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Abstract

Video infilling is a task of generating visually smooth and plausible intermediate
frames in between given context frames. The infilling interval is usually large, and thus
the intermediate contents to be filled experience significant and non-uniform changes
in motion. To handle this challenging task, it is required for the model to learn robust
motion dynamics to synthesize rich and plausible motion trajectories in between given
contexts. In this work, we demonstrate the possibility of learning rich motion prior for
video infilling via masked motion modeling. Our key insight is that the powerful ability
of masked autoencoder to capture long-range dependencies could help us model and
therefore generate rich and realistic in-between motions. Unlike previous multi-scale
optical flow-based video interpolation methods, our framework is simple yet effective
in longer-interval and larger-motion cases. In particular, we use the optical flow tokens
learned by a pre-trained discrete tokenizer as the reconstruction target in masked motion
modeling. With a random masking ratio over 0.5 during training, reasonable intermediate
optical flows can be predicted by iterative decoding during inference. To demonstrate
pixel-level infilling results, a dedicated bi-directional fusion of the warping results is
applied. Through experiments conducted on the human action dataset, we demonstrate
the effectiveness of our approach in predicting valid and diverse motions between given
contexts. Quantitative results of pixel-level evaluation metrics show that our approach
can outperform previous state-of-the-art methods even with the naïve fusion results.

1 Introduction

Video frame interpolation (VFI), given its broad array of applications in video enhancement,
has garnered significant attention in computer vision. Most existing studies concentrate on
interpolating uniform motion between consecutive frames. However, a more complex sce-
nario, termed video infilling, remains somewhat uncharted. This issue presents a greater
challenge than VFI as it necessitates interpolation across extended time intervals and wider
motion gaps.
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The primary distinction between video interpolation and video infilling stems from their
respective objectives and input settings. Video interpolation algorithms are commonly em-
ployed to augment the video frame rate or produce slow-motion video playback. As a result,
the inputs to such algorithms generally consist of adjacent frames of an existing video that
exhibits high visual similarity and limited movements of objects. On the other hand, video
infilling aims at filling in large temporal gaps between distant frames in a video, where sig-
nificant scene changes can be captured.

Previous attempts have been made to tackle the issue of large-motion video interpolation
[19][18], utilizing multi-scale optical flows in synthesizing valid intermediate frames. How-
ever, since the addressed motion range in these approaches still remains limited to extreme
cases of motion between adjacent frames, the motion range that is feasible in these settings
is not comparable to that required for video infilling tasks. More importantly, previous video
interpolation approaches have generally relied on a uniform assumption regarding the inter-
mediate motion between consecutive frames, where the objects move along a straight line at
a constant speed. However, motions in real-world scenarios are diverse and can hardly meet
the uniform assumption, especially in long temporal intervals. In Xu et al. [25], the issue
of non-uniform motion was addressed for the first time in the video interpolation setting.
This approach leveraged the acceleration information, enabling the prediction of curvilinear
trajectories and variable velocities, which leads to more accurate interpolation results. Nev-
ertheless, despite the attention given to the non-uniform motion, this method is unable to
address the issue of large motion in the presence of distant frames, owing to the absence of
a robust mechanism to capture and model complex motion prior.

To address the aforementioned challenges, we propose to learn rich motion prior from
masked motion modeling to perform large and non-uniform motion video infilling. Inspired
by Xu et al. [25], we exploit the acceleration information in context frames and model the
long-range correlation of motion changes by a masked autoencoder (MAE) [8]. Our method
follows a two-stage scheme: We first train a discrete vector quantizer in the optical flow
space, which provides us with succinct representations to capture optical flow patterns. Then,
an MAE is applied to reconstruct the masked discrete token indices extracted by the vector
quantizer. We believe that the strong ability of MAE in modeling long-range dependencies
can help us learn rich and plausible motion prior from real-world video sequences. Note that
previous attempts have been made to address video completion via masked visual modeling
[7]. However, since their modeling of videos remains in the pixel domain, the generated
motions are rather uncanny. Instead, our approach of applying masked modeling on motion
representation, optical flow specifically, allows the model to learn more smooth and realis-
tic motions. The experimental results (Sec. 4) showcase the effectiveness of our proposed
method in terms of both qualitative and quantitative performances.

Our contributions can be summarised as follows: 1) We use a pure reconstruction-based
self-supervised learning framework to achieve longer-range and larger-motion video infill-
ing; 2) We propose masked motion modeling to better model complex and non-uniform
motion prior in the real world; 3) We introduce optical flows as explicit motion represen-
tations to capture rich and realistic motion, which serves as an alternative to using pixel
reconstruction solely.

2 Related Work
Video Infilling. Video infilling has been addressed in several previous studies. To the best
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of our knowledge, Xu et al. [24] is the first work that raises the problem. It formulates the
infilling problem as a bi-directional constraint stochastic generation process and proposes
an approach based on recurrent neural networks (RNN). Li et al. [13] argue that the prob-
lem can be effectively solved by fully convolutional neural networks (CNN). They learn
a latent video representation by progressively up-sampling the context frame embeddings
along the temporal dimension and directly decode the latent video representation into the
output video. More recent works leverage the powerful tool of generative diffusion mod-
els [10, 23] to accomplish the task. Additionally, although Gupta et al. [7] primarily focus
on the video prediction task, its ability to perform video infilling is also tested through real
robot experiments. It is worth noticing that all previous video-infilling approaches model the
representations of intermediate contents in the pixel domain.

Video Interpolation. Optical flows and related concepts have been utilized to synthesize
new frames in video frame interpolation for a long time [11, 15, 16, 17]. Recent works in
video interpolation have also tried to tackle more challenging scenarios like large motion and
non-uniform motion. In particular, Sim et al. [19] and Reda et al. [18] exploit multi-scale
structures to estimate intermediate optical flows in a coarse to fine manner. Xu et al. [25]
and Liu et al. [14] employ higher-order acceleration information to estimate non-uniform
motion patterns. However, these methods remain coping with a limited motion range and
cannot learn meaningful motion trajectories between distant contexts.

Masked Modeling. Masked auto-encoders [8] have demonstrated their effectiveness as ro-
bust self-supervised representation learners, owing to the powerful global relation modeling
ability of visual transformers. Through the use of various reconstruction targets, such as 3D
video patches or motion trajectories [22] [21], masked auto-encoders are able to learn dif-
ferent representations from real-world distribution. The mask-and-reconstruct scheme has
also been applied to generative tasks following a two-stage paradigm. First, a vector tok-
enizer and a discrete codebook are learned to effectively compress the data. Then, a valid
composition of the quantized vectors is learned via masked modeling. Finally, realistic data
following natural distribution can be generated by decompressing the vectors [3] [12] [7].
In this work, we make the first attempt to apply mask motion modeling on optical flows to
generate plausible in-between motions.

3 Methodology

The video infilling task can be formulated as follows: given context frames I0, I1, IT−2, IT−1,
we synthesize intermediate frames Ît , t ∈ [2,(T − 3)] under the same frame rate. Our ap-
proach follows a conventional VAE-based two-stage synthesizing paradigm. During the to-
kenization stage, we train a VQ-GAN [4] on optical flows extracted from adjacent frames
in both forward (t → t + 1) and backward (t + 1 → t) directions (Sec. 3.1). In the prior
prediction stage, we use an MAE to perform masked motion modeling (Sec. 3.2). Finally,
to better illustrate the effectiveness of our learned motion prior in the pixel domain, a non-
learnable stage that naïvely fuses bi-directional warping results is deployed (Sec. 3.3). Note
that since our work focuses on learning valid motion prior, we leave incorporating trainable
fusion mechanisms to enhance the visual quality of the final intermediate frame predictions
for future work. The entire process of our framework is illustrated in Fig. 1.
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Figure 1: Framework of our proposed intermediate motion predictions via masked motion
modeling. Inside the MAE block, the blue squares indicate context tokens, the gray squares
are mask tokens, and the orange squares are decoded tokens. The gray background indicates
frozen parts in the framework. Backward flows follow the same framework.

3.1 Optical Flow VQ-GAN
Vector Quantized Generative Adversarial Network (VQ-GAN) [4] has showcased its profi-
ciency in synthesizing visually superior images. Vector quantization is an effective way of
compressing data while preserving crucial details. To synthesize high-quality optical flows,
we train a VQ-GAN in the optical flow domain. Given a single optical flow f ∈ RH×W×2

of either forward or backward direction, an encoder E partitions and encodes it into non-
overlapping patches P = {p0, p1, · · · , pN} ∈ RN×D, where N denotes the number of patches
and D is the embedding dimension. A quantizer Q then maps each patch to its nearest
codebook entry. Meanwhile, the motion codebook C = {c0,c1, · · · ,cK} ∈ RK×D, with K
being the codebook size, is updated accordingly throughout training. Finally, a decoder G
is deployed to reconstruct realistic optical flows from the quantized vectors, denoting as
f̂ = G(cq). Since the nearest-neighbor finding process is non-differentiable, we adopt the
straight-through gradient estimator [1, 4] to directly copy the gradients across the quantiza-
tion process for propagation. Similar to previous works [2, 4], the vector quantization loss
is:

LV Q = Lrec +∥sg[E( f )]− cq∥2
2 +∥sg[cq]−E( f )∥2

2, (1)

where Lrec denotes L1 loss for reconstruction, and sg[·] indicates stop-gradient operation.
Adversarial loss is also applied for better visual quality of the reconstruction results:

LG = log(Disc( f ))+ log(1−Disc( f̂ )). (2)

where Disc is a discriminator for adversarial training. The overall loss used for VQ-GAN
training can be expressed as follows:

Ltotal = min
E,G,C

max
Disc

E[LV Q +λLG]. (3)

To enhance the stability of the training procedure, the adversarial loss is only incorporated
after a pre-defined number of steps. Besides, the weight parameter λ is learned adaptively
during training.
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3.2 Masked Motion Modeling with Optical Flow
Inspired by the previous success of masked visual modeling in image and video genera-
tions, we introduce masked motion modeling (MMM) to capture and model motion prior.
Specifically, during training, we sample T consecutive frames from a video, denoted as
I = {I0, I1, · · · , IT−2, IT−1} ∈ RT×H×W×3. A pre-trained FlowFormer [9] is employed to ex-
tract optical flows in both directions from each pair of adjacent frames, yielding (T − 1)
optical flows in each direction. Note that we will specifically describe the MMM frame-
work for the forward flow direction in this section – the backward flow direction follows
the same procedure. In the forward direction, the extracted optical flows can be denoted as
F = { f0→1, f1→2, · · · , fT−2→T−1} ∈ R(T−1)×H×W×2. Next, each optical flow is fed into the
pre-trained VQ-GAN (described in Sec. 3.1) individually, and the nearest codebook entry
indices of all tokens Y = [yi]

(T−1)×N
i=1 are obtained. To perform the video infilling task, we

design an infilling mask M ∈R(T−1)×N×1 that always keeps the tokens from the first and last
optical flows unmasked (blue squares in Fig. 1 MAE block), and masks the remaining tokens
with a masking ratio ∈ [0.5,1) (gray squares in Fig. 1 MAE block). The training objective is
to reconstruct the masked token conditioned on the unmasked ones. A cross-entropy loss is
used to train the reconstruction task:

LMMM =− E
Y∈trainset

( ∑
∀i∈masked

log p(yi|YM)), (4)

where YM denotes the unmasked tokens from a video sequence. By training with varying
masking ratios, iterative predictions are enabled in the inference stage. In particular, during
inference, the infilling mask is initialized by masking all tokens except the context ones.
A predetermined number of iterations τ is set. The number of tokens to be kept in each
iteration χt is calculated by a cosine function. In each iteration, we sample a confidence
score for every unmasked token from the predicted possibility distribution of it belonging
to each pretrained codebook entry, but only the top χt tokens are kept and added as context
tokens for predictions in future iterations. The mask is also updated accordingly at the end
of every iteration. Finally, after all iterations, the entire set of intermediate tokens is filled
and the reconstructed optical flows can be obtained by the VQ-GAN decoder.

3.3 Bi-directional Fusion
To illustrate the learned motion prior, we fuse the bi-directional frame-level warping results
with a pre-determined non-learnable mechanism. With the predicted bi-directional optical
flows f̂ f wd and f̂bwd ∈ R(T−1)×H×W×2, we assess the validity of bi-directional flows by a
cycle consistency check proposed in Gao et al. [5]:

εi→ j(p) = ∥ f̂i→ j(p)+ f̂ j→i(p+ f̂i→ j(p))∥2
2, (5)

where i, j are frame indexes, and p is pixel position on the corresponding optical flow. Dur-
ing frame warping of either direction, only consistent regions with ε(p) < θ are warped,
where θ is a pre-determined hyperparameter. The resultant consistent bi-directional warp-
ing results, denoted as Îc

f wd and Îc
bwd ∈ RT×H×W×3, only contain consistent regions in every

frame. To enhance the incomplete consistent warping results, we further obtain the current
mask regions µ f wd and µbwd ∈RT×H×W×1, and the raw warping results without consistency
check Îr

f wd and Îr
bwd ∈ RT×H×W×3. Subsequently, the final pixel values are approximated
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by employing a carefully designed combination of consistent and raw warping results. The
detailed equations of the fusion mechanism can be found in the supplementary material.

4 Experiments

4.1 Experimental Setups

Dataset. All experiments are conducted on the UCF101 human action dataset [20] since it
contains real-world sequences with articulated non-uniform and complex motions. To ensure
consistency, we strictly follow the train/test split provided on the official website of UCF101.
The training set consists of 9537 videos and the test set consists of 3783 videos. Sequences
from the training set are used for training both VQ-GAN and MMM models. Consecutive
T = 16 frames are randomly sampled from each video sequence for both training and infer-
ence. The input size for both VQ-GAN and MMM is (224×224).
Network Architecture. For VQ-GAN encoder, we use latent shape of (16× 16× 1), i.e.,
each (224×224) frame is encoded to N = 14×14 patches. The codebook has a total size of
K = 1024 with embedding dimension D= 256. The MAE encoder comprises 12 transformer
blocks and the embedding dimension of the encoder is 768. The decoder consists of 4 blocks
with 6 heads, and the embedding dimension is set to 384.
Implementation Details. The VQ-GAN is trained with a learning rate of 1.8× 10−5 for
1.5×106 steps. The adversarial loss is added after 3×104 steps. As for MAE, the network
is trained for 500 epochs with a base learning rate of 2.3×10−5. The AdamW optimizer is
employed with betas = [0.9,0.95]. During inference, iterative decoding of 20 iterations is
used for all experiments. The consistency check threshold θ is set to 5.
Metrics. For quantitative evaluation, Peak Signal-to-noise Ratio (PSNR), Structural Sim-
ilarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity(LPIPS) are
adopted to evaluate the generated intermediate contents by frame following video interpola-
tion algorithms. In addition, Frechét Video Distance (FVD) is used to evaluate the generated
video as a whole for its quality in correlation with human perception.

4.2 Qualitative Results

The qualitative performance of our proposed method is shown in Fig. 2. As can be observed,
our method can generate sharp and crisp intermediate optical flows that comply with given
contexts. In addition, in the lower case of Fig. 2, though some ground truth optical flows fail
to provide any motion information due to the limitation of the flow estimation technique, our
model can still successfully model the in-between motions with valid contexts. Furthermore,
since our masked modeling-based model does not require any domain-specific knowledge,
it is able to generalize to data of any domain without being trained on it. Inference results
of our UCF-101 trained model on the KITTI dataset [6] are illustrated in Fig. 3 to showcase
such generalizability. More results are provided in the supplementary material.

4.3 Comparison with Recent Approaches

We compare our method with two previous approaches that specifically address the large-
motion and non-linear motion challenges in the video interpolation tasks, respectively. 1)
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Figure 2: Qualitative evaluation of our method. Bi-direction optical flows are predicted
by iterative decoding for 20 iterations. Pixel-level infilling results are obtained from non-
learnable naïve fusion. Context flows and frames are marked with black outlines. At time t,
forward flow denotes ft→t+1 and backward flow denotes ft+1→t .

FILM [18] uses a scale-agnostic feature pyramid to predict implicit flow residuals at mul-
tiple levels. The coarse-to-fine feature pyramid helps handle large motion gaps since large
motion at a fine level is equivalent to small motion at a coarse level. FILM interpolates
the center frame given two input frames as contexts, which is different from our 4-frame
context settings. To ensure ground truth is available for the center interpolated frame while
retaining a comparable motion range with ours, we adjust the inference setting of FILM to
interpolate between frames I1 and I13, with target frame I7. Î4 and Î10 can also be predicted
with (I1, Î7, I13); 2) QVI [25] takes in frame I0, I1, I2, I3 and calculates the accelerations and
velocities at t = 1,2 by substituting ( f1→0, f1→2) and ( f2→1, f2→3) into Equ. 6.

f0→t =
1
2

at2 + v0t. (6)

Citation
Citation
{Reda, Kontkanen, Tabellion, Sun, Pantofaru, and Curless} 2022

Citation
Citation
{Xu, Siyao, Sun, Yin, and Yang} 2019



8 HOU ET AL.: VIDEO INFILLING WITH RICH MOTION PRIOR

Figure 3: Cross-dataset qualitative evaluation of our method on the KITTI dataset [6]. Bi-
direction optical flows are predicted by iterative decoding for 20 iterations. Pixel-level in-
filling results are obtained from non-learnable naïve fusion. Context flows and frames are
marked with black outlines. At time t, forward flow denotes ft→t+1 and backward flow
denotes ft+1→t .

The acceleration information is used to estimate the optical flows f1→t , f2→t to the target
intermediate frame, which are later used to predict the reversal optical flows ft→1, ft→2. To
test the performance of QVI in long-range interpolation, we replace the adjacent 4 frame
inputs by I0, I1, I14, I15. Likewise, we calculate the accelerations and velocities at t = 1,14
following the same constant-acceleration assumption as [25]. The algorithm allows multiple
intermediate frames to be generated with different t values. Therefore, we set t to twelve
equally spaced time steps between (1,14), leading to the same configuration as our method.
Since both previous works are trained on large-scale datasets and the pre-trained models are
generalizable, we directly utilize the pre-trained weights of their methods in our inference
setting.

The quantitative results are reported in Tab. 1. The reported numerical results are aver-
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Table 1: Quantitative comparison with previous works on the UCF101[20] test set.

Method By Frame By Video
SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

FILM [18] 0.7571 22.85 0.1244 -
QVI [25] 0.7254 22.13 0.1281 1206.89
Ours 0.8051 22.97 0.1310 1104.69

aged across five separate runs of inference. Note that FILM [18] is omitted in FVD compar-
ison due to a different number of frames infilled per video, which leads to unfair per-video
metric comparisons. As we can see, our method achieves poorer LPIPS scores than the two
previous works. However, we think that they likely score better in LPIPS because the fading
and re-appearing of objects in their generated video align well with perceptual evaluation
when being assessed individually in each frame. On the contrary, our approach achieves a
significantly lower FVD score, demonstrating its effectiveness in generating videos that align
with human judgment of visual quality. To further demonstrate the superiority of our method
with respect to two previous works, the qualitative comparison is illustrated in Fig. 4. Ob-
servably, in the upper case, both QVI and FILM fail to generate valid intermediate frames,
resulting in the fading and re-appearing of the objects. In contrast, our method predicts a
smooth motion trajectory throughout the video sequence. In addition, in the lower case of a
man doing a push-up where the context frames are visually similar. Our method is the only
one that manages to restore the upward-then-downward in-between motions. Such com-

Figure 4: Qualitative comparison with previous works. As mentioned in Sec. 4.3, context
frames at t = 0,1,14,15 are used for both our method and QVI [25]. For FILM [18], frames
I1, I13 are context frames for prediction. All context frames are marked with black outlines.
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pelling outcomes prove that masked motion modeling on optical flows can indeed help us
learn rich motion prior and model large and non-uniform intermediate motion.

4.4 Ablation Study
To test the effectiveness of VQ-GAN in synthesizing high-quality optical flows, we conduct
an ablation study on reconstructing the optical flow itself instead of VQ-GAN token indices.
L1 loss is used for the reconstruction task. Due to computational resource limitation, we
conduct the ablation study on a small set of 4 classes out of 101 classes from the UCF101
[20] dataset. Our full model is trained on the same subset for a fair comparison. Predicted
optical flows are illustrated in Fig. 5. As we can see, though the framework without VQ-
GAN can learn valid motion trends (revealed by the color of the predicted optical flows), it
fails to generate crisp results. We infer that the mosaic effect is an intrinsic characteristic of
MAE reconstruction outputs since the original MAE is employed for representation learning.

Figure 5: Ablation Study: Qualitative comparison with the framework without VQ-GAN.
For each video sequence, the top row shows the ground truth optical flow. The two at t = 0,14
with a black outline are the context optical flows used for prediction. Only backward flows
are shown in this comparison.

5 Conclusion
In this work, we present an approach to learn motion correlations from natural videos using
a mask-and-reconstruct scheme. To synthesize high-quality motion representation, we lever-
age a pre-trained VQ-GAN in the optical flow domain. In addition, mask motion modeling
is used to capture rich motion prior embedded in reasonable compositions of the quantized
vectors. Experimental results demonstrate that our method is able to learn rich and diverse
motion prior of various real-world actions. Even with a simple non-learnable fusion of warp-
ing results, it achieves better numerical performance than previous methods. However, we
believe that the performance can be further boosted with a learnable refinement network to
generate visually better intermediate frames, which we leave as potential future work.
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