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Abstract
Detecting anomalies in fundus images through unsupervised methods is a challenging

task due to the similarity between normal and abnormal tissues, as well as their indistinct
boundaries. The current methods have limitations in accurately detecting subtle anoma-
lies while avoiding false positives. To address these challenges, we propose the ReSyn-
thDetect network which utilizes a reconstruction network for modeling normal images,
and an anomaly generator that produces synthetic anomalies consistent with the appear-
ance of fundus images. By combining the features of consistent anomaly generation and
image reconstruction, our method is suited for detecting fundus abnormalities. The pro-
posed approach has been extensively tested on benchmark datasets such as EyeQ and
IDRiD, demonstrating state-of-the-art performance in both image-level and pixel-level
anomaly detection. Our experiments indicate a substantial 9% improvement in AUROC
on EyeQ and a significant 17.1% improvement in AUPR on IDRiD.

1 Introduction
Deep Convolutional Neural Networks (CNNs) have made significant breakthroughs in vari-
ous relevant fields of medical image analysis [10, 25, 30]. However, current fully supervised
methods require a vast amount of annotated abnormal images. Obtaining such images can
be challenging, particularly for rare diseases with low incidence rates. Conversely, col-
lecting normal images is relatively easier. Therefore, recent research has focused on unsu-
pervised anomaly detection methods [9, 15, 23] that identify anomalies in medical images
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Figure 1: Our method generates more consistent lesions compared to existing methods (in
left figure). Therefore, the existing methods have false positives in normal structures (see
red circles), and our method has better detection performance (green area = true positives,
yellow area = false positives, red area = missing).

through training only on normal images. Among medical imaging modalities, fundus image
anomaly detection presents an especially challenging scenario. Retinal lesions come in var-
ious shapes, sizes, and textures. Learning them in an unsupervised manner can be difficult,
particularly when they have indistinct boundaries and are visually similar to normal fundus
tissues. Consequently, the development of an accurate and reliable method for detecting
anomalies in fundus images is a critical area of ongoing research.

Currently, most anomaly detection methods rely on either reconstruction or representa-
tion based approaches [14, 16, 27]. However, these methods are typically trained solely on
non-anomalous data and may not be optimized for discriminative anomaly detection. Con-
sequently, they face challenges in learning abnormality representations and distinguishing
lesions that are not significantly different from normal tissues. This can lead to inaccu-
rate detection of subtle lesions in fundus images and falsely identifying normal areas as
anomalies, as shown in Fig. 1. To address this issue, recent studies [12, 28] have employed
synthetic anomalies. Nevertheless, these techniques, such as DRAEM [26], may produce
inconsistent anomalies that do not match the appearance of fundus images, which can be
misleading. To overcome these limitations, we propose a novel approach that includes an
anomaly generator capable of producing anomalies consistent with the appearance of fundus
images. Additionally, to prevent overfitting to synthetic anomalies, we have implemented
a reconstruction network which effectively reconstructs and models normal images. The
reconstructive features produced by this network are combined with synthetic anomaly fea-
tures to accurately localize any anomalies. As demonstrated in Fig. 1, our approach has been
successful in detecting subtle fundus lesions while minimizing false positives by avoiding
the misidentification of normal structures as anomalies.

Our proposed approach, named ReSynthDetect network which combines reconstruction
and synthetic features, is designed for detecting fundus anomalies. The network is trained
in two stages as shown in Fig. 2. In the first stage, a reconstruction network is trained on
normal images, while in the second stage, an anomaly localization network is trained using
artificially created anomalies. By incorporating information from the reconstruction net-
work, the localization network accurately identifies anomalies while reducing reliance on
synthetic anomalies. We create synthetic lesions by randomly selecting normal training im-
ages as source and target images. We augment the source images to create diverse lesions,
which are then pasted onto random positions on the target images using self-mix [31]. This
approach ensures consistency in the fundus images while simulating variations in real reti-
nal lesions. Furthermore, we conducted comprehensive experiments on network architecture
and found that, unlike previous literature [26], the best results for retina anomaly detection
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were obtained by combining the encoder features of the reconstruction network and the en-
coder features of the anomaly localization network. Through careful anomaly generation
and network architecture selection, our proposed approach achieved state-of-the-art results
on both the EyeQ [7] and IDRiD [18] benchmark datasets.

Contributions. (1) We propose a new approach named ReSynthDetect network de-
signed for detecting anomalies in fundus images by combining reconstruction and synthetic
features. (2) We introduce a novel anomaly generator that can produce diverse and consistent
synthetic anomalies in fundus images. (3) Our proposed approach achieves state-of-the-art
results on two benchmark retinal datasets, EyeQ and IDRiD, with a 9% improvement in AU-
ROC for image-level anomaly detection on EyeQ and a 17.1% improvement in AUPR for
pixel-level anomaly localization on IDRiD.

2 Related Work
Most of the existing anomaly detection methods are reconstruction-based [2, 8, 29], which
train models to reconstruct normal data during training and detect anomalies by calculating
the reconstruction error. fAnoGAN in [23] applies an adversarial network for normal image
reconstruction and calculates anomaly scores by reconstruction error. WDMT in [27] use a
weight-decay skip connection strategy for reconstruction network and integrating an auxil-
iary task of the histogram of oriented gradients prediction to improve feature representation
learning. Lesion2Void in [9] masks out normal patches and trains a reconstruction model
based on the correlation with neighboring pixels to distinguish anomalies. However, these
methods often have relatively large reconstruction errors in normal retinal structures such as
optic disc, cup, and blood vessels, resulting in potential false positives [14].

To solve this problem, some recent representation-based methods have been proposed
[4, 16, 20] , which compute anomaly scores based on the similarity of the features between
the test and normal samples. ReSAD in [15] extracts features by a pre-trained model and pro-
poses a spatial and region module for local and long-range anomaly detection. MKD in [22]
applies knowledge distillation between a pre-trained source network and a smaller cloner
network and calculates feature similarity as anomaly scores. Nevertheless, representation-
based methods lack the reference of abnormal features, making it challenging to detect subtle
lesions in fundus images.

A few works attempt to utilize synthetic anomalies for anomaly detection [12, 24, 28].
DRAEM [26] trains a reconstructive network on synthetic anomalies and utilizes a discrim-
inative network to detect deviations from synthetic and reconstructed images as anomalies.
However, the reconstructed images may contain deviations in normal structures, which can
be falsely detected as anomalies. Our work is built on a similar architecture as described
in [26], but we introduce two key technical differences to overcome its limitations. Firstly,
we propose a novel anomaly generator that can produce diverse and consistent synthetic
anomalies in fundus images. Secondly, unlike previous literature [26], we achieve the best
results for retina anomaly detection by combining the encoder features of both the recon-
struction network and the anomaly localization network.

3 Method
The pipeline of our proposed method is illustrated in Fig. 2. In the first stage, an recon-
struction network is trained on normal training images (Sec. 3.1), and its encoder is utilized
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Figure 2: Overall Pipeline: In the first training stage, we train a reconstruction network
to reconstruct normal images in order to obtain its encoder Er as a feature extractor. In
the second stage, we concatenate the reconstructive feature extract from Er to a U-shape
localization network for synthetic anomalies localization. Finally, we test our model in the
testing set by utilizing the localization network with reconstructive features extracted by Er.

as a feature extractor in the subsequent training stage. In the second stage, a reconstructive
feature-guided anomaly localization network is trained using synthetic anomalies (Sec. 3.2).
The synthetic anomalies are obtained by a consistent anomaly generator (Sec. 3.3).

3.1 Reconstruction Based Feature Extractor

Relying solely on synthetic anomalies can result in overfitting to their specific patterns. Pre-
vious work, DRAEM [26], combines reconstructed images with synthetic anomalies to iden-
tify deviations as anomalies. However, reconstructed images may contain deviations in nor-
mal structures, leading to false positives. To overcome this, we train a reconstruction network
as a feature extractor, which mitigates overfitting to synthetic anomaly patterns and avoids
false positives in normal structures.

In the first training stage, an autoencoder is utilized as the reconstruction network, with
the objective of reconstructing the normal fundus images which serve as the input of the net-
work. This process enables the extraction of reconstructive features, which are subsequently
utilized in the second stage of training

Formally, the reconstruction network comprised of an encoder Er and a decoder Dr, is
trained on the normal training fundus image III. We utilize the L2 loss as the reconstruction
loss, which can be calculated as follow:

LRec = ∥Dr(Er(III))− III∥2
2. (1)

Once the training of the autoencoder is completed, its parameters are fixed and will no
longer be changed in the following stage. The encoder Er of the reconstruction network will
be used as the extractor of the reconstructive feature, while the decoder Dr will be discarded.

3.2 Reconstructive Features Guided Localization Network
Due to the lack of real anomaly samples in the training phase, the network needs to be trained
on proxy tasks. We utilize the localization of synthetic anomalies as the proxy task to train
the network.
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Figure 3: Anomaly Generator: The left image shows the process of the anomaly generator,
which creates lesions from a source image and pastes the generated lesions onto the target
image. The image on the right demonstrates that the proposed method is capable of gen-
erating lesions with various shapes and textures. These lesions can be pasted onto random
locations of the target images without disrupting the continuity of the image. More synthetic
images can be found in the Supplementary.

In the second training stage, a reconstructive feature-guided localization network is trained
on the synthetic image IIIGGG and its corresponding mask MMMGGG (see Sec. 3.3). We apply a U-
shape model [19] with skip connections as the localization network, which consists of an
encoder El and a decoder Dl , to localize the synthetic anomalies. We extract both recon-
structive features extracted by Er and localization features extracted by El in the synthetic
image IIIGGG and concatenate them in each layer.

More specifically, at each layer i of the encoders Er and El , we extract the correspond-
ing reconstructive features FFF iii

rrr and localization features FFF iii
lll , respectively, and FFF iii

ccc is obtained
by concatenating them as FFF iii

ccc = concat(FFF iii
rrr,FFF

iii
lll). Subsequently, FFF iii

ccc is used as input in the
subsequent layers of encoder El and decoder Dl for the localization task.

The Focal Loss [1] is introduced during training to alleviate the imbalance between the
normal pixels and anomalous pixels. It is expressed as follows:

LFocal =

{
− (1− p)τ log(p), Mx,y

G = 1,
− pτ log(1− p), Mx,y

G = 0.
(2)

Here, p represents the probability of anomaly at position (x,y) predicted by the model, and
τ is a tunable focusing parameter, and set to 2 in this paper.

3.3 Consistent Anomaly Generator
As depicted in Fig. 3, our approach incorporates an anomaly generator that generates lesions
based on the source image and subsequently pastes the generated lesions onto the target
image. In order to maintain the consistent appearance between normal retinal images and
synthetic anomalies, we randomly sample a source image IIIsss and a target image IIIttt from the
normal training set. To generate a variety of texture anomalies, we randomly select three
augmentation methods from our pool of candidates, which include sharpening, solarizing,
gamma contrast enhancement, hue change, color temperature alteration, auto-contrast, and
random color shifting. We apply these augmentations to the source image IIIsss and produce
an augmented image. Subsequently, the anomaly generator performs a random cut to obtain
crop CCCsss of variable size from the augmented source image at a random location to generate
lesions.
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To generate anomalies with diverse shapes, we use Perlin noise, a type of gradient noise
commonly employed in computer graphics. Our anomaly generator utilizes a Perlin noise
generator [17] to produce Perlin noise PPPnnn of the same size as CCCsss. Subsequently, a threshold-
ing process is applied to generate a binary mask PPP from PPPnnn.

Directly pasting the augmented source crop CCCsss onto target images can potentially intro-
duce inconsistencies in the boundaries of the pasted lesions. To address this issue, we use
self-mix paste module, which uses Euclidean Distance Transform algorithm [6] to compute
the distance between each pixel in the mask PPP and its nearest background pixel, generating a
distance map DDD. Subsequently, fusion weights map WWW are generated according to the Eq. 3:

WWW = (1−α)× DDD−min(DDD)

max(DDD)−min(DDD)
+α. (3)

where α is the scaling factor, and set to 0.7 in this paper.
Next, self-mix paste module selects a crop CCCttt in the target image with a random location

and fuse the CCCsss and CCCttt with WWW and PPP according to Eq. 4. Notably, CCCsss and CCCttt have the same
size but may not be located at the same position.

CCC = (PPP⊙WWW )⊙CCCsss +(1−PPP⊙WWW )⊙CCCttt ,

CCCmmm = PPP,
(4)

where ⊙ denotes the element-wise product, PPP⊙WWW denote a smoothing mask.
In Eq. 4, CCC denotes the generated anomaly crop, the CCCmmm denotes the corresponding mask.

Finally, the anomaly generator can obtain the synthetic image IIIGGG and corresponding mask
MMMGGG through CCC and CCCmmm, which is utilized in previous training.

4 Experiments
4.1 Experimental Protocol
Datasets. For evaluation, we used two public datasets: EyeQ [7] for image-level anomaly
detection and IDRiD [18] for pixel-level anomaly localization. We applied Contrast Limited
Adaptive Histogram Equalization (CLAHE) [32] with a ClipLimit of 2 and a GridSize of 8 to
enhance image contrast while preserving local details. The input image size for all datasets
was standardized to 768 × 768 for consistency.

• EyeQ: The EyeQ [7] dataset is a subset of the EyePACS [5] dataset used for grad-
ing diabetic retinopathy (DR). EyeQ consists of 28,792 fundus photographs with DR
grading annotations and corresponding image quality labels. The images in the EyeQ
dataset are classified into "good", "usable", or "reject" categories based on the image
quality, and only the images classified as "good" are used in our experiments. The DR
disease severity in the EyeQ dataset is divided into five grades: 0 (normal), 1 (mild),
2 (moderate), 3 (severe), and 4 (proliferative) [13]. Following [9], images with level 0
are considered as normal images, and images with grades 1 - 4 are considered as ab-
normal images. During the training phase, we utilizes all the normal images in training
set from the EyeQ dataset, which consist of 6,324 normal images. For testing, we used
the complete testing set comprising 8,470 images from the EyeQ dataset.

• IDRiD: We used the Indian Diabetic Retinopathy Image Dataset (IDRiD) [18] dataset,
which contains highly precise DR lesion masks and is commonly used as a benchmark
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dataset for lesion localization tasks. Specifically, we used 134 normal retinal images
as the training set, 32 normal retinal images and 81 abnormal retinal images with
finely annotated DR lesions as the testing set. The abnormal image contains four
types of retinal lesions with fine annotated masks, including microaneurysms (MA),
soft exudates (SE), hard exudates (EX), and hemorrhages (HE).

Implementation Details. The codes are implemented using PyTorch on a single NVIDIA
RTX 3090 GPU with 24GB memory. The initial learning rate is set to 5e-5 with a cosine
learning rate decay, reaching a minimum learning rate of 2.5e-5. Additionally, a warm-up
strategy with a duration of 50 epochs is implemented. For image-level anomaly detection,
we compute the anomaly score by averaging the highest predicted anomaly probabilities of
the top 10 pixels in the model’s output.
Evaluation Metric. We evaluate the performance using the standard metric for anomaly

detection, AUROC, for both image-level anomaly detection and pixel-level anomaly local-
ization. However, the AUROC can not precisely reflect the localization result especially in
fundus images anomaly detection. The reason is that false positive rate is dominated by the
a-priori very high number of non-anomalous pixels and is thus kept low despite of false pos-
itive detections. We thus additionally report the pixel-wise Area Under the Precision-Recall
curve (AUPR), which is more realistic for the lesion localization performance [11, 21], es-
pecially for retinal lesion localization performance [18] because it is more appropriate for
highly imbalanced classes. Besides, we also evaluate the performance of the method by
balanced accuracy (ACC) on pixel-level anomaly detection in order to partially mitigate the
issue of imbalanced distribution of positive and negative samples.

Method 0vs1 0vs2 0vs3 0vs4 0 vs all
fAnoGAN [23] 0.508 0.491 0.525 0.577 0.514

MKD [22] 0.582 0.547 0.623 0.706 0.546
DRAEM [26] 0.585 0.658 0.742 0.716 0.614

Lesion2Void [9] 0.567 0.625 0.877 0.902 0.632
Ours 0.556 0.764 0.941 0.919 0.722

Table 1: Image Level Anomaly Detection Result for EyeQ in AUROC.

Method AUROC ACC AUPR
fAnoGAN [23] 0.756 0.686 0.048

MemAE [8] 0.749 0.596 0.058
WDNet [27] 0.775 0.566 0.075

DRAEM [26] 0.827 0.747 0.100
ReSAD [15] 0.905 0.819 0.256

Ours 0.931 0.859 0.427
Table 2: Pixel Level Anomaly Detection Result for IDRiD.

4.2 Comparisons with the State of the Arts
Image-level Anomaly Detection. Following [9], we compare our proposed method with
multiple SOTAs: two reconstruction-based methods: fAnoGAN [23] and Lesion2Void [9], a
synthetic anomalies based method DRAEM [26], a representation-based method MKD [22]
as the baseline model for image-level anomaly detection.
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Tab. 1 quantitatively compares our model with baselines in the image-level anomaly de-
tection on EyeQ. Grade 0 is considered as a normal image. For the comparisons of 0 vs 1,
0 vs 2, ..., 0 vs 4, we consider only DR graded images from grade 1 to grade 4 as abnormal
images. For the comparisons of 0 vs all, we use all abnormal images with DR grades from 1
to 4 for anomaly detection. Our approach surpasses all the baselines in 0 vs all grade exper-
iments and surpasses the previous best SOTA method by 9%, which demonstrates that our
method can achieve state-of-the-art performance in image-level retinal anomaly detection.
Pixel-level Anomaly Localization. We compare our method with multiple SOTA methods:
three reconstruction-based methods: fAnoGAN [23], MemAE [8] and WDMT-Net [27], a
synthetic anomalies based method DRAEM [26] and a representation-based approach Re-
SAD [15] as our baseline models.

Tab. 2 quantitatively compares our model with recent approaches on the pixel-level
anomaly localization. Compared to the best state-of-the-art methods, our approach shows
improvements of 2.6% in AUROC, 4% in ACC, and a significant increase of 17.1% in
AUPR. This suggests that our method achieves precise anomaly localization results for reti-
nal lesions (which is supported by Fig. 4). In summary, our approach has achieved the best
performance in the pixel-level anomaly localization task for retinal lesions.

Ablation Method Metric
Loc.Net. Rec.Net. Concatenate Type IDRiD EyeQ(0vsall)

Random Train Image Feature AUROC ACC AUPR AUROC
✓ 0.801 0.719 0.083 0.485

✓ 0.891 0.815 0.331 0.656
✓ ✓ ✓ 0.883 0.817 0.267 0.682
✓ ✓ ✓ 0.819 0.742 0.149 0.581
✓ ✓ ✓ 0.931 0.859 0.427 0.722

Table 3: Ablation on Architecture and Concatenate Type (IDRiD for pixel-level and EyeQ
for image-level): "Loc.Net." indicates the use of a localization network, "Rec.Net." indicates
the use of a reconstruction network ("Random" for random initialization and "Train" for
a trained reconstruction network on the proxy task). "Image" concatenates reconstructed
images (similar to DRAEM), while "Feature" concatenates reconstructive features (like our
proposed method).

Ablation Method Metric
Source Image Self-Mix Mask PPP IDRiD EyeQ (0vsall)

AUROC ACC AUPR AUROC
Texture ✓ ✓ 0.849 0.747 0.181 0.666
Fundus ✓ 0.781 0.720 0.043 0.560
Fundus ✓ 0.890 0.819 0.274 0.682
Fundus ✓ ✓ 0.931 0.859 0.427 0.722

Table 4: Ablation on Anomaly Generation (IDRiD for pixel-level and EyeQ for image-level).

4.3 Ablation Study
Influences of network architectures. Table 3 presents the results of ablation experiments on
architecture and concatenate type. Without the localization network (first line), utilizing only
the autoencoder in the first training stage and calculating reconstruction error as the anomaly
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Figure 4: Lesion Localization Results: The green area in the figure represents true positives,
the yellow area represents false positives, and the red area represents missing detection. Red
circles denote the false positive in the normal structure of fundus

score leads to a significant performance drop. This underscores the importance of introduc-
ing the localization network for synthetic anomaly localization. In the ablation experiment
of the reconstruction network (second and third lines), the absence of the reconstruction
network or using randomly initialized network leads to a notable performance drop, empha-
sizing the significance of the reconstruction network. Additionally, concatenating restored
images (fourth line) results in a significant performance degradation, indicating that image
concatenation may not be suitable for fundus anomaly detection. Comparing the results in
the second line with the third and fourth lines, we observe that concatenating random fea-
tures or restored images leads to a reduction in model performance, indicating the presence
of misleading information will misguide the model and decrease its overall performance.

Influences of anomaly generation methods. Table 4 presents the results of ablation ex-
periments on the anomaly generator. The "Source Image" denotes the origin of the source
image, where "Texture" represents the external texture dataset (DTD [3]) used by DRAEM,
and "Fundus" represents the normal retinal images used for training. The "Self-Mix" indi-
cates whether the Self-Mix module is applied to combine source and target information, and
the "Mask PPP" indicates whether the Perlin mask PPP is used for anomaly generation.

The experimental results show that using an external texture dataset (DTD [3]) instead
of consistent normal fundus images leads to a decline in performance. Additionally, the
absence of the Self-Mix module results in a noticeable performance decrease, and excluding
the Perlin mask PPP leads to a significant drop in performance. These findings underscore
the importance of our proposed approach, which leverages consistent source images, diverse
masks, and an appropriate fusion method can greatly improve performance.
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4.4 Qualitative Results

As Shown in Fig. 4. It can be seen that the existing reconstruction-based method WDMT and
synthetic anomalies based method DRAEM would detect the normal structure of the fundus
(like vessel, optic cup and disc) to anomalies, as indicated by the red circles in the figure. Be-
sides, the representation-based method ReSAD can not provide precise localization results,
leading to more false positive (yellow) regions around the lesions. Compared to our method,
the three baseline methods show more missing (red) areas and more false positive (yellow)
areas around the normal structure or lesion in the fundus images. Moreover, all baseline
methods will miss some subtle lesions which is hard to detect, while our method can detect
various shapes and types of lesions better and provide relatively fine-grained localization
results. Additionally, our method exhibits strong generalization capability on more types of
lesions, as shown in the Supplementary.

5 Conclusion
In this paper, we introduced the ReSynthDetect network, a novel approach for unsupervised
anomaly detection in fundus images. Our method incorporated a novel anomaly generator
that produces consistent synthetic anomalies. Besides, we introduced a reconstruction net-
work to extract reconstructive features, which were then fused with the localization network
for synthetic anomaly localization. Our approach outperformed baseline methods on the
IDRiD and EyeQ datasets, demonstrating its effectiveness in retina anomaly detection tasks.
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