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Abstract
Self-supervised pre-training and transformer-based architectures have significantly

enhanced object detection performance. However, most current self-supervised object
detection methods are built on convolutional-based architectures. We believe the trans-
formers’ sequence characteristics should be considered when designing a transformer-
based self-supervised method for the object detection task. To this end, we propose
SeqCo-DETR, a novel Sequence Consistency-based self-supervised method for object
DEtection with TRansformers. SeqCo-DETR defines a simple yet effective pretext by
minimizing the discrepancy of the output sequences of transformers with different im-
age views as input, meanwhile leveraging bipartite matching to find the most relevant
sequence pairs that predict the same object. Furthermore, we provide a complementary
mask strategy incorporated with the sequence consistency strategy to extract more rep-
resentative contextual information about the object for the object detection task. Our
method achieves state-of-the-art results on MS COCO (45.8 AP) and PASCAL VOC
(64.1 AP), demonstrating the effectiveness of our approach.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Illustration of the sequence consistency strategy and the complementary mask
strategy proposed in our SeqCo-DETR. Note that each output sequence, denoted as colored
squares in the figure, contains the object feature and location information.

1 Introduction

Object detection is a prediction-intensive process compared with the image classification
task, which involves locating and classifying multiple objects within an image [23]. Exist-
ing deep learning-based object detection frameworks can be divided into one-stage methods
[20, 29] and two-stage methods [2, 27], either of them requires hand-crafted components.
Recently, transformer-based detection methods have emerged as a new object detection
paradigm [3, 45], offering a full end-to-end process without hand-crafted components. Un-
like convolutional-based architectures, transformer-based architectures define the problem as
a sequence-to-sequence process; that is, the transformer converts the input to a sequence and
processes the information in the form of a sequence, and the final output is also a sequence
[31]. The transformer-based architectures do not rely on the inductive bias characteristics
of convolutional-based architectures, such as locality and translation invariance, but instead
rely on the global information processing procedure based on attention mechanism [12, 31].
However, these detection methods require supervised training, which demands large amounts
of labeled data and extensive human labor since the labeling cost of object detection tasks is
much higher than that of image classification tasks.

Self-supervised representation learning is an efficient method to leverage unlabeled data
by training models to solve pretext tasks [4, 5, 7, 15, 16]. These customized pretext tasks
aim to equip the model with feature representation abilities, which can benefit specific down-
stream tasks. However, most self-supervised methods are designed for image classification
tasks, which consider the image as a whole and only use image-level features. As object de-
tection is a prediction-intensive task that requires object-level features to locate and classify
multiple objects in an image, applying these image-level methods directly to object detec-
tion leads to limited improvement [39]. Some recent approaches [24, 28, 32, 35, 36, 39,
40, 41, 43] utilize the inductive bias characteristics of convolutional neural networks (CNN)
to achieve object-level self-supervised learning, which is not suitable for transformers. Re-
cently, some transformer-based pre-training methods have emerged [1, 8]. However, they
handle the pre-training task in an unsupervised way, using hand-crafted pseudo labels to
supervise the pre-training process, limiting the model’s feature representation ability.

To address the problems mentioned above, we take advantage of the sequence charac-
teristics of transformers and propose a self-supervised object detection pre-training method
(SeqCo-DETR) by maintaining consistency of the sequence from different views of an im-
age. As shown in Fig. 1, each output sequence of the transformer decoder stands for an object
prediction, which contains the location and category information of the object. Therefore,
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the proposed pretext task addresses self-supervised learning on both the location and cate-
gory of objects, which are the two essential tasks of object detection. Considering that the
object prediction of each sequence varies under different image views, we propose to utilize
bipartite matching [19] to get the optimal sequence pair to improve the sequence consistency
learning process. Additionally, as object detection requires locating the object based on the
contextual information around it, we propose adding complementary masks on different im-
age views to help the model learn more global context information about the object. The
proposed SeqCo-DETR can pre-train the entire object detection architecture end-to-end, not
only the backbone part, thanks to the transformer object detection framework.

In summary, our contributions are: 1) We propose SeqCo-DETR, a transformer-based
self-supervised learning method for object detection that maintains sequence consistency
between different image views, leveraging the sequence characteristics of transformers and
achieving state-of-the-art performance on various benchmarks. 2) We introduce the com-
plementary mask augmentation strategy, designed to complement the proposed sequence
consistency strategy by helping the model extract more representative global context infor-
mation about objects. 3) We adopt bipartite matching to obtain optimal sequence pairs from
online and momentum branches with different image views, which boosts the performance
of our proposed method.

2 Related Work
Transformer-based object detection methods. The DEtection TRansformers (DETR) [3]
brings a new paradigm of object detection tasks, which is a fully end-to-end method without
hand-crafted components. DETR is based on the encoder-decoder transformers and defines
the object detection problem as a set prediction problem, which does not rely on the induc-
tive bias of convolutional-based architectures. However, the training speed of the original
DETR is considerably slow, and the detection results on small objects are limited. To solve
the problems, Deformable DETR [45] uses multiscale features and proposes a deformable
attention mechanism, which significantly accelerates the convergence speed and improves
the overall accuracy. Therefore, our method is based on the Deformable DETR framework.
Self-supervised representation learning. Instance discrimination is one of the competitive
pretext tasks for self-supervised visual representation learning, which aims to learn such an
embedding space in which similar sample pairs stay close to each other while dissimilar ones
are far apart [37]. MoCo [6, 7, 16] improved contrastive methods by storing representations
in a momentum structure. SimCLR [5] proved that the memory bank can be replaced with
large batch sizes and more image augmentations. SwAV [4] took the features as a set of
trainable clustering prototype vectors. BYOL [15] utilized the asymmetric architecture to-
gether with the stop gradient design to bootstrap the representations by extracting features
from different views of the same instance, which could be trained without negative samples.
Although these methods have shown promising performance in image classification tasks,
they have a limited improvement in prediction-intensive tasks such as object detection [39].
Self-supervised object detection methods. In order to improve the object detection task via
self-supervised learning, several methods have been proposed recently. DetCo [39] proposed
a contrastive loss between local patches and the global image to improve the multi-level
feature expression ability for detection tasks. ORL [40] achieved object-level representation
based on scene images. SCRL [28], ReSim [38], DetCon [18], ContrastiveCrop [26], and
SoCo [34] proposed to maintain region-level consistency in the related areas by different
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methods. DenseCL [32] and PixPro [41] proposed to utilize the pixel-level to achieve dense
contrastive learning. SlotCon [35] proposed to utilize the group/object-level to achieve dense
contrastive learning. Self-EMD [24] proposed to utilize the spatial information of CNN
features and used Earth Mover’s Distance to match features from different views. InsLoc
[43] and Align Yourself [36] pasted cropped images at different locations, then minimized
the corresponding features extracted from different views, while it failed to consider the
localization task in the object detection. However, these methods rely on the inductive bias
characteristics of CNN, which is not suitable for transformers.

More recently, UP-DETR [8] designed an unsupervised pre-training pretext based on
the transformer architecture, which uses random patches as input to predict patch loca-
tions. Since patch locations are known, the proposed pretext task is more like a super-
vised method with pseudo labels. DETReg [1] used Selective Search [30] to generate region
proposals as the location supervision instead of random proposals and used a pre-trained
model as the feature supervision, which is an unsupervised method and does not incorpo-
rate any self-supervised pre-training part. Thus, the feature representation’s ability is limited
by the selected pre-trained model and the model’s performance would be affected by the
handy-crafted supervision. In contrast, our proposed method uses self-supervised learning
via maintaining the consistency of transformer sequences, thus the ability to learn feature
representation is not limited by a fixed pre-trained model.
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Figure 2: The proposed SeqCo-DETR consists of two branches: the online and momentum
branch. The Online/Momentum Encoder in the figure consists of a CNN backbone and a
transformer encoder. The input of each branch is a different view of the unlabeled image.
Notably, we use complementary image masks for each view to ensure that each branch only
sees a non-overlapping part of the image. After processing through the transformer, all ob-
ject queries are transformed into output sequences. Then the sequences pass through three
feedforward networks (FFN) to predict the object’s class, bounding box, and feature projec-
tion. There are two bipartite matching processes: one between the outputs of two branches,
the other between the output of online branches and the “objectness” proposals provided by
the Selective Search. Finally, the similarity loss of each paired sequence feature projection
is minimized to achieve self-supervised representation learning at the sequence level.
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3 Method

3.1 Sequence Consistency Strategy

SeqCo-DETR is designed to leverage the sequence characteristics to achieve self-supervised
pre-training for object detection using transformers. The main framework of our SeqCo-
DETR is shown in Fig. 2. The core idea of SeqCo-DETR is to maintain consistency between
sequences from differently augmented views of the same image, i.e., in a self-supervised
learning way. Thus, we utilize the momentum design [16, 25, 42] to achieve self-supervised
learning, which contains the online branch and the momentum branch. Both branches share
the same structure, including CNN backbone, transformer encoder, transformer decoder, and
FFN heads. In particular, we incorporate a projection head [5] after the transformer decoder
to generate the feature projection for each sequence. The classification and box regression
heads are also used during the pre-training process. After pre-training, the projection head
will be removed, and the classification head will be reset and modified to match the number
of categories in downstream detection tasks. The remaining pre-trained weights are then
loaded as the initial weights during fine-tuning. In line with the momentum design, a stop
gradient operator is introduced to ensure that the gradient only updates the weight of the
online branch, while the weight of the momentum branch is updated based on the momentum
of the weight of the online branch, as per the formula:

Θm← β ∗Θm +(1−β )∗Θo, (1)

where Θm and Θo represent the parameters of the momentum branch and the online branch,
respectively, β represents the momentum coefficient. Since the momentum branch has a stop
gradient design and its parameters are updated by momentum parameters, the two branches
would update at different speeds, which can effectively prevent network collapse [15].

The proposed sequence consistency strategy is simple and straightforward. Since each
output sequence stands for an object prediction and each sequence contains the most relevant
feature description for each object, we apply the consistency constraint on the sequences that
predict the same object. Thus, we could maintain the object-level feature consistency instead
of the image-level feature, which is more suitable for object detection tasks. The sequence
consistency strategy is formulated as follows:

Lssl =
N

∑
i=1

(Lsimilarity(fffn(si), f̂ffn(̂sσ̂(i)))), (2)

where s and ŝ are the output of the sequence by the transformer decoder from the momentum
and online branches, respectively; fffn and f̂ffn represent the FFN heads from the momentum
and online branches, respectively; N is the number of sequences in one view, and σ̂ repre-
sents the matching relationship between the two sequences. Lssl is the total self-supervised
learning loss. Lsimilarity is a function that measures the similarity between sequences, and we
adopt L2 as the Lsimilarity loss.

As mentioned earlier, since the image views for the two branches are different, the out-
put sequences from each branch would also differ. Therefore, to ensure that we match the
sequences that have the same object prediction, we employ bipartite graph matching [19].
The bipartite matching is a classical optimal matching method that is designed to match the
elements in two sets, which allows us to obtain the optimal sequence pair from the output of
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(a) Mask 50% (b) Mask 70% (c) Complementary mask of 30% and 70%

Figure 3: Examples of different proportions of random masked images.

online and momentum branches, as defined below:

Lmatch(y, ŷσ ) =
N

∑
i=1

[−λcm log p̂σ(i)(ci)+1{ci ̸=∅}(λbmLbox(bi, b̂σ(i)))], (3)

σ̂ = argmin
σ∈ΣN

N

∑
i
Lmatch(yi, ŷσ(i)), (4)

where N is the number of sequences in one view; Lmatch denotes the Hungarian matching
loss; y and ŷ are the predicted sequences from momentum and online branches, respectively;
b and c are the location prediction and category prediction, respectively; p̂σ̂(i)(ci) is the
probability of class ci; σ̂ denotes the final optimal assignment; ΣN denotes the set of all
possible matches; ∅ denotes the empty set; λcm and λbm are the corresponding weights,
which are 2.0 and 5.0, respectively. After the output sequences, which predict objects at
the same location, have been matched by the bipartite graph matching, the corresponding
features from the sequences are used to calculate the Lssl. Specifically, the two image views
share the same location augmentation parameters, and there are only content differences
between the two views, such as color jittering, random erasing, and blur, which reduces
the difficulty of the output sequences matching. The comparison results for the different
sequence utilization strategies are summarized in Tab. 4.

In order to get more rich semantic features rather than some background features from
an image to calculate the self-supervised loss, the transformer needs to predict proposals that
contain foreground objects as many as possible. To achieve this, we utilize the Selective
Search [30] to initial foreground proposals to train the neural network to have the ability to
predict “objectnes” proposals. The Selective Search is an unsupervised method that could
only generate the position of foreground proposals, not the category. Thus, there will be only
two categories, i.e., foreground and background. The parameters of the Selective Search are
the same as in DETReg [1]. The comparison results for the region proposal strategy are
summarized in Tab. 3.

3.2 Mask strategy

Object localization is a crucial task in object detection, requiring not only the features of the
object but also the context information around the object. Therefore, a strategy to enhance the
model’s ability to extract global context information is necessary for self-supervised object
detection. Mask-based image augmentation, especially in combination with transformers,
has proven to be an efficient way to extract global context information [13, 17, 44]. The key
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insight is that the attention mechanism in a transformer can effectively process global infor-
mation, while object detection requires contextual information surrounding the objects. By
adding a mask to an image, the network can be forced to use more distant context information
to extract features, thereby improving the network’s global feature extraction capabilities.

To this end, we design a mask-based image augmentation incorporated with the pro-
posed sequence consistency strategy to enhance the feature representation capability of the
transformer, leading to improved object detection performance. Since the gradient updates
only the online branch, there is usually a more strong image augmentation used in the online
branch [25, 42]. Thus, one straightforward way is to add the mask only to the online branch
view, as shown in Fig. 3 (a,b). To further compel the network to exploit contextual informa-
tion, inspired by [13], we design a complementary mask strategy that adds complementary
masks on both branches. Specifically, with the complementary masks, each image view will
not have overlapped areas with each other, as shown in Fig. 3 (c). Therefore, the predictions
from each branch will not depend on the same local areas, but on the global context infor-
mation. By minimizing the sequence consistency loss, the network is directed to extract and
combine global context information to predict objects, which is useful for object detection.
The comparison results for the different mask strategies are summarized in Tab. 2.

The total loss of SeqCo-DETR consists of the region proposals loss LRPS and the self-
supervised learning loss on sequences LSSL, denoted as:

Ltotal(y, ŷ) =LRPS +LSSL

=
N

∑
i=1

[λ fLfocal(ci, p̂σ̂(i))+1{ci ̸=∅}(λbLbox(bi, b̂σ̂(i))]

+
N

∑
i=1

[λeLssl(zi, ẑσ̂(i)))],

(5)

where Lfocal is the focal loss of classification, Lbox is the location loss of box, Lssl is the self-
supervised learning loss of sequence, and zi stands for the output of fffn. The LRPS consists
of Lfocal and Lbox, which is the same as in DETReg [1], supervised by the proposals from
Selective Search. λ f , λb, and λe are the weights of those three losses, which are set to 2.0,
5.0, and 10.0, respectively.

4 Experimental Results

4.1 Experimental Settings
Datasets. Our experiments include the pre-training stage and the fine-tuning stage. First, we
pre-train models on the unlabeled dataset. Then, we load the pre-trained weight and fine-tune
the network on the downstream object detection tasks following the standard procedure [1].
For the pre-training stage, we use ImageNet (IN1K) [10] and ImageNet100 (IN100) [9] as the
main pre-training datasets. ImageNet100 is a subset of ImageNet, which only contains 100
classes. The split of classes is the same as in DETReg [1]. For COCO results, the pre-training
dataset is IN1K; for VOC results, the pre-training dataset is IN100. The ablation studies are
all based on the IN100. In addition, we also pre-train our model on multi-object datasets on
COCO and COCO+ in the ablation studies, where COCO stands for train2017 without
ground truth labels, COCO+ denotes the COCO train2017 plus the COCO unlabeled
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dataset. For the fine-tuning stage, we evaluate our method on MS COCO [21] and PASCAL
VOC [14]. In particular, we fine-tune the model on COCO train2017 and evaluate it on
COCO val2017. As for VOC, we fine-tune on VOC trainval07+12, and then evaluate
on test07. The comparison approaches are DETReg [1], UP-DETR [8] which is based
on Deformable DETR, JoinDet [33] which is the latest transformer-based self-supervised
method, Deformable DETR [45] with various pre-trained weights, and the common baseline
Faster R-CNN [27]. Additional implementation details are in the supplementary material.
Image augmentations. The complementary mask strategy is designed to incorporate with
the sequence consistency strategy. Thus, the image augmentations for the two branches
are different, where weak image augmentations are used in the momentum branch while
strong augmentations are used in the online branch. The complementary mask proportions
for the online and momentum branches are 70% and 30%, respectively, with a patch size of
16, which are all chosen by experiments. To ensure the two views have consistency in the
location parameters, the image view 2 is partially built upon the view 1. Following [11], we
first generate a base image view from the input unlabeled image, using random flips, random
resize, and random resized-crop. The base image view is the same as in DETReg [1]. Then,
for the momentum branch, we add the corresponding mask upon the base image view to
generate view 1. As for the view 2, we add more augmentations based on the base image
view, including color jitter, random grayscale, random blur, and the corresponding mask.
Thus, there is no location coordinates difference between the two views.

4.2 Main Results

COCO val2017 VOC test07
Model AP AP50 AP75 AP AP50 AP75

Faster R-CNN [22] 42.0 62.1 45.5 56.1 82.6 62.7
Deformable DETR (Supervised CNN) [45] 43.8 62.6 47.7 59.5 82.6 65.6

Deformable DETR (SimCLR CNN)† 41.5 59.8 45.4 57.3 80.0 63.6
Deformable DETR (BYOL CNN)† 44.7 63.8 48.8 59.9 82.7 66.7
Deformable DETR (MoCo CNN)† 43.1 61.6 46.9 59.6 81.8 66.0
Deformable DETR (SwAV CNN)† 45.0 63.8 49.2 61.0 83.0 68.1
UP-DETR (Deformable DETR)‡ 44.7 63.7 48.6 61.8 83.4 69.6
JoinDet [33] 45.6 64.3 49.8 63.7 83.8 70.7
DETReg w/o feature embedding† 45.2 63.7 49.5 63.0 83.5 70.2
DETReg [1] 45.5 64.1 49.9 63.5 83.3 70.3

SeqCo-DETR 45.8 64.2 50.0 64.1 83.8 71.6
Table 1: Comparison results on the object detection datasets. †: We run the method on our
codebase. ‡: Results are provided by DETReg [1].

The experiment results are presented in Tab. 1. The above part of the table is the widely
referenced baselines in object detection tasks, which are listed here for convenience. The
middle part is our baseline, and the bottom part is our approach. As DETReg’s training
process is supervised by the pre-trained SwAV model [4], the pre-training process can be re-
garded as learning the fixed features from SwAV. In contrast, our method proposes to use the
self-supervised way to learn the features, which could help the network learn more discrim-
inative features during pre-training. To establish a baseline for comparison, we remove the
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Model Mask strategy AP

DETReg w/o Mask (baseline) [1] 45.4
w/ Mask50

† 45.0

SeqCo-DETR

w/o Mask 45.6
Maskonline@50 45.6
Maskonline@50 +Maskmomentum@50 45.4
Maskonline@70 +Maskmomentum@30 45.6
Maskonline@70 +Mask¬(online@70) 45.8

Table 2: Comparison of mask strategies, evaluated on MS COCO val2017. †: We run the
method on our codebase.

feature embedding learning part of DETReg in the experiment, the results are 45.2 on COCO
and 63.0 on VOC. For the final result, our method achieves 45.8 and surpasses DETReg by
0.3 points on COCO and 0.6 points on VOC, proving that our learning-based method has
better performance than the method that is supervised by manually defined pseudo-labels.
Compared to the methods that only the backbone part is pre-trained, i.e., Deformable DETR
(Supervised CNN) and Deformable DETR with different self-supervised pre-trains such as
SimCLR [5], BYOL [15], MoCo v2 [6], and SwAV [4], our method could pre-train the entire
object detection framework and surpass Deformable DETR (SwAV CNN) by 0.8 points on
COCO and 3.1 points on VOC. Thus, our approach is more suitable for the transformer-based
object detection task and achieves state-of-the-art results.

4.3 Ablation Study

Mask strategy. We conduct extensive experiments about the mask strategy, as listed in
Tab. 2. When the complementary masks are used in online and momentum branches, with
mask proportion of 70% and 30%, respectively, denoted as Maskonline@70+Mask¬(online@70),
we get the best performance of 45.8. To verify whether the complementary characteris-
tic is the most critical design in the mask design, we add the independent random masks
for the two branches with the same mask proportion of 70% and 30%, respectively, de-
noted as Maskonline@70 +Maskmomentum@30. The corresponding result is 45.6. We also try
the same proportion masks for the two branches, with the proportion of 50%, denoted as
Maskonline@50 +Maskmomentum@50. The result is only 45.4. When the mask is only added to
the online branch, with the mask proportion of 50%, denoted as Maskonline@50 or Mask50,
the result of DETReg drops from 45.4 to 45.0. Meanwhile, the performance of ours does not
drop. The mask strategy may interfere with the training process that is only supervised by the
pseudo labels. Our experiments prove that the complementary mask is a more effective way
compared to adding random masks. Additionally, incorporating the complementary mask
with the sequence consistency strategy results in improved performance. More experiments
on mask parameter selection can be found in the supplementary material.
Pre-training datasets and region proposal strategy. We conduct several experiments to
compare the performance with different types of pre-training datasets. Rnd bbox stands
for the random proposals, and COCO GT stands for the region proposals that come from the
COCO ground truth. For COCO and COCO+, we use the images without ground truth and
Selective Search to generate initial proposals. Specifically, COCO is a multi-object dataset,
while ImageNet is a single-object dataset. As listed in Tab. 3, our method achieves better
results against DETReg on both single-object and multi-object datasets, which proves that
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Method IN100 IN100 (Rnd bbox) COCO COCO+ COCO GT

DETReg† 45.4 44.1 45.1 45.1 45.6
SeqCo-DETR 45.8 44.3 45.6 45.6 45.8

Table 3: Comparison of pre-training datasets and region proposal strategies, evaluated on
MS COCO val2017. †: We run the method on our codebase.

Model One-by-one matching Bipartite matching Multi-feature AP

SeqCo-DETR

✓ 45.6
✓ ✓ 45.3

✓ ✓ 45.5
✓ 45.8

Table 4: Comparison of sequence utilization strategies, evaluated on MS COCO val2017.

self-supervised learning has better generality over different types of datasets. Furthermore,
we compare the influence of different region proposal strategies. When using the less “ob-
jectnes” proposals, i.e., random proposals, both methods drop a lot. When using the ground
truth as the region proposal, DETReg improves from 45.1 to 45.6, whereas ours improves
from 45.6 to 45.8. This proves that methods that solely rely on hand-crafted pseudo labels
are susceptible to the quality of the pseudo labels, while learning-based methods are less
affected by them. Our results also indicate that the quality of the region proposals generated
by Selective Search is sufficient for our method to learn useful information.
Sequence utilization methods. We conduct several experiments to compare the perfor-
mance with different types of sequence utilization methods, as listed in Tab. 4. One of the
most naive strategies is the one-by-one match, because the sequence output by transformers
has sequential characteristics. However, since different branches have different input image
views and slightly different network parameters, their predicted results differ even if the out-
put sequences are in the same order. Therefore, bipartite matching is adopted to match the
sequences from different branches that predict the same object. As listed in Tab. 4, bipartite
matching could improve results from 45.6 to 45.8, compared to the one-by-one matching,
proving the effectiveness of the bipartite matching method. Meanwhile, to achieve more
sufficient supervision of the sequence, we try to use the outputs of classification head fcls,
regression head fbox, and projection head fprj in Eq. (2) at the same time. However, it can
be seen from the table that the fusion of multiple heads decreases the final results in both
matching settings. Perhaps the self-supervision on the projection head is enough; redun-
dancy supervision on three heads would cause a performance drop.

5 Conclusion
In this paper, we introduce SeqCo-DETR, a novel self-supervised learning method for object
detection based on transformers. Our approach exploits the sequential nature of transformer
networks to achieve self-supervised learning of detection, maintaining sequence consistency
under different image views. To extract more global context information and enhance ob-
ject detection, we propose a complementary mask strategy. Additionally, we use bipartite
matching to optimize sequence-level self-supervision. Extensive experiments on various
downstream detection tasks and on both single-object and multi-object datasets prove the
effectiveness of the SeqCo-DETR.
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