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Abstract

Mixup is a widely adopted strategy for training deep networks, where additional sam-
ples are augmented by interpolating inputs and labels of training pairs. Mixup has shown
to improve classification performance, network calibration, and out-of-distribution gen-
eralisation. While effective, a cornerstone of Mixup, namely that networks learn linear
behaviour patterns between classes, is only indirectly enforced since the output inter-
polation is performed at the probability level. This paper seeks to address this limita-
tion by mixing the classifiers directly instead of mixing the labels for each mixed pair.
We propose to define the target of each augmented sample as a uniquely new classifier,
whose parameters are a linear interpolation of the classifier vectors of the input pair. The
space of all possible classifiers is continuous and spans all interpolations between clas-
sifier pairs. To make optimisation tractable, we propose a dual-contrastive Infinite Class
Mixup loss, where we contrast the classifier of a mixed pair to both the classifiers and
the predicted outputs of other mixed pairs in a batch. Infinite Class Mixup is generic in
nature and applies to many variants of Mixup. Empirically, we show that it outperforms
standard Mixup and variants such as RegMixup and Remix on balanced, long-tailed, and
data-constrained benchmarks, highlighting its broad applicability. The code is available
online at: https://github.com/psmmettes/icm.

1 Introduction
There is a strong dependence between generalisation of deep networks and their access to
rich and diverse samples for training [5], since deep neural networks tend to overfit to training
sampled, or even memorise them [16]. Mixup forms a canonical approach to counteract this
inclination [66]. With Mixup, new samples are created by linearly interpolating input pairs
and their corresponding ground truth outputs. By augmenting training pairs, a network is
given insight into the linear transitions between classes, which helps to alleviate over-fitting.

Over the years, Mixup has shown to consistently improve down-stream performance
for images [1, 64], videos [37], point clouds [9], graphs [54], and more. Several works
have observed that the improved performance of Mixup can be attributed to better network
calibration [48] and out-of-manifold regularisation [17]. Due to its simplicity and strong
empirical results, a wide range of Mixup variants have also been proposed e.g., to improve
long-tailed recognition [11], semi-supervised learning [3], and fairness [12]. At the core of
training with Mixup is the following intuition:
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... Mixup extends the training distribution by incorporating the prior knowledge that linear
interpolations of feature vectors should lead to linear interpolations of the associated targets.

Zhang et al. [66]

An assumption shared by all Mixup variants is that interpolation of the targets should be
at the probability level, which results in using cross-entropy losses with interpolated one-hot
ground truth targets. For a Mixup interpolation between an image of a dog and an image of a
cat with interpolation ratio λ , the loss should enforce probability λ for the dog class and 1-λ
for the cat class. Linear interpolation at the probability level, however, does not strictly imply
linear classifier interpolation. This paper argues instead that linear interpolations of input
images should lead to linear interpolations of classifiers. From this view, for the interpolated
image from the dog and cat, the target is a new (and unique) classifier, with its parameters
given as the linear interpolation between the current dog and cat classifier weights. This
allows us to directly enforce linear interpolation in the classifier space.

Since the space of convex interpolations between all class pairs is continuous, there are an
infinite number of Mixup classifiers to integrate over in a cross-entropy formulation, hence
we name our proposed method Infinite Class Mixup. To make the optimisation tractable, we
propose a dual-contrastive loss. For each mixed pair in a batch, we obtain a pair-specific
classifier. We seek to optimise each pair towards their specific classifier and away from all
other classifiers in the batch, resulting in an identity matrix with mixed pairs and their clas-
sifiers along the axes. We optimise with cross-entropy simultaneously over both axes, which
have complementary gradient flows, and simply sum their losses. These contrastive losses
are not instantly applicable in standard Mixup, as it does not provide a direct setup to obtain
positive and negative pairs. In Infinite Class Mixup, however, these pairs arise naturally be-
cause each example corresponds to a uniquely defined classifier, allowing contrastive losses
between all unique examples and all classifiers in a batch.

We show how Infinite Class Mixup can be integrated into different Mixup variants. Em-
pirically, we find that our Infinite Class formulation improves classification in standard, data-
constrained, and imbalanced settings, outperforming both the conventional formulation and
recent variants such as RegMixup [43] and Remix [11]. Infinite Class Mixup does not require
additional parameters and has similar computational cost compared to standard Mixup.

2 Related work
Mixup. Mixup as proposed by Zhang et al. [66] is outlined for images by linearly interpo-
lating image pairs for every pixel. Rather than interpolating on a global level, several works
have proposed variants that interpolate images at a local level. For example, CutMix mixed
images by masking part of one image onto a region of the other image, with the mask size
equal to the interpolation ratio [64]. Similarly, GridMix [1] and RICAP [47] focus on a few
subregions by dividing images into grids and randomly assigning image patches to the grids.
PuzzleMix [24], co-Mixup [25], and Attentive CutMix [53] additionally include saliency or
attention information to improve foreground selection in the image mixing, while StyleMix
mixed both content and style for more visually coherent image mixes [20]. AugMix per-
forms Mixup between images and transformed versions [19] and AlignMixup geometrically
aligns images in feature space before mixing [51]. TokenMix mixes images at the token
level for effective use in transformer models [34]. In Mixup without hesitation, the Mixup
strategy is periodically turned off and on to speed up convergence and increase robustness
to the interpolation hyperparameter [63], while RegMixup combines the cross-entropy loss
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of the individual samples with the loss for mixed samples [43]. Manifold Mixup proposes
to perform the interpolation on a latent manifold within the network, rather than the at the
input-level [52], which has shown to be effective for few-shot learning as well [38]. Other
variants include TransMix [7], AutoMix [36], and RecursiveMix [61].

Mixup and its variants focus on interpolating outputs at the probability level. This paper
complements current Mixup literature by performing the output interpolation at the classifier-
level instead of at the probability-level for improved down stream performance. For the in-
puts, we follow the original Mixup, so our proposed output interpolation could be combined
with variants on input interpolation, such as Manifold Mixup [38, 52].

Mixup in contrastive learning. Mixup variants have been proposed for contrastive learn-
ing. For example, Lee et al. [31] and Ren et al. [45] perform Mixup in contrastive self-
supervised learning with virtual labels, where one of the two views of an example is re-
placed with a Mixup variant of that view. In this paper, we use mixup to create an image
and a classifier, and use these in a contrastive learning framework. Koshla et al. [23] extend
contrastive learning, to a supervised version, where multiple images from the same class
can be used in a batch. We, on the other hand, use mixup to create unique pairs, so that
each batch has only unique classes by construction. The concurrent Two-Way Loss [28] also
performs contrastive learning on both axes of a sample-class matrix for multi-label classi-
fication. In contrast, we generate interpolated classes as per-sample targets and propose a
dual-axis objective to improve general classification.

Adapting Mixup to other tasks. Mixup outlines a general formulation to interpolate im-
age samples. A wide range of works have therefore proposed task-specific extensions to
Mixup. For long-tailed recognition problems, extensions include Remix [11], balanced
Mixup [14], label occurrence-balanced Mixup [68], and dynamic Mixup [15], all of which
bias the mixing coefficients toward minority classes. For out-of-distribution detection and ro-
bustness, extensions include adversarial vertex Mixup [32] and Mixup during inference [41].
For semi-supervised data, Mixmatch provides labelled and unlabelled mixed images [3],
while Mix-and-Unmix in feature space improves semi-supervised object detection [26].

Mixup has furthermore been extended to regression [62], facial expression recogni-
tion [44], fairness [12], self-knowledge distillation [60], retrieval [42], domain adaptation [57,
59, 70], COVID-19 detection in images [21], zero-shot learning [58], and more. Our pro-
posed Infinite Class Mixup is also viable to task-specific Mixup formulations, as highlighted
by comparisons and experiments on long-tailed and data-constrained recognition tasks.

Mixup beyond images and videos. Mixup has also shown to be an effective learning strat-
egy beyond interpolating pixels. PointMixup performs Mixup for point clouds by performing
the interpolation between two training point clouds through optimal transport [9] and Point-
CutMix generalises CutMix to point clouds [67]. Other point cloud Mixup methods include
Rigid SubSet Mixup [30] and Point MixSwap [50]. Mixup has also been investigated for
LiDAR [56], graphs [54], speaker verification [71], vision-language navigation [33], single-
view 3D reconstruction [10], and language processing [29, 39, 46, 55, 69]. We focus on
Mixup for images, but our approach is generic and can be applied to many Mixup variants.
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Figure 1: Dual-contrastive learning in Infinite Class Mixup. The blue, red, and yellow
circles denote the original classifiers. The green shapes denote mixed samples, the black dots
denote interpolated classifiers. Our contrastive loss is defined between a mixed example and
all classes (left) and between a class and all mixed examples in the same batch (right).

3 Mixup with Infinite Classifiers
Mixup uses interpolation between training examples to create an infinite amount of training
data, which improves test generalisation, typically defined as follows:

x̃xx = λ xxxa +(1−λ ) xxxb, ỹyy = λ yyya +(1−λ ) yyyb, (1)

where the mixup image x̃xx is the result of interpolating input image xxxa of class A and xxxb of
class B, with interpolation ratio λ (0≤λ≤1). The mixup target ỹyy is the interpolation of the
one-hot encoded ground truth vectors yyya and yyyb. The interpolation ratio λ is drawn from a
parameterised Beta(α,α) distribution.

Interpolated classifiers. The idea behind Infinite Class Mixup is that every mixup image
x̃xx corresponds to its own class Cỹyy, defined as an interpolated class from the C original classes
using the mixup weights ỹyy. The class Cỹyy is fully specified by the C original classes and the
mixing weights ỹyy, since the mixing weights are continuous there are infinite many possible
interpolated classes.

More formally, we construct the classifier weights wwwỹyy, mixing the original classifier
weights wwwc proportionally to the Mixup weights:

wwwỹyy = ∑
c

ỹyycWc =Wỹyy, (2)

where W ∈ RD×C is a matrix with the classifier weights of the final layer of a deep neural
network (C number of original classes each having a D dimensional weight vector), and
ỹyy ∈ RC is the vector with per-class mixing weights, i.e. the contribution of each class to the
Mixup example x̃xx. Note that this formulation is rather generic, in the case that ỹyy corresponds
to a one-hot encoding of class c, the classifier weights wwwỹyy = wwwc.

Interpolated class probability. We define the class probability of interpolated class Cỹyy
similar to many softmax style classifiers:

p(Cỹyy|x̃xx) ∝ exp(r̃rr⊤Wỹyy), using r̃rr = fθ (x̃xx), (3)
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where r̃rr is the representation of image x̃xx extracted from the penultimate layer of a deep
convolutional network fθ (·). To learn the values for the parameters {θ ,W}, we maximise
the log-likelihood of the interpolated class prediction, as commonly used:

L= ∑
i

log p(Cỹyyi |x̃xxi). (4)

We use the interpolated classes Cỹyy only during training, at test time we evaluate the original
classes C using the classifier weights W and the network fθ .

In standard cross-entropy optimisation, the class probability of Equation 3 is obtained
through a normaliser Z over all ground truth classes, given by Z = ∑c′ exp(r̃rr⊤wwwc′). In our
approach, the normaliser is given now over all possible interpolated classifiers, which forms
a continuous space. Thus, with infinite many classes this sum is intractable and hence we
take a contrastive learning view where the normaliser Z depends on the other examples in
the batch. Below we introduce two contrastive variants.

3.1 Contrastive learning of mixed samples
Here, we offer a contrastive view on the cross entropy loss of Equation 4. In many contrastive
learning settings, positive pairs are formed by an image and its augmented version, and per
batch negative pairs are sampled. In Infinite Class Mixup, each Mixup image x̃xxi belongs
to a unique class Cỹyyi , this can also be seen as a positive pair which should be contracted.
Interestingly enough, the sampling of negative pairs, which should be detracted, can be done
along two axis: across the different Mixup classes in the batch, or across the different images
in the batch, see Figure 1. Below we discuss both axes sequentially.

Contrasting classifiers. First we consider the setting where each image is compared to all
classifiers, akin to a standard softmax classification network. In this setting the positive pair
(x̃xxi,Cỹyyi) is paired with negative pairs (x̃xxi,Cỹyy j), using the same image, but different interpo-
lated classes from the same batch. Then, the normaliser Z in Eq. 3 is defined as follows:

Zcc = ∑
j

exp(r̃rri W⊤ỹyy j), (5)

which results in the following gradient for the classifier weights of class c:

∇WcLcc = ∑
i

r̃rri

(
ỹyyic −∑

j
pcc(Cỹyy j |x̃xxi)ỹyy jc

)
, (6)

where we use cc to denote that we use contrastive classes, and pcc denotes the use of nor-
maliser Zcc for the class probability of Eq. 3. We refer to the supplementary material for the
details on the derivation.

Contrasting interpolated images. Second we consider the setting where each classifier
is compared to all interpolated images. Instead of contrasting (x̃xxi,Cỹyyi) against pairs with
the same image, we use pairs (x̃xx j,Cỹyyi) with the same classifier but different images. This is
equivalent in changing the normaliser to:

Zci = ∑
j

exp(r̃rr j W⊤ỹyyi). (7)
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The gradient with respect to the weights Wc of a class c are then given by:

∇WcLci = ∑
i

ỹyyic

(
r̃rri −∑

j
pci(Cỹyyi |x̃xx j)r̃rr j

)
, (8)

where ci denotes the use of contrastive interpolated images. This derivation is also given in
the supplementary material. Learning by contrasting other images is not directly applicable
in standard Mixup variants, but is enabled with our Infinite Class perspective.

Joint batch-level optimisation. The two contrastive views visualised in Figure 1 allow for
complementary optimisation. Yet the space of all possible pairs to contrast against remains
infinite. As is common in contrastive learning [8, 23], we maximise the likelihood of Eq. 3
by contrasting against all other mixed samples in the same batch, resulting in:

L=
|B|

∑
i

log(pcc(Cỹyyi |x̃xxi))+ log(pci(Cỹyyi |x̃xxi)), (9)

where |B| denotes the batch size. This is implemented efficiently, by running a standard
classification network up to the score (or logit) matrix S ∈ RB×C with the scores to the
original dataset classes. Then we compute S̃ = SỸ⊤, where Ỹ is the B×C matrix of the
stacked Mixup class contributions ỹyy, resulting in a B×B score matrix to the Mixup classes.
The contrastive loss (Eq. 9) is then the cross entropy loss over both axes of the score matrix
S̃, hence we denote class-axis as pcc and pair-axis as pci. In code, we call the cross entropy
loss function with S̃ and with its transpose S̃⊤.

Figure 2: In standard Mixup,
samples are aligned with in-
terpolated classes only at the
normalized softmax level (curly
lines) and cannot generalize to
other contrastive axes.

Relation to Mixup. In Mixup, the gradient with respect
to the classifier weights Wc is:

∇WcL= ∑
i

r̃rri

(
ỹyyic − p(c|x̃xxi)

)
. (10)

The gradients of Mixup and Contrasting classifiers (Eq. 6)
are similar, i.e. both subtract the expected (predicted)
class contribution E[yyyc] from the ground truth class con-
tribution, resulting in: r̃rri(ỹyyic−E[yyyc]), albeit both estimate
the expectation differently. Figure 2 illustrates this dif-
ference: in standard Mixup, an example pulls towards the
mixed classifiers, and retracts from the other classifiers,
but the strength of each depends only on the post-softmax
probabilities, i.e. the curly lines, which are normalized
scores instead of direct indiactors of classifier strength.
The contrasting images loss (Eq. 8), however, rather looks
at the expected class representation E[r̃rr] for class Cỹyyi , re-
sulting in ỹyyic(r̃rri −E[r̃rr]). Empirically we validate that the
losses are complementary.

4 Experiments
Implementation details. All experiments are done on ResNet [18] and Wide ResNet [65]
architectures. We train networks with Stochastic Gradient Descent for 200 epochs with a
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CIFAR-100
contrastive axis batch size

class-axis pair-axis 64 128 512

✓ 74.90 76.75 76.17
✓ 75.38 77.62 76.09

✓ ✓ 76.20 77.90 77.08

CIFAR-100
100% 50% 25% 10%

No Mixup 76.52 66.31 46.78 26.55
Mixup 77.33 68.39 49.68 28.21

IC-Mixup (c) 76.75 68.95 48.58 30.38
IC-Mixup (p) 77.62 69.23 50.72 28.29
IC-Mixup 77.90 68.89 50.48 30.19

Table 1: Ablation studies on contrastive axes (left) and training size (right) in Infinite
Class Mixup. Consistently over the size of the batch and the fraction of the dataset size,
combining both contrastive axes is effective and outperforms Mixup.

learning rate of 0.1 and a decay by factor 0.2 after 50, 100, and 150 epochs, with momentum
0.9 and weight decay 5e-4. Unless specified otherwise, the batch size is set to 128. For
Mixup and Remix, we set α to 0.2, for RegMixup we set α to 20. For Remix, we follow [11]
and set the interpolation threshold τ to 0.5 and the imbalance ratio threshold κ to 3. All
experiments are run three times and we show the mean accuracy results over the runs.

4.1 Ablations and comparisons
Effect of dual-contrastive loss. In Table 1 (left), we show the effect of the two contrastive
axes in Infinite Class Mixup, as well as their summed loss. We compare the three variants
on CIFAR-100 with a ResNet-34 architecture on three batch sizes. We report the mean ac-
curacy over three runs for all settings. For smaller batch sizes, we find that the pair-axis
performs better, while we observe the reverse for large batch sizes. Across all three batch
sizes, summing the losses of both contrastive axes is beneficial and improves the classifi-
cation accuracy. We ran additional baselines where we contrast each interpolated example
either to its two source classes, or to all original classes, instead of to all interpolated classes
of the current batch. These baselines do not outperform the proposed setup, and they do
not directly allow for optimization over the pair-axis. Hence we follow the (more standard)
contrastive approach. We conclude that both contrastive axes of our Infinite Class Mixup
are complementary and should be combined to improve down-stream performance.

Comparison to Mixup. In Table 1 (right), we draw a comparison to the baseline Empirical
Risk Minimisation without Mixup and to conventional Mixup. We report results for various
training set sizes of CIFAR-100, where for each percentage we perform random stratified
sampling per class to obtain a reduced training set. When using the entire training set, Infinite
Class Mixup obtains a mean accuracy of 77.90 compared to 77.33 for Mixup and 76.52 for
the No Mixup baseline. The improvements for Infinite Class Mixup also hold for all other
training set sizes, however depending on the amount of data the class-axis only or the pair-
axis only variant might perform slightly better. Overall, the fewer examples available, the
more profitable it is to apply Infinite Class Mixup. We conclude from this experiment that
Infinite Class Mixup is a viable alternative to Mixup for image classification.

Comparison to RegMixup. In Figure 3 we draw a comparison to the recently introduced
RegMixup [43]. RegMixup provides a simple yet effective change to Mixup; rather than
only training on mixed pairs, the mixed loss is added to a cross-entropy loss over the indi-
vidual samples in a batch. This allows for exploring balanced interpolations between classes
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Figure 3: Comparing RegMixup [43] to Infinite Class RegMixup across various dataset
sizes on CIFAR-10 (left) and CIFAR-100 (right) with a ResNet-34 architecture. On both
datasets, Infinite Class RegMixup outperforms RegMixup. For data-constrained settings
with smaller training sets, mixing with infinite classes is preferred.

(α >> 1), rather than sampling interpolations close to individual classes (α << 1). We fol-
low Pinto et al. [43] and use α = 20. On CIFAR-100 we find that Infinite Class RegMixup
improves the mean accuracy on CIFAR-100 from 77.99 to 78.83 compared to RegMixup.
As the training set size decreases, the difference in performance increases, up to an improve-
ment of 7.07 p.p. when using 10% of the training data, from 29.84 to 36.91. We observe
similar improvements for CIFAR-10 and conclude that our Infinite Class formulation is also
beneficial for RegMixup. Due to the improved results of RegMixup over Mixup overall, we
recommend Infinite Class RegMixup for the best classification accuracy.

4.2 Learning in constrained and long-tailed settings

Data-constrained learning. In Table 2 (left), we show experiments on ciFAIR-100 and
ciFAIR-10, two datasets created to mimic learning with limited labels [2, 6]. For this ex-
periment, we train using the default hyperparameters akin to the other experiments. Overall,
we find that mixing samples is an effective tool when dealing with limited samples. The
best performance on both datasets is obtained using Infinite Class RegMixup. In Table 2
(middle), we compare to the state-of-the-art on ciFAIR-10. Brigato et al. [6] have recently
shown the big effect of precise hyperparameter tuning in such data-constrained settings, with
top results on a tuned WideResNet-16-8 architecture. When using the same hyperparameters
and and architecture, supplemented with Infinite Class RegMixup, the results improve from
58.22 to 61.84, reiterating the potential of our approach in data-constrained settings.

Long-tailed recognition. For the imbalanced setting, we investigate on LT-CIFAR100 and
LT-CIFAR10 for imbalanced ratios 0.1 and 0.01 [13]. We do not adapt network training
to the long-tailed domain and start from standard empirical risk minimization on the im-
balanced training sets. We then incorporate Mixup [66] and Remix, a variant of Mixup
where the interpolation ratios of samples and classes is decoupled to account for long-tailed
classes [11]. Specifically, given interpolation ratio λ and hyperparameters τ (interpolation
threshold) and κ (imbalance ratio threshold), the interpolation ratio λy for the class probabil-
ities is 0 if ni/n j ≥ κ and λ < κ , with ni the sample ratio of class i. The interpolation ratio
is 1 if ni/n j ≤ 1/κ and 1− λ < κ , and λ otherwise. Remix favours class assignments to
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ciFAIR-100 ciFAIR-10

No Mixup 41.96 45.58

Mixup 43.83 47.63
IC-Mixup 43.11 49.03

RegMixup 47.55 53.17
IC-RegMixup 47.67 55.54

ciFAIR-10

Bietti et al. [4] 51.03
Oyallon et al. [40] 54.21
Kayhan and Gemert [22] 55.00
Ulicny et al. [49] 56.50
Kobayashi [27] 57.50
Brigato et al. [6] 58.22
+ IC-RegMixup 61.84

LT-CIFAR100 LT-CIFAR10
0.1 0.01 0.1 0.01

ERM 58.54 37.44 88.63 71.87

Mixup 62.68 39.21 89.63 72.82
IC-Mixup 64.30 43.31 89.89 76.81

+1.62 +4.10 +0.26 +3.99

Remix 61.36 38.04 89.57 72.65
IC-Remix 64.56 46.01 90.26 79.28

+3.20 +5.97 +0.67 +6.63

Table 2: Learning in constrained and long-tailed settings with Infinite Class Mixup.
Left: Infinite Class Mixup on top of RegMixup performs best on datasets with few samples
per class. Middle: This formulation also outperforms other methods optimised for data-
constrained settings. Right: Infinite Class Mixup also benefits long-tailed recognition.

long-tailed classes. In Table 2 (right), we report the results for empirical risk minimisation,
Mixup, Remix, and our Infinite Class variants of Mixup and Remix. On both datasets, we
find that our Infinite Class formulations improve over the standard formulations, especially
for larger imbalance ratios. On LT-CIFAR100 (using 0.01 as imbalance ratio) the perfor-
mance improves from 39.21 to 43.31 for Mixup and from 38.04 to 46.01 for Remix. We
observe similar performance gains on LT-CIFAR10. Overall, while Remix performs on par
or slightly below Mixup, Infinite Class Remix obtains the highest scores. We thus conclude
that Infinite Class Remix is beneficial for imbalanced learning.

4.3 What does Infinite Class Mixup learn differently?

We have performed analyses on the impact of linear interpolation between classifiers for
Mixup. We investigate (i) the example confidence as a function of the interpolation ratio
and (ii) the difference in classifier dot products as a function of the interpolation ratio. For
both analyses, we take ResNet-34 networks trained on CIFAR-100 and sample a single test
image for each class. Then we sample all image pairs and construct interpolated images
using 0 ≤ λ ≤ 1 with step size 0.1, thus resulting in 99K interpolated images.

Lower confidence for ambiguous interpolations. In Figure 4 (left), we show the mean
confidence scores, computed by their class-independent squared norms, as a function of the
interpolation ratio over all image pairs. We investigate networks trained with Mixup and with
Infinite Class Mixup. As noted by Liu et al. [35], the larger the norm, the more confident
the prediction. When training with Mixup, interpolated samples have similar average norms
compared to their original samples. For Infinite Class Mixup, however, the average norm is
higher for uninterpolated images. In other words, Infinite Class Mixup is better equipped at
differentiating ambiguous mixed samples and canonical unmixed samples.

Better differentiation between interpolated classes. Finally, in Figure 4 (right), we show
the mean and stddev class confidence difference as a function of the interpolation ratio. For
each image pair and interpolation ratio, we feed the mixed image to the network and compute
the dot product with the classifiers of the labels of the pair. We take the dot product of the first
class and subtract the dot product with the other class. Infinite Class Mixup shows a stronger
relation between the interpolation ratio and the class confidence score, indicating that our
formulation learns to better separate classes as a function of their inter-class ambiguity.
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Figure 4: Understanding what Infinite Class Mixup learns. Left: Infinite Class Mixup is
on average more confident for un-interpolated images, which helps to differentiate between
classes during testing. Right: The further the interpolation ratio is from 0.5, the bigger the
difference in class confidence in Infinite Class Mixup. Our approach learns to better separate
classes as a function of their inter-class ambiguity.

5 Conclusions
Mixup is a popular and effective algorithm for network training where images and their
corresponding label vectors are linearly interpolated to generate new samples and diversify
the training set. A linear interpolation of label vectors does however not ensure linear be-
haviour between classifiers as a function of the interpolation ratio. We introduce Infinite
Class Mixup, where we interpolate images and their corresponding classifiers directly. Each
interpolated image is matched with a unique vector in classifier space, defined by a linear
interpolation between the classifier vectors of the classes of the original image pair. We show
how this setup can be optimised by contrasting simultaneously over both axes of the logit ma-
trix between all image pairs and corresponding interpolated classes, improving classification
in balanced, long-tailed, and data-constrained settings.
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