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Abstract

Classical object detectors are incapable of detecting novel class objects that are not
encountered before. Regarding this issue, Open-Vocabulary Object Detection (OVOD)
is proposed, which aims to detect the objects in the candidate class list. However,
current OVOD models are suffering from overfitting on the base classes, heavily relying
on the large-scale extra data, and complex training process. To overcome these issues,
we propose a novel framework with Meta prompt and Instance Contrastive learning
(MIC) schemes. Firstly, we simulate a novel-class-emerging scenario to help the prompt
learner that learns class and background prompts generalize to novel classes. Secondly,
we design an instance-level contrastive strategy to promote intra-class compactness and
inter-class separation, which benefits generalization of the detector to novel class objects.
Without using knowledge distillation, ensemble model or extra training data during
detector training, our proposed MIC outperforms previous SOTA methods trained with
these complex techniques on LVIS. Most importantly, MIC shows great generalization
ability on novel classes, e.g., with +4.3% and +1.9% AP improvement compared with
previous SOTA on COCO and Objects365, respectively.

1 Introduction
Deep learning models have been successful in closed-set large-scale object detection, in
which the carefully designed detectors [2, 15, 27, 43] can accurately localize and classify
the objects learned from the training set. However, these classical detectors always fail to
generalize to unseen novel class objects during inference. Thanks to recent advancements
in vision-language models [18, 21, 26], ViLD [11] extends the traditional closed-set object
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Figure 1: (a) In OVOD, the detector aims to detect any objects within an object vocabulary
in an input image. Previous method, e.g., DetPro, can easily misclassify some highly similar
classes (puffin v.s. bird). Our method improves the model generalization ability, which can
be more discriminative to these similar categories. Note that every point indicates a category
in the latent space; (b) The error rate of predicting novel objects as base ones.

detection to an open-set scenario, named Open-Vocabulary Object Detection (OVOD). Under
this OVOD setting, the detector is trained with only base classes, then tested on both base
and novel classes. In ViLD, an object vocabulary (see Figure. 1a) is given to obtain text
embeddings (a.k.a. class embeddings) through pretrained text encoder. The object class is
predicted by finding the best matched one from the embedded object vocabulary, and the
bounding box is obtained from the class-agnostic regression head.

From recent works on OVOD [11, 42], it has been widely studied that the proposal
generator in a trained detector can generalize to novel classes well even the detector is trained
only on the base classes. However, the current performance of open-vocabulary object
detector degenerates and results in low AP when generalized to novel classes. Intuitively, the
low performance is caused by the uncertain matching between proposal features and class
embeddings. Under the OVOD setting with a large amount of classes, as shown in Figure 1a,
many classes (e.g., puffin v.s. bird) are very similar, which may lead to mismatching between
proposal features and class embeddings. Furthermore, as the detector can only be learned
on the base classes, the detector fails to recognize unseen novel classes. There can be a set
of highly similar candidate classes (including both base and novel classes) when the detector
meets a novel class object, which brings high uncertainty to novel object class prediction.
This infers too close clustering of data points from similar classes in the latent feature space,
and thus the decision boundary crosses high density regions [9, 39]. Meanwhile, the trained
detector may misclassify a novel class object as background [13, 19]. Current OVOD methods
can not handle these issues effectively. DetPro [6] makes class embeddings learnable, while
other works [1, 8, 42] train the model with more classes. Since only the base classes are
given during training, the corresponding class embeddings in DetPro [6] result in overfitting
on the base classes, which has been pointed out in few-shot vision-language learning [41].
In [1, 8, 42], they supplement lots of extra data from ImageNet21k [5], Conceptual Captions
[30], or LAION-400M [28] in the training process, but it is unfair by including novel classes
during training as demonstrated in OWL-ViT [25].
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To alleviate the overfitting issue more efficiently, we propose a meta prompt learning
scheme. Specifically, during each training iteration, in addition to batch-wise training data
and its annotations, we randomly sample more class names from base object vocabulary
to simulate the novel-class-emerging scenario as in OVOD setting. Then, these enriched
text samples are used to learn prompts of text representations. With meta representation
sampling scheme, we can obtain more discriminative text representations and thus improve
the generalization ability to novel classes. Meanwhile, instead of randomly initializing
the background class embedding, we learn the background prompt representation. With
the learnable background class embedding, the detector can better distinguish the negative
(background) proposals from positive (foreground) ones. The object vocabulary list can
be extended with more easily-accessed class names and to further alleviate the overfitting
issue (see Table 1). Further, we incorporate an instance-level contrastive learning scheme to
promote the intra-class compactness and inter-class separation, which expands low-density
regions in the latent feature space by narrowing the cluster of base classes during the detector
training. With such instance contrastive learning strategy, the novel classes are potentially
separated from the base ones in the latent space and thus benefits novel class generalization.
As shown in Figure 1b, MIC decreases the error rate of predicting novel objects as base
ones significantly, from 50.4% to 19.7%. These results demonstrate the effectiveness of our
method for alleviating the extreme overfitting issue.

Our main contributions are summarized as: 1) We introduce a novel meta prompt learning
scheme to simulate a novel-class-emerging scenario, which boosts the generalization ability.
Meanwhile, the learnable background prompt is incorporated to help the detector distinguish
the positive and negative proposals. 2) We propose an instance-level contrastive learning strat-
egy to promote intra-class compactness and inter-class separation, in which the contrastive
pairs are built among foreground and background proposal samples. 3) We conduct exten-
sive experiments on the benchmark dataset LVIS. Without knowledge distillation, ensemble
model or extra training data, our method outperforms previous SOTA methods equipped with
these complex techniques. Most importantly, our method shows great generalization ability
on directly transferring to other datasets, such as COCO and Objects365.

2 Related Work
Open-Vocabulary Object Detection. Classical object detectors [2, 15, 23, 24, 27, 34,
43] heavily rely on the large-scale training data and can not generalize to unseen classes
during inference. To alleviate these issues, lots of specific methods have been designed,
such as semi/self-supervised [31, 33], few/zero-shot [17, 32], and open-world detection
[14, 19]. However, zero-shot detection can only tackle in-domain setting, such as splitting
COCO as seen and unseen classes, while open-world detection can only detect the unknown
objects without classifying them. Recently, ViLD [11] proposes a new setting called Open-
Vocabulary Object Detection (OVOD), which aims to detect any objects within an object
vocabulary in an input image. To achieve this, ViLD replaces the traditional classifier
weights with the class embeddings generated by CLIP [26] to make it generalize to novel
classes. Following ViLD, some works are done to improve the detection performance by
learning prompt representations [6] or supplementing extra training data [1, 8, 42]. For the
former, the learned prompt representation can be easily overfitting on the base classes, which
can be harmful to the generalization ability of the detector. For the latter, it is unfair to train
on the novel classes from extra data, which is not strictly OVOD setting [25].
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Figure 2: Overview of our proposed method. The training stage is divided into two
consecutive parts: i) meta prompt learning and ii) detector training. During i) meta prompt
learning, to simulate a novel-class-emerging scenario, we sample a batch-wise varying object
vocabulary with C𝑆 from C𝐵, which improves the generalization ability of learned foreground
prompt. Also, we integrate the learnable background prompt to help the model distinguish
foreground and background proposals. Further, in ii) detector training, we introduce an
instance-level contrastive learning scheme to promote intra-class compactness and inter-class
separation. During iii) inference stage, we use the learned foreground prompt representation
to generate class embeddings for novel classes.

Prompt Learning. Prompt learning is a light-weight framework to adapt large vision-
language pretrained models[18, 21, 26] to downstream task. CoOp [40] proposes to learn
the prompt representations but not just use a human-designed prompt template. CoCoOp
[41] further handles the issue in CoOp that the model overfits on the base classes during
training and fails on the novel classes during inference. Naively transferring prompt learning
to OVOD can also cause overfitting, but the instance-level adaption strategy in CoCoOp is
impossible for OVOD with the limited GPU memory.
Contrastive Learning. Contrastive pretraining [3, 4, 10, 16] has been validated effective
for learning discriminative feature representations. Such pretraining strategy is based on
contrastive image pairs built from two different strong augmentations of an image. Further,
to increase the diversity of contrasive image pairs, supervised contrastive learning [20] is
proposed. It builds contrastive pairs across different images, which better exploit the inherent
information from images. In this work, we take the superiority and extend it to instance-level
contrastive learning, which promote intra-class compactness and inter-class separation.

3 Method

3.1 Preliminary
In OVOD, the model can only access base classes C𝐵 during training and is expected to detect
the objects within a wider class vocabulary C=C𝐵∪C𝑁 , where C𝑁 represents the set of novel
classes. We adopt CLIP [26] as our vision-language model during meta prompt learning, in
which the text encoder 𝐸T (·) produces the class embeddings and the image encoder 𝐸I (·)
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outputs the image embeddings. ViLD [11] takes the class embeddings obtained from prompt
engineering, which is not effective enough for OVOD since the text encoder 𝐸T (·) is highly
sensitive to prompt templates. Regarding this issue, DetPro [6] learns a class-shared fore-
ground prompt representation following CoOp [40] instead of using human-defined prompt
templates. The prompt representation 𝑽𝑐 for class 𝑐 ∈ C𝐵 is 𝑽𝑐 =

{
𝒗1, 𝒗2, . . . , 𝒗𝐿𝑝

,𝒘𝑐

}
,

where 𝒗𝑖 denotes the 𝑖-th learnable context vector, 𝐿𝑝 is the length of learnable context, and
𝒘𝑐 is the fixed word embedding for class 𝑐. Here, context vectors can be analogue to the
human-designed prompt, such as “a photo of”. The word embedding 𝒘𝑐 is obtained from
the corresponding class name, and the learnable context vectors 𝑽 𝑓 𝑔 = {𝒗𝑖}

𝐿𝑝

𝑖=1 are randomly
initialized. The class embedding 𝒕𝑐 of class 𝑐 is obtained by 𝒕𝑐 = 𝐸T (𝑽𝑐). Given a positive
(foreground) proposal, it is fed into image encoder 𝐸I (·) to obtain its embedding 𝒇 𝑝 , and

the probability of 𝒇 𝑝 to be classified as class 𝑐 is 𝑝
𝑝
𝑐 =

exp(sim( 𝒇 𝑝 ,𝒕𝑐)/𝜏)∑
𝑖∈C𝐵

exp(sim( 𝒇 𝑝 ,𝒕𝑖)/𝜏) , where 𝜏 is a
temperature parameter, and sim (·, ·) denotes the cosine similarity. The cross-entropy loss is
used to optimize the context vectors 𝑽 𝑓 𝑔 while the base CLIP is fixed:

L𝑝 = − log 𝑝𝑝
𝑐 . (1)

Negative (background) proposals can not be recognized as any foreground objects. Given a
negative proposal, its embedding 𝒇 𝑛 should be dissimilar to any foreground class embeddings.
In practice, with a large |C𝐵 |, simply optimizing prediction probability 𝑝𝑛𝑐 of a negative
proposal to 1

|C𝐵 | can achieve this goal. Thus, the negative loss is Ln = − 1
|C𝐵 |

∑ |C𝐵 |
𝑐=1 log 𝑝𝑛𝑐 ,

where 𝑝𝑛𝑐 is computed in the same way as 𝑝
𝑝
𝑐 by replacing 𝒇 𝑝 with 𝒇 𝑛.

3.2 Meta Prompt Learning
With learnable foreground prompt 𝑽 𝑓 𝑔, the model performs better compared with prompt
engineering. However, one urging issue is that the learned context can be easily overfitting
on base classes C𝐵 and lack of generalization ability to novel classes C𝑁 . In this section, we
introduce a Meta Prompt Learning (MPL) scheme to promote generalization, as shown in
Figure 2.
Meta Representation Sampling. Recall that there are |C𝑁 | novel classes during inference in
OVOD. Regarding this, we aim to simulate such a novel-class-emerging scenario to promote
the prompt representation generalizing to novel classes well, in which a batch-wise varying
vocabulary C𝑆 is sampled from the base class vocabulary C𝐵. Specifically, given a batch of
proposal samples during prompt learning, with the base class embeddings 𝑻𝐵 = {𝒕𝑖}𝑖∈C𝐵

, we
sample a subset 𝑻𝑆={𝒕𝑖}𝑖∈C𝑆

of 𝑻𝐵 (𝑻𝑆⊂𝑻𝐵). In this subset 𝑻𝑆 , the class embeddings of
classes existed in the current batch proposal samples are reserved, and other class embeddings
are randomly sampled from the remaining base classes. Then the probability of 𝒇 𝑝 to be
classified as the corresponding class 𝑐 is changed to

𝑝
𝑝
𝑐 =

exp
(
sim

(
𝒇 𝑝 , 𝒕𝑐

)
/𝜏

)
∑

𝑖∈C𝑆
exp

(
sim

(
𝒇 𝑝 , 𝒕𝑖

)
/𝜏

) . (2)

With batch-wise varying class embeddings, the learned𝑽 𝑓 𝑔 is more generalizable and robust
to the unseen novel classes, which helps the generalization of detector to novel classes.
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Background Prompt Representation. A typical challenge for a classical detector is how
to distinguish the negative (background) proposals from positive (foreground) ones, which
becomes more serious in OVOD. With only base classes during training, detector will easily
misclassify novel class objects as background. Previous works [6, 42] randomly initialize
the background class embedding, while the randomness of the background class embedding
can mislead the judgement of detector. To this end, we introduce the learnable background
prompt representation with 𝐿𝑛 learnable context vectors: 𝑽𝑏𝑔 = {𝒗𝑏𝑔1 , 𝒗𝑏𝑔2 , . . . , 𝒗𝑏𝑔

𝐿𝑛
}. Also,

we can obtain the background class embedding 𝒕𝑏𝑔 = 𝐸T
(
𝑽𝑏𝑔

)
. Although the background

proposals can not be recognized as the foreground objects, sometimes objects are partially
located in the background proposals. So directly including the background proposals into
prompt learning can be harmful. Instead, we consider the background prompt as a negative
item to foreground classes. Then, Eq. (2) becomes

𝑝
𝑝
𝑐 =

exp
(
sim

(
𝒇 𝑝 , 𝒕𝑐

)
/𝜏

)
∑

𝑖∈C𝑆

exp
(
sim

(
𝒇 𝑝 , 𝒕𝑖

)
/𝜏

)
+ exp

(
sim

(
𝒇 𝑝 , 𝒕𝑏𝑔

)
/𝜏

) . (3)

We use L𝑝 in Eq. (1) to optimize 𝑝
𝑝
𝑐 in Eq. (3). For the negative proposals, the prediction

probability is computed by

𝑝𝑛𝑐 =
exp

(
sim

(
𝒇 𝑛, 𝒕𝑐

)
/𝜏

)∑
𝑖∈C𝑆

exp
(
sim

(
𝒇 𝑛, 𝒕𝑖

)
/𝜏

) , (4)

and we use the following loss to optimize 𝑝𝑛𝑐 :

Ln = − 1
|C𝑆 |

|C𝑆 |∑︁
𝑐=1

log 𝑝𝑛𝑐 . (5)

3.3 Instance Contrastive Learning
With 𝑽 𝑓 𝑔 and 𝑽𝑏𝑔 learned in MPL, we then train our detector as shown in Figure 2. As
the novel classes are not seen during training, the detector can easily classify a novel class
object as a base class one. Such phenomenon reflects the decision boundary crosses the high
density regions by mistake [36]. In this section, we propose Instance Contrastive Learning
(ICL), aiming to expand low-density regions in the latent space by narrowing the cluster of
base classes, which potentially pulls the cluster of novel classes from base ones.
Class-balanced Memory Bank. Given a large object class vocabulary, previous contrastive
learning methods [4, 16] use a huge batch size (e.g., 8192) to learn with more samples,
which is unaffordable for detection. Even we perform instance-level contrastive learning, the
number of proposals contained in a single batch is only around 400. So regarding this issue,
we build an instance memory bank Q to collect diverse proposal samples. Moreover, to avoid
frequent class dominating, we make this memory bank class balanced, in which the memory
bank Q𝑐 for each base class 𝑐 ∈ C𝐵 and background class contains 𝑀 proposal samples. The
memory bank is updated every iteration as the following: i) We filter out the foreground
proposals with high Intersection of Union (IoU) > 𝑈𝑝 and identify background proposals
with low IoU < 𝑈𝑛. Here, we set large 𝑈𝑝 and small 𝑈𝑛 to make the proposal samples
representative. ii) We sample 𝑚 (𝑚 < 𝑀) proposal samples that are the most dissimilar with
the existing ones in Q to enrich the diversity of the samples in Q. Along with the learning
process, the memory bank Q is maintained in a first in and first out manner.
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Optimization. Directly applying compact regularization to the high dimension proposal
embeddings may result in an over-constraint to the network that hinders its convergence.
Therefore, we introduce a projection network Z𝜙 to map the proposal embeddings 𝒇 into
another low dimensional space as 𝒛. Inspired by supervised contrastive learning [20], we
propose an instance-level contrastive loss to learn compact embeddings of proposal samples.
The contrastive loss is defined as

L𝑖𝑐𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

1��Q𝒄 (𝑖)
��|Q𝒄 (𝑖) |∑︁

𝑗

log
exp

(
𝒛𝑖 · 𝒛 𝑗/𝛾

)∑|A𝒄 (𝑖) |
𝑘

exp (𝒛𝑖 · 𝒛𝑘/𝛾)
, (6)

where 𝑁 is the number of proposal samples, 𝒄(𝑖) is the class label of 𝑖-th proposal sample,
Q𝒄 (𝑖) denotes the memory bank of class 𝒄(𝑖), 𝛾 is a temperature hyperparameter, and
A𝒄 (𝑖) =Q\Q𝒄 (𝑖) . By expanding the low density regions of base classes cluster in the hidden
space, the detector can learn more robust and generalizable feature representations.

3.4 Training
The training process of the proposed method consists of two parts: i) meta prompt learning
and ii) detector training. For meta prompt learning, the overall loss is L𝑚𝑝𝑙 =L𝑝 +L𝑛, where
L𝑝 and L𝑛 are defined in Eq. (1) and Eq. (5), respectively. For detector training, the overall
loss is L𝑑𝑒𝑡 = L𝑟 𝑝𝑛 +L𝑐𝑙𝑠 +L𝑟𝑒𝑔 +𝛼L𝑖𝑐𝑙 , where L𝑟 𝑝𝑛 is RPN loss, L𝑟𝑒𝑔 is regression 𝐿1
loss, L𝑐𝑙𝑠 is classification cross-entropy loss, L𝑖𝑐𝑙 is defined in Eq. (6), and L𝑖𝑐𝑙 is weighted
by 𝛼. The overall training algorithm is given in the appendix.

4 Experiment
4.1 Datasets and Evaluation Metrics
Datasets. We evaluate our method on the large-scale open-vocabulary benchmark LVIS
[12]. LVIS v1 is a large-scale dataset with 1203 categories for object detection and instance
segmentation task. The long-tailed distribution of LVIS dataset is very suitable for OVOD
setting. We take frequent and common classes as the base classes C𝐵 (866 classes), and rare
classes as the novel classes C𝑁 (337 classes). This dataset contains 100k and 20k images for
training and validation. The models are trained only on base classes and evaluated on both
base and novel classes. We also conduct transfer experiments to validate the generalization
ability by directly evaluating LVIS-trained model on Pascal VOC [7], COCO [22], and
Objects365 [29]. The implementation details and training time comparison are described in
the appendix.
Evaluation Metrics. Following the previous works [6, 11, 42], we use Average Precision
(AP) to evaluate the performance of our model. For LVIS, we take AP𝑟 as the main metric
as it is the performance of model generalizing to the novel classes C𝑁 , and also report AP𝑐,
AP 𝑓 , and AP. For transfer experiments, we report AP,AP50,AP75,AP𝑠 ,AP𝑚 and AP𝑙 .

4.2 Main Results
Experiment on LVIS. We select the most recent SOTA OVOD methods for comparison,
including ViLD [11], RegionCLIP [38], DetPro [6], OV-DETR [37], PromptDet [8], Detic
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Method KD? Ens? Extra data?
Detection Instance segmentation

AP𝑟 AP𝑐 AP 𝑓 AP AP𝑟 AP𝑐 AP 𝑓 AP

ViLD [11] yes yes no 16.7 26.5 34.2 27.8 16.6 24.6 30.3 25.5
RegionCLIP [38] no no CC3M 17.1 27.4 34.0 28.2 - - - -
DetPro [6] yes yes no 20.8 27.8 32.4 28.4 19.8 25.6 28.9 25.9
OV-DETR [37] yes no no - - - - 17.4 25.0 32.5 26.6
PromptDet [8] no no LAION-400M - - - - 19.0 18.5 25.8 21.4
Detic [42] no no CC3M - - - - 19.8 - - 31.0
Rasheed et al. [1] yes no ImageNet21k - - - - 19.3 23.6 27.9 24.1

MIC (ours) no no no 22.1 33.9 40.0 33.8 20.3 30.6 35.2 30.6
MIC* (ours) no no 100 class names 22.9 34.0 39.9 34.4 20.8 30.5 35.4 30.7

Table 1: Comparison of our method with previous SOTA methods on LVIS benchmark.
Note: KD (knowledge distillation); Ens (ensemble model). * indicates we train the prompts
with 100 extra class names during MPL.

Method
Pascal VOC COCO Objects365
AP50 AP75 AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

Supervised 78.5 49.0 46.5 67.6 50.9 27.1 67.6 77.7 25.6 38.6 28.0 16.0 28.1 36.7

ViLD [11] 73.9 57.9 34.1 52.3 36.5 21.6 38.9 46.1 11.5 17.8 12.3 4.2 11.1 17.8
DetPro [6] 74.6 57.9 34.9 53.8 37.4 22.5 39.6 46.3 12.1 18.8 12.9 4.5 11.5 18.6

MIC (ours) 73.0 58.3 39.2 56.8 42.2 27.2 43.1 51.1 14.0 20.1 15.2 6.6 16.6 24.6

Table 2: Comparison of our method with previous SOTA methods on transfer experi-
ments. We directly evaluate LVIS-trained model on Pascal VOC test set, COCO validation
set and Objects365 validation set, together with a supervised baseline.

[42], and Rasheed et al. [1]. From Table 1, it can be seen that without knowledge distillation
and ensemble model, our method outperforms DetPro by 1.3% bbox AP𝑟 and 0.5% mask
AP𝑟 . Moreover, without extra training data, our method outperforms PromptDet, Detic, and
Rasheed et al. [1] by 1.3%, 0.5%, and 1.0% mask AP𝑟 , respectively. We also train the
prompts with extra 100 class names from ImageNet21k and find that bbox AP𝑟 can be further
improved to 22.9%. Such results demonstrate the effectiveness and robustness of our method
when generalizing to novel classes.
Transfer Experiment. We further validate the generalization ability of our method by
directly evaluating LVIS-trained model on Pascal VOC, COCO, and Objects365. We use the
learned prompt representation and class names of corresponding dataset to generate the class
embeddings. From Table 2, we can observe that our method improves the performance by a
large margin, especially on more difficult COCO (+4.3% AP) and Objects365 (+1.9% AP).

4.3 Ablation Studies
In this subsection, we do comprehensive ablation experiments on LVIS. To study MPL and
ICL schemes, we randomly sample a subset with 5k images from LVIS validation set for
hyper-parameter selection.
Overall Analysis. We study the effect of different components in our proposed framework.
As shown in Table 3, MPL helps learnable foreground prompt generalize, with +0.9% AP𝑟

improvement. With the learnable background prompt, the detection performance on novel
classes improves by 0.6%. Further, our proposed ICL boosts the performance AP𝑟 to 22.1%,
surpassing fixed prompt (+4.5% AP𝑟 ) and naive learnable prompt (+2.4% AP𝑟 ).
Number of Sampled Classes in MPL. We study the model performance when trained with
different number of sampled classes in Figure 3. We range the number of classes from 200
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Prompt Strategy Detection
FG BG MPL ICL AP𝑟 AP𝑐 AP 𝑓 AP

fixed % % % 17.6 34.4 40.2 33.8
learnable % % % 19.7 34.0 39.8 33.8
learnable % ! % 20.6 33.5 39.8 33.7
learnable learnable ! % 21.2 34.0 39.9 34.1
learnable learnable ! ! 22.1 33.9 40.0 34.2

Table 3: Effect of different components of our ap-
proach. Note: FG (foreground prompt); BG (back-
ground prompt).

[𝐿𝑝 , 𝐿𝑛] [4, 6] [8, 10] [16, 18]

AP𝑟 25.2 26.4 25.8
AP 39.3 40.1 39.7

(a) Context lengths

Position Front Middle End

AP𝑟 23.8 25.4 26.4
AP 39.0 39.8 40.1

(b) Different positions of class token
Table 4: Learnable context study.

Figure 3: Sampling strategy in MPL. We
study the effect of sampled classes.

𝑈𝑛 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
𝑈𝑝 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9

AP𝑟 26.4 25.1 26.0 26.0 24.7 24.3 25.4 25.2 24.8
AP 40.1 40.0 39.8 39.9 40.1 40.2 39.7 39.9 39.4

(a) IoU threshold 𝑈𝑝 and 𝑈𝑛

𝑚 8 16 32 8 16 32 8 16 32
𝑀 64 64 64 128 128 128 256 256 256

AP𝑟 24.3 24.5 24.6 26.0 25.5 24.9 25.7 26.4 23.9
AP 39.8 40.2 39.8 39.9 39.7 40.2 39.6 40.1 39.4

(b) Batch sampling size 𝑚 and memory size 𝑀

Table 5: Sampling strategy in ICL. (a) Ef-
fect of foreground and background instance
IoU threshold𝑈𝑝 and𝑈𝑛. (b) Effect of batch
sampling size 𝑚 and memory size 𝑀 .

to 850 in intervals of 50, along with a special case that only the batch classes are reserved
(about 150 classes). We can learn that 𝐴𝑃𝑟 shows a trend of first rising and then falling as
the sample size increases.
Context Lengths. We study the effect of using different foreground and background context
lengths. Due to lack of class word embedding, we set 𝐿𝑛 always longer than 𝐿𝑝 by 2.
As shown in Table 4a, too short context is not effective while too long context may cause
over-fitting. We set the foreground and background context as 8 and 10, respectively.
Position of Class Token. In Table 4b, we study the effect of different positions of class token
in the foreground prompt, including front, middle, and end. The best position of class token
usually depends on the dataset [40]. We find that inserting it in the end performs best.
Sampling Thresholds in ICL. Here, we study the effect of selection thresholds under the
different combinations of 𝑈𝑝 and 𝑈𝑛, as shown in Table 4a. We can learn the following:
1) the model performs better with smaller background selection threshold which infers few
overlap between proposal and gt bounding box; 2) the model performs best with foreground
selection threshold 0.7, which demonstrates that too high threshold will filter out too many
foreground proposals and lead to sub-optimal solution.
Memory Bank and Sampling Sizes. Further, we study the size of memory bank 𝑀 and
batch sampling size 𝑚. Intuitively, with more samples in the memory bank, the contrastive
regularization can be stronger. We consider several different combinations of memory size
𝑀 and batch sampling size 𝑚, and the results are shown in Table 4b. We can learn that with
memory size 256 and batch sampling size 16, the detection achieves the best performance.
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c) DetPro (base) d) MPL (base)

a) DetPro (novel) b) MPL (novel)

Figure 4: t-SNE visualization of class
embeddings of LVIS. We randomly
sample 200 novel and base classes from
LVIS and use t-SNE to visualize the class
embeddings.
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Figure 5: Qualitative detection visualization
results of our proposed method MIC and Det-
Pro. Our method could better distinguish similar
classes, detect smaller objects, and produce less
false positives under diverse complex scenarios.

4.4 Visualization Results

Latent Space Embedding. To further validate the effectiveness of our proposed MPL, we
randomly sample 200 novel and base classes from LVIS and use t-SNE [35] to visualize the
class embeddings from DetPro and our MPL. From Figure 4, it can be seen that MPL can
learn more discriminative and generalizable class embeddings, especially for novel classes.
Detection Results. We show the superiority of our method by visualizing the detection
results on LVIS validation set. The visualization results are shown in Figure 5. It can be
seen that our method can better distinguish similar categories compared with DetPro, such as
sheep and lamb. Further, our method can detect smaller objects in the complex environments.
Also, with the learnable background prompt, our model produces less false positives.

5 Conclusion

This paper proposes a novel framework MIC for open-vocabulary object detection. MIC con-
sists of two major carefully designed learning schemes, meta prompt and instance contrastive
learning. The proposed meta prompt learning strategy simulates a novel-class-emerging
scenario, together with the learnable background prompt representation to help the general-
ization. Further, we propose to use instance-level contrastive learning strategy to help expand
the low density regions in the latent feature space. Without complex training techniques and
extra training data, extensive experimental results show the strong generalization ability of our
proposed method, especially transferring to other datasets, such as COCO and Objects365.
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