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Abstract

As social competition intensifies, the number of depression patients has rapidly in-
creased. Many researchers have proposed diagnostic models for depression based on
various physiological signals and behavioral information, such as Electroencephalogram
(EEG) and facial expressions. However, it should be noted that these signals tend to re-
flect transient information, which may make them insufficient for accurately diagnosing
depression characterized by persistent low mood over a prolonged period of time. Mean-
while, traditional Chinese medicine(TCM) believes that different parts of the tongue cor-
respond to different Zang-fu and can indicate the long-term physical condition of the
human body. Therefore, we use EEG and tongue images to reflect the subject’s instan-
taneous state and long-term physical condition respectively, and establish a multimodal
model MMTV to assist doctors in diagnosing depression. Specifically, MMTV innova-
tively introduces the dual-stream input mechanism and self-attention mechanism to EEG-
Net to better extract the spatio-temporal features of EEG. Meanwhile, to obtain higher
quality tongue surface images, MMTV introduces a segmentation step before inputting
tongue images into the ViT model. Meta-learning techniques are applied to gain better
pretrained weights for ViT. Furthermore, we analyze the correlation between tongue im-
ages and EEG and subsequently fuse the output features of the brain-tongue branches in
MMTV. The ability of MMTV to recognize patients with depression has been validated
on multiple datasets, with the highest recognition accuracy reaching 98.18%. Our code
is available at https://github.com/Clearlangw/Depression-diagnosis-based-on-EEG-and-
Tongue.
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1 Introduction

Accompanied by the rapid development of the global economy and increasing competition
in various aspects of social life, the number of individuals suffering from depression has
surged, making it a primary contributor to the global disease burden [26]. Depression is
an emotional mental disorder characterized by persistent low mood [22], which can lead to
functional impairments and an increased risk of suicide [11]. Current clinical diagnostic
methods primarily rely on scale evaluations and physicians’ experience [23], which can re-
sult in issues like subjective bias, poor consistency, and high rates of misdiagnosis or missed
diagnosis [32]. Consequently, there is an urgent need for objective and accurate approaches
to assist doctors in screening and diagnosing depression. Many diagnostic models for de-
pression based on behavioral information and physiological signals have been proposed to
solve the problems [38] [10]. However, these signals typically reflect the subjects’ instan-
taneous states and lack assessment of their long-term physical conditions, which poses a
potential conflict with the chronic nature of depression. Inspired by the use of tongue diag-
nosis in TCM to assess patients’ long-term visceral states, we proposed the idea of utilizing
image recognition models to extract tongue features for depression diagnosis. Some TCM
symdromes such as the liver qi stagnation are believed to be associated with the pathogene-
sis of depression and can also affect the brain [33]. Therefore, we have developed a model
called MMTV that combines EEG and tongue images for depression diagnosis.

In terms of data acquisition, we initially collected open access separate datasets for EEG
and tongue modalities. Inspired by Wang’s research [40] and Qian’s research [47], we se-
lected VFT and the Chinese Facial Affective Picture System (CFAPS) as the event-related
potential (ERP) triggers for EEG data collection. Prior to the EEG data collection, we cap-
tured tongue images of the subjects, which were then annotated with TCM labels by TCM
practitioners.

In terms of model architecture, the MMTV model is composed of two branches: the
Trans_EEGNet module for processing EEG and the ViT module for processing tongue im-
ages. Inspired by EEGNet [14] , we introduced the dual-stream input mechanism and self-
attention mechanism into Trans_EEGNet to better extract the spatio-temporal features of
EEG data. We performed tongue surface segmentation on the tongue images and proposed
a multi-step pre-training approach to enhance the ViT module’s ability to extract TCM fea-
tures from the tongue surface. Additionally, we have completed the mapping work of EEG
to tongue images, proving their correlation. MMTV has been validated on multiple datasets,
achieving excellent results, demonstrating that it can assist physicians in diagnosing depres-
sion, reducing labor costs, and improving diagnostic accuracy.

In summary, the main contributions of this paper are as follows:

• We propose a multimodal intelligent diagnosis model for depression, MMTV, based on
EEG and tongue images, which combines brain function information and the internal
organ state of the body to reflect both the instantaneous state and long-term physical
condition of the subject.

• In the EEG module, we design Trans_EEGNet featuring the dual-stream input and
self-attention mechanism to effectively capture the spatio-temporal features of EEG.

• In the tongue module, we introduce tongue image segmentation before ViT. A multi-
step pre-training method is proposed to better extract the TCM features from the
tongue images.
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2 Related works

2.1 Diagnosis Based on Transient State

In recent years, numerous researchers have been dedicated to leveraging machine learning
techniques to analyze patients’ behavioral information (such as voice, video, and text) [45]
[44] and physiological signals (such as EEG, eye movements (EM), and ECG) [5] [9] to
identify individuals with depression. Xie et al. [42] used CNN-LSTM to mine information
from the videos focused on facial expressions, achieving an accuracy of 94.6% in diagnos-
ing depression and anxiety. Compared to facial expression and speech signals, physiological
signals have the advantage of being difficult to fake and can more subtly and objectively
characterize emotions. Zang [46] used TCN to analyze 5-second ECG segments, achiev-
ing a recognition accuracy of 97.1% in the depression diagnosis. Li et al. [17] adopted a
kernel extreme learning machine based on PCA features of EM for depression recognition,
achieving a classification accuracy of up to 91%. Among the existing physiological signals
used for diagnosing depression, EEG signals have the advantages of high time resolution and
containing rich central nervous cognitive information, thus occupying a dominant position
in the similar fields such as affective computing [28]. To compensate for the limitations of
single-modal physiological signals, the academic community has gradually focused on mul-
timodal works that utilize the complementarity of signals, such as the combination of EEG
and EM [20] and the combination of speech and video [25].

However, the signals mentioned earlier mainly reflect transient states and still have limi-
tations in characterizing the long-term emotional lows associated with depression.

2.2 Diagnosis Based on Long-term Physical Condition

Tongue diagnosis, as a key part of TCM examination, holds significant value for differential
diagnosis, representing patients’ relatively long-term physical conditions, thus effectively
compensating for the aforementioned limitations. According to TCM theory, the five parts
of the tongue correspond to different Zang-fu: the tip to the heart and lungs, the edges to the
liver and gallbladder, the center to the spleen and stomach, and the root to the kidneys [2].
Tongue diagnosis infers patients’ internal Zang-fu states by observing the external manifes-
tations of tongue texture and coating, integrating multiple attribute information of tongue
images, thus serving as a diagnostic basis for diseases.

However, traditional tongue diagnosis relies on TCM practitioners’ experience and sub-
jective judgment, necessitating quantification and objectification. Therefore, the integration
of tongue images and machine learning has attracted the attention of many researchers. Li
et al. [16] used the GA_XGBT model to predict whether patients were in the early or late
stages of diabetes, achieving an average accuracy of 82.1%; Maet al. [21] used complexity
perception classification to identify TCM constitution using tongue images. Modern TCM
categorizes depression into "Yuzheng" as an emotional disorder based on its clinical man-
ifestations and characteristics. It is believed that the pathogenesis of depression is due to
emotional injury, which leads to stagnation of Qi in the internal organs and imbalance of
functions in Zang-fu [39]. According to clinical observations and records, patients with
depression exhibit distinctive tongue features, with 80.5% displaying abnormal tongue coat-
ing characterized by a greasy coating [43].To explain the relationship between tongue and
depression better, the sample comparsion is shown in Figure 1.

In addition, compared to EEG, tongue diagnosis has a lower sensitivity, while EEG has a
higher temporal resolution, allowing it to detect subtle changes in brain activity. This makes
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Figure 1: Notes on the tongue

EEG potentially more sensitive in identifying early or mild symptoms of depression.
Thus, the combination of physiological signals and tongue images may provide a more

comprehensive assessment and improve diagnostic accuracy.

3 Methodology

3.1 Overview
The overall architecture of the Multimodal Model based on Trans_EEGNet and Vision Trans-
former (MMTV) is shown in Figure 2.

Figure 2: Overview of the MMTV

These modules have already been briefly introduced above. In the subsequent sections,
we will provide a detailed description of each module.

3.2 EEG Module (Transient-term Physical State)
In the EEG module, we utilize Trans_EEGNet to analyze EEG data. Additionally, we repli-
cate a CRNN architecture [29]. Besides, we analyze the feature extraction characteristics of
these two models and verify the superiority of Trans_EEGNet in related issues.
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Data preprocessing: The key steps in the preprocessing stage include: denoising, di-
viding the EEG signal into frequency bands, extracting differential entropy (the generalized
form of Shannon entropy in continuous variables, which can be used as EEG features [8])
over fixed time intervals, and selecting a sequence of differential entropy values from con-
secutive time intervals.

Architecture: The CRNN architecture comes from a processing model for SEED dataset [48].
The key idea of preprocessing is to map the channel dimension of the data to a two-dimensional
brain map based on the actual spatial distribution of the EEG channels.

The characteristic of the CRNN model lies in its dependence on the actual spatial distri-
bution, which inadvertently increases the requirements for data quality. Aiming at proposing
a model with less stringent data requirements, we draw inspiration from EEGNet fEEGNet :
RC×S×1 → RClasses which consists of three convolutional layers: a conventional convolu-
tional layer for extracting intra-channel features, a deep convolutional layer for extracting
inter-channel features, and a separable convolutional layer for extracting spatio-temporal
features [15]. Since the first convolution layer of original EEGNet only extracts features
inside the EEG channel rather than considering the inter-channel features, we process input
data in parallel and design a modified EEGNet that only extracts the inter-channel features
in the first layer as a supplement. EEG data slices are simultaneously input into those two ar-
chitectures to extract features. And the transpose mechanism is imposed on the intermediate
results of the modified EEGNet. Therefore, the features of (sequence, channel) and (channel,
sequence) are obtained respectively from EEGNet fEEGNet : RC×S×1 →RS

′×C
′

and the mod-
ified EEGNet fmodi f iedEEGNet : RC×S×1 → RC

′′×S
′′
. To better extract features between each

channel and sequence features inside the channel, we introduce the self-attention mechanism
to the model [37], which compensates for the difficulty of extracting global information in
the convolutional layer. The core formula of the Attention mechanism is

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V,

where Q represents the query, K represents the key, and V represents the value. In the
self-attention mechanism, Q, K, and V are all the same, and thus the correlation between
each element in a sequence and other elements can be extracted using the self-attention
mechanism. After being extracted by self-attention(SA) mechanism fsel f−attention : RX×Y →
RX×Y , two branches of features are flattened and spliced. feeg− f usion : (RX×Y ,RY×X )→ RD

Finally, fully connected layer and SoftMax layer are used to output classification results or
EEG features.
3.3 Tongue Module (Long-term Physical State)
In the tongue module, we choose Vision Transformer (ViT) [7] to process the tongue images.

Data preprocessing: The key steps in the preprocessing stage include: tongue surface
segmentation using SAM [13](only in our private datasets) and image enhancement tech-
niques such as image rotation and horizontal flipping.

Architecture: The ViT model mainly includes three crucial layers: Patch Embedding
Layer fpatch_embed :RH×W×C →R(1+B)×F , Transformer Encoder Layer fencoder :R(1+B)×F →
R(1+B)×F and Classification Head fclassi f ication : R(1+B)×F → RN . The model architecture
follows the original paper [7].

Pretrained works: This study proposes a 3-step pre-training scheme for the tongue
module. Due to the limited number of tongue images, we employ a few-shot related meta-
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learning approach to solve the problem. In the first step, we load the weights pretrained on
ImageNet and freeze the ViT weights. The second step involves adding a trainable linear
layer for feature extraction behind ViT, constructing a Siamese network, selecting datasets
from Oxford-flower102[24], forming training pairs of (anchor, positive, negative), and uti-
lizing triplet loss to differentiate between different classes of objects. In the third step, we
use the tongue data not paired with EEG as additional training data to fine-tune the model
and improve its ability to distinguish different tongue features. In the scenario where only
the tongue modality is used, we skip the third step and adopt a 1:1 ratio of the support set to
the query set for training and prediction.

3.4 Multimodal Module (Transient & Long-term Physical State)
In the multimodal module, we first validate the correlation between EEG signals and tongue
images (see Table 1), and then achieve more comprehensive depression prediction by fusing
the EEG features extracted by Trans_EEGNet and the tongue features extracted by ViT (see
Table 2). In the validation of the correlation, we use Trans_EEGNet to predict the corre-
sponding tongue features.

Table 1: Validation of Correlation

Task Private Acc
Tongue’s Color 96.36% ± 3.40%
Coating’s Color 91.81% ± 6.03%
Coating’s Thickness 100.00% ± 0.00%
Coating’s Greasiness 95.45% ± 6.03%
TCM’s Syndromes 97.27% ± 3.63%

Table 2: Different modules for
depression diagnosis

Task Private Acc
EEG 97.27% ± 3.63%
Tongue 90.00%
Multimodal 98.18% ± 3.63%

Using the EEG and tongue modules, we extract the EEG features IEEG ∈ RF and the
tongue features ITongue ∈ RF

′
respectively. To fuse these two types of features, we can em-

ploy various fusion methods, such as concatenation, converting them into parallel channels to
utilize the SA mechanism, deep canonical correlation analysis [3], and bilinear pooling [18].

4 Experiments
In our experiments, we have validated the accuracy of MMTV and its submodules on several
datasets. More details on experimental setting, datasets, training setting, and comparison and
visual results are discussed in the following subsections.

4.1 Experimental Setting
We designed an EEG and tongue image acquisition experiment for the analysis of depres-
sion. Depressed patients and healthy participants aged between 18 and 55 were recruited
for the study. After evaluating the depression scores using the 17-item Hamilton Depression
Scale (HAMD-17), the experiment was conducted. Tongue images were collected by stu-
dents of TCM using the phone camera, ensuring clear tongue surface features. EEG signals
were collected using the NeuSenE 16-channel version (with an actual sampling rate of 1000
Hz), and the experimental procedures were designed using E-prime3, divided into a Verbal
Fluency Test (VFT) and an emotional face picture stimulation experiment. The experiments
were performed in a quiet environment. In the VFT experiment, participants are asked to
form as many words as possible using three Chinese characters within 20 seconds for each
character. In the face affective picture stimulation experiment, subjects are asked to view
30 sets of positive and negative pictures. Written informed consent was obtained from all
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participants, and the experiment conforms to the World Medical Association Declaration of
Helsinki.

4.2 Datasets
The following datasets are used in this paper to train and corroborate model effects: the
SEED emotional EEG dataset[48], the MODMA depression EEG dataset [4], and an open
source tongue dataset on Baidu Paddle platform. Furthermore, we collect available tongue
and EEG data from 2 depressed and 9 normal control subjects to train multimodal model
of EEG and tongue fusion. Another 29 tongue images collected in the same period are
also used in the tongue module. In our experiment, we use EEG data slices shaped as
(110,16,74,5) from private dataset. The SEED dataset contains EEG records of 15 subjects
during their watching of 15 movie clips covering positive, negative and neutral emotional
categories, which includes 62 channels of EEG channels. In our experiment, we use one of
the subjects to obtain samples shaped as (5076,4,8,9,5). The MODMA dataset contains EEG
records from 24 patients with depression and 29 healthy controls. In our experiment, we gain
samples shaped as (318,128,50,5) from MODMA dataset (128 channel, resting-state). The
tongue dataset on the Baidu Paddle platform is labeled by cooperating Chinese medicine
practitioners and has four types of labels: the tongue color (5 classes: ’pale white’:’bluish
or purple’: ’crimson’: ’red’:’pale red’ = 118 : 70 : 80 : 506 : 1314), the color of the tongue
coating (3 classes: ’gray or black’:’white’:’yellow’=91 : 1466 : 531), the thickness of the
tongue coating (2 classes), and whether the tongue coating is greasy(2 classes). Our pri-
vate dataset has four types of labels same as the above-mentioned tongue dataset and two
additional labels: whether the person is a depressed patient and the TCM syndromes of the
patient.

4.3 Implement Details
In our experiments, we have used keras and the paddlepaddle framework for model building
and training. We use keras to build the EEG and multimodal models, set the learning rate
of Trans_EEGNet and the corresponding models to 1.5e-4, (tuning in 1e-2 to 1e-6), training
epochs to 100 rounds, set the optimizer to Adam, and the rest of the control experiments are
performed under the same conditions on the A100 GPU. The learning rate in tongue model
training is set to 5e-5, the training epochs are 200 rounds in the single modality, and the opti-
mizer is Adam. The size of the CRNN-related convolution kernel changes slightly depending
on the size of the 2D brain map[29]. All datasets, except for those used in the meta-learning
models, are divided into training and testing sets in a 4:1 ratio. The information of other
hyperparameters can be accessed in the codes.

4.4 Comparsion Results
In the EEG module, for the CRNN architecture, we obtain ICRNN ∈RSequence×X×Y×Bands, for
the Trans_EEGNet architecture, the input data is shaped as IEEGNet ∈RChannel×Sequence×OneBand .
Experiments in the study have shown that the band of alpha performs well. The sequence
length of data slices in SEED is significantly shorter than the rest of the dataset, while the
spatialization of channels is more appropriate than the rest of the datasets.

We have used Trans_EEGNet, CRNN and traditional machine learning methods for clas-
sification on SEED, MODMA and our private dataset, achieving the following results. In the
SEED dataset, the CRNN model which focuses on extracting spatial features, achieves the
best classification results, while in both MODMA and private datasets, our Trans_EEGNet,
which extracts spatio-temporal features in combination, achieves the best results in 5foldCV
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simulation. Trans_EEGNet also achieves competitive results in the SEED dataset. It also
demonstrates that Trans_EEGNet is more suitable for data with longer time sequences but
poor spatialization (i.e. fewer or more EEG channels). We also list below the accuracy of
the relevant dataset in other models in recent years.

Table 3: Results of EEG Module

Model SEED Acc MODMA Acc Private Acc
CRNN [48] 91.23% ± 0.97% 54.71% ± 0.51% 74.54% ± 17.86%
MLP 78.23% ± 4.05% 60.72% ± 7.10% 90.90% ± 7.60%
SVM 78.29% ± 0.78% 94.99% ± 4.97% 91.81% ± 5.30%
LogisticRegression 76.81% ± 1.53% 96.21% ± 4.09% 96.36% ± 1.81%
DecisionTree 71.47% ± 2.52% 82.07% ± 3.06% 95.45% ± 2.87%
RandomForest 76.96% ± 0.95% 90.25% ± 6.08% 92.72% ± 4.63%
Trans_EEGNet(Ours) 88.02% ± 1.55% 99.05% ± 1.26% 97.27% ± 3.63%

Table 4: Comparision on MODMA

Model MODMA Acc
Trans_EEGNet 99.05% ± 1.26%
MPA[27] 92.73%(LOSO)
mKTAChSel[30] 89.97%(LOSO)
GRL[31] 88.88%(10fold)
CNN-GRU-ATTN[41] 99.33%(9:1split)
TPTLP[34] 83.96%(LOSO)100%(10fold)
SparNet[6] 94.37%(LOSO)

In the tongue module, in our private dataset, we have conducted the tongue surface seg-
mentation using SAM[13] to exclude the rest of the image from interfering with the classifi-
cation. We have also conducted the multi-step pre-training method described above, which
didn’t show significant differences in the tongue modality but improved the accuracy of each
method by 1-10% when used in the multimodal context. The results of the model associated
with the tongue are shown in Table 5.

Table 5: Results of Tongue Module

Task Paddle Acc Private Acc Private(Seg) Acc Private(Seg,Meta-learning) Acc
Tongue’s Color 70.09% 75.00% 75.00% 73.33%
Coating’s Color 79.57% 83.33% 100.00% 73.33%
Coating’s Thickness 79.43% 75.00% 50.00% 80.00%
Coating’s Greasiness 78.12% 75.00% 75.00% 70.00%
TCM’s Syndromes None 100.00% 87.50% 88.89%
Depression None 100.00% 87.50% 90.00%

Table 6: Results of Multi-
modal Module

Fusion Method Private Acc
Parallel Channel 92.72% ± 6.16%
DCCA 85.45% ± 1.81%
Concat 98.18% ± 3.63%
Bilinear Pooling 97.27% ± 3.63%

We have used some multimodal fusion methods for model fusion and achieved the fol-
lowing results. Table 6 shows that the direct concat method has surpassed other fusion meth-
ods. The method performs well and shows great prediction results of the model.
4.5 Ablation Study and Visualization
4.5.1 Impacts of the ERP tasks

In our experiment, we designed the above-mentioned ERP tasks as we did not achieve the
desired results with each model on the resting state MODMA dataset at the beginning of
the project. We compared the accuracy of the data from two tasks on the Trans_EEGNet
model. The data from VFT achieved 97.27% ± 3.63% accuracy, while the data from CFAPS
achieved 92.22% ± 7.53% accuracy. Therefore, we chose the data from VFT as our primary
dataset.
4.5.2 Impacts of the components of models

We disassembled the CRNN model as well as the Trans_EEGNet model. The two com-
ponents of the CRNN model, CNN and LSTM, are used separately for prediction, and an
attempt is made to replace the LSTM component with the rest of the temporal correlation
neural network. Table 7 initially demonstrates that the advantage of the CRNN model lies in
the two-dimensionalization of the channels and better learning of spatial features. In addi-
tion, we split Trans_EEGNet and utilized EEGNet, Bi_input EEGNet (a variant of EEGNet
with dual-stream input [15]), and Single_EEGNet (a variant of EEGNet with only attention
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mechanism) for comparison. This comparison aims to demonstrate the advantages of the
self-attention mechanism and dual-stream input mechanism.

Table 7: Impacts of
the components of
CRNN

Model SEED Acc
CNN 90.01% ± 0.67%
LSTM 84.12% ± 1.10%
CRNN [48] 91.23% ± 0.97%
CNN-BiLSTM 91.01% ± 1.61%
CNN-TCN 91.06% ± 2.05%

Table 8: Impacts of the proposed
module of Trans_EEGNet

Model MODMA Acc Private Acc
EEGNet 95.59% ± 3.81% 82.72% ± 1.81%
Bi_input EEGNet 96.85% ± 2.83% 88.18% ± 1.81%
Single_EEGNet 96.85% ± 2.80% 95.45% ± 4.07%
Trans_EEGNet (ours) 99.05% ± 1.26% 97.27% ± 3.63%

Table 9: Impacts of the pretrained
model

Model Paddle Tongue Color Acc
Vit_small_patch16_224[7] 70.09%
Vit_base_patch16_384[7] 68.03%
SwinTransformer_tiny_window7_224[19] 66.83%
ResNet50[12] 68.27%
DeiT_tiny_patch16_224[35] 65.14%

4.5.3 Impacts of the pretrained model and visualization of the Tongue module

For tongue image classification, we use different deep learning models for tongue color
prediction, from which we select the optimal vit_small_patch16_224. We use t-SNE[36]
and attention rollout[1] techniques to visualize the tongue color classification results. The
768-dimensional semantic features of all the images in ViT are reduced to two dimensions
to visualize the model classification as shown in the Figure 2(a). There are five categories of
tongue color in the figure: ’pale white’: ’0’, ’bluish or purple’: ’1’, ’crimson’: ’2’, ’red’: ’3’,
and ’pale red’: ’4’. Among them, the two categories of pale red tongue (4) and red tongue
(3) are the main clusters and can be separated better, but there is still less confusion, which
we think may be related to the fact that the dataset itself is obtained by crawlers and thus the
light standard is not uniform and the number of samples for each classification in the dataset
is not the same.

Figure 3: Visualization of the Tongue module

Take the tongue coating color classification as an example, the heat map we obtained by
attention rollout is shown in Figure 3(b). The heat map reveals the regions of interest in the
image, and the decreasing heat from red to blue indicates the model’s level of attention to
those regions. From Figure 3, we can observe that the model’s judgment of coating color
focuses on the central area of the tongue and partially correlates with the tongue boundary,
which aligns with the subjective assessment of tongue diagnosis in TCM.

5 Conclusion
In this paper, we proposed a multimodal model based on our original Trans_EEGNet and
ViT for depression diagnosis. The model combines EEG representing instantaneous brain
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function information and tongue images representing long-term organ state of the body for
depression diagnosis. In the EEG module, we proposed the Trans_EEGNet to better capture
the spatio-temporal features of EEG. In the tongue module, the segmentation of the tongue
surface was conducted to exclude the interference of the rest of the image. The multi-step
pre-training scheme helped in gaining better pretrained weights. We completed tests on
several datasets and analyzed the role of core mechanisms in each model by ablation. In
addition, we analyzed the tongue diagnosis using visualization techniques such as t-SNE
and attention rollout to provide interpretive insights to validate the TCM diagnosis.

The study has achieved relatively satisfactory results in the diagnosis of depression, and
future directions include the collection of more data, in-depth study of various multimodal
approaches, and the strengthening of explanatory work related to TCM.
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