
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Figure 5: Training accuracy graph (Blue:
BaseNet-DPS, Red: HCQNet).
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Figure 6: Qualitative results on the COCO 2017
Person dataset [13].

proves accuracy. However, pose estimation accuracy drops, as decoder embeddings lack suf-
ficient pose information.

Providing learnable keypoints to task-specific heads improves accuracy for all tasks, as
positional and structural information complement each other (HCQNet-α vs. HCQNet-β ).
This is more effective in pose estimation than detection, despite similar prediction processes.
In detection, the simpler box representation allows the prediction head to estimate proper
displacement without the previously predicted bounding box, unlike in pose estimation.

Using learnable keypoints in deformable attentions can yield additional performance
gains (HCQNet-β vs. HCQNet). In our experiment, this significantly improves pose esti-
mation accuracy, has a smaller impact on segmentation, and slightly reduces detection ac-
curacy. Overall, our components (HCQNet) significantly enhance performance for all target
tasks compared to the baseline multi-tasking model (BaseNet-DPS).

Training speed In addition to the overall improvement in accuracy across all tasks, we
observed that our approach exhibits significantly faster training speed compared to the base-
line multi-tasking model (Fig. 5). Specifically, HCQNet trained for 100k iterations shows
higher average accuracy than BaseNet-DPS trained for 300k iterations, showing more than
three times faster training speed. This can be attributed to our query design, which explicitly
leverages pre-computed high-level keypoints, thus enhancing training efficiency.

Qualitative comparison The effects of our proposed approach can be also found in qual-
itative results (Fig. 6). As shown in the second column of Fig. 6 (notice a horseman’s foot),
while task-specific method (Mask2Former) and naïve multi-tasking model (BaseNet-DPS)
suffer from segmenting an occluded object, our model (HCQNet) can produce better seg-
mentation result by jointly utilizing the information of other tasks encoded in our HCQ.

4.2 Comparison
To show our approach’s effectiveness, we compare it with various task-specific models [2,
4, 5, 15, 22] and multi-task models [1, 8, 27] that partially address the combination of object
detection, instance segmentation, and human pose estimation tasks. We use a residual net-
work [7] (R-50 and R-152), a feature pyramid network [14] (fpn), and Swin-Transformer [16]
(Swin-B) as backbone models, pretrained on the ImageNet-1K dataset [6]. Since no approach
addresses all three tasks together, we divide the tasks into two separate groups based on eval-
uation protocols for fair comparison. Specifically, when evaluating tasks that include pose
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Model Backbone
Accuracy (mAP)

Det. Pose. Seg.

Mask R-CNN∗ [8] R-50 52.0 ✗ 43.6
DETR∗ [2] R-50 52.8 ✗ ✗

DAB-DETR∗ [15] R-50 51.8 ✗ ✗

HCQNet R-50 52.6 60.4 49.1

Mask2Former [5] Swin-B ✗ ✗ 52.0
DAB-DETR [15] Swin-B 56.4 ✗ ✗

Baseline-DPS Swin-B 53.5 55.7 49.3
HCQNet Swin-B 56.1 64.4 51.7

Model Backbone
Accuracy (mAP)

Det. Pose. Seg.

Pose2Seg [27] R-50-fpn ✗ 59.9† 55.5

Pose2Seg(GT kpt) R-50-fpn ✗ GT 58.2

PosePlusSeg [1] R-152 ✗ 74.4 56.3

PETR [22] R-50 ✗ 67.4 ✗

HCQNet Swin-B 68.9 65.2 65.1

HCQNet f t Swin-B 69.2 65.6 65.5

Table 2: Comparison with state-of-the-art task specific models on the COCO 2017 Person
minval set (left) and the same set without small person instances (right). The asterisk *
denotes models trained for handling general classes, downloaded from the Detectron2 [24]
and the authors’ websites. † Pose2Seg uses a stand-alone model for pose estimation [20].

Model Module Cost (BFlops) Prop. (%)

HCQNet

Backbone 363 69.96
Pixel decoder 143 27.56
Trans. decoder 12.60 2.43

Class 0.0000512 0.00
Mask 0.020634 0.00
Box 0.128 0.02
Pose 0.135 0.03

Total 521 100

Model Module Cost (BFlops) Prop.∗ (%)

Separate
task-

specific
models

DAB-DETR [15] 361 69
Mask2Former [5] 535 102

PETR [22] 747 143

Total 1643 315
*Proportion values are based on our HCQNet as the reference.

Table 3: Computational cost analysis. Backbone of all the models is Swin-B [16].

estimation, we exclude instances with a small size (< 32×32 pixels) when computing mAP,
as done in [1, 22, 27]. Note that once our HCQNet is jointly trained for all tasks, we use it
for evaluation with both types of protocols.

In Table 2 (left), we compare our HCQNet with detection and segmentation models [2, 5,
8, 15]. For a fair comparison, we retrain state-of-the-art task specific models with the Swin-B
backbone for a human class only; DAB-DETR [15] in object detection and Mask2Former [5]
in instance segmentation. Table 2 shows that, even though our model runs three tasks simul-
taneously, it achieves comparable performance to task-specific state-of-the-art models.

In Table 2 (right), we compare models handling tasks including pose estimation [1, 22,
27]. In this experiment, we exclude small-sized human instances in the validation set as
mentioned above. Our model shows a significantly higher segmentation accuracy than them
(Table 2). Our pose estimation accuracy is lower than previous methods, partly because our
models consider small objects in data augmentation, while pose estimation methods do not.
Additionally, our model’s simpler pose-specific head architecture and lack of specialization
for human pose estimation contribute to its lower accuracy compared to state-of-the-art meth-
ods [1, 22]. We found that when we fine-tune our model on a training set focusing on larger
instances, overall performance improves, indicating potential for further enhancement. We
refer the reader to our supplementary material for results on the OCHuman dataset [27].

Computational cost analysis In earlier experiments, we show that our query design en-
ables a unified network to perform multiple task harmoniously in terms of accuracy. Here,
we evaluate the cost-effectiveness of our multi-task network. Computational costs are calcu-
lated for a 1024×1024 input image. Our network shares most computations in the backbone,
pixel decoder (corresponding transformer encoder), and transformer decoder (Table 3). Task
head overhead is minimal, demonstrating the scalability of our approach when increasing the
number of target tasks. Notably, our model is more cost-efficient than executing task-specific
state-of-the-art models separately.
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Figure 7: Failure cases due to the different natures of target tasks.

5 Discussion
Limitation & future work In this paper, we present a compact multi-task architecture in
which multiple tasks fully utilize information within our unified representation, and their
task-specific heads spend minimal overheads. To this end, our main focus lies in a unified
query representation that can effectively encode multi-task information. Therefore, interac-
tions between tasks through mechanisms such as loss balancing, inter-task-correlated loss,
and other task-specific designs are less explored. Besides, our approach can be used in par-
allel with other advanced techniques such as query denoising [10] and top-down structures
including prior information and hierarchical heuristics. While our straightforward design
exhibits performance comparable to that of task-specific models, we believe that further ex-
ploration of these aspects could lead to improvements in our approach.

One specific direction involves considering the distinct natures of target tasks. Pose es-
timation, detection, and segmentation tasks can support each other in high-level perception,
but differing task objectives can introduce ambiguity. For instance, pose estimation must
handle occluded regions, unlike segmentation and detection, which deal with visible areas.
As shown in Fig. 7, occluded pose joints can expand the bounding box, leading to a decline
in object detection accuracy because the GT bbox is determined by enclosing the visible seg-
ments of the instance. Also, all pose joints are computed for any partial human instance (the
rightmost column in Fig. 7). This may affect other tasks negatively although the correspond-
ing bbox and mask of the instance do not always cover the pose. Considering the visibility of
pose joints may alleviate this problem. Exploring potential mismatches among multiple tasks
can offer valuable insights for improving the overall performance of multi-task learning.

In addition, due to the lack of labeled datasets for multiple tasks, including human pose
estimation, we report performance on only two datasets in this paper. In theory, our approach
would have a greater potential for improvement of multi-task learning as the number of
target tasks increases. Constructing more datasets for the joint learning of current tasks and
new human-related tasks such as person tracking/re-ID and action recognition would be an
interesting future direction. Furthermore, while we focus on handling the human class only
in this paper, our query design is not limited to a human class. Learnable keypoints are
currently trained in a supervised manner. To deal with more general classes, we can consider
manual labeling or unsupervised keypoint learning as future work.

Conclusion We introduce a novel human-centric representation for multi-task learning.
In this approach, we develop a new query that carries the positional coordinates of key-
points, effectively capturing the structural information of human instances. To exploit the
pre-computed high-level information within these queries, we employ learnable keypoints
as conditional input for the task-specific heads and also combine them with deformable at-
tention. Consequently, our proposed model demonstrates comparable performance to task-
specific state-of-the-art models for various human recognition tasks, such as pose estimation,
segmentation, and detection, while significantly reducing computational resource demands.
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