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Abstract

We propose a sparse and privacy-enhanced representation for Human Pose Estima-
tion (HPE). Given a perspective camera, we use a proprietary motion vector sensor
(MVS) to extract an edge image and a two-directional motion vector image at each time
frame. Both edge and motion vector images are sparse and contain much less infor-
mation (i.e., enhancing human privacy). We advocate that edge information is essential
for HPE, and motion vectors complement edge information during fast movements. We
propose a fusion network leveraging recent advances in sparse convolution used typ-
ically for 3D voxels to efficiently process our proposed sparse representation, which
achieves about 13x speed-up and 96% reduction in FLOPs. We collect an in-house
edge and motion vector dataset with 16 types of actions by 40 users using the propri-
etary MVS. Our method outperforms individual modalities using only edge or motion
vector images. We also demonstrate the generalizability of our approach on MMH-
PSD and HumanEva datasets. Finally, we validate the privacy-enhanced quality of our
sparse representation through face recognition on CelebA (a large face dataset) and a
user study on our in-house dataset. The code and dataset are available on the project
page: https://lyhsieh.github.io/sphp/.

1 Introduction

With the advance of deep learning [9] for visual perception and the lower cost of connected
camera systems, human society is at the beginning of the smart camera systems era [23]
facilitating our daily life. However, there are two key challenges to be addressed. Firstly,
the dilemma between convenience and privacy. We want the systems (e.g., in our home) to
recognize our behavior and assist us, but we also need to ensure they protect our privacy.
Secondly, applying deep models on the cloud’s visual data is costly and introduces delays.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* indicates equal contribution.


Citation
Citation
{Chai, Zeng, Li, and Ngai} 2021

Citation
Citation
{Krishna, Gordon, Fei-Fei, and Bernstein} 2021

https://lyhsieh.github.io/sphp/

2 LIN ET AL.: SPARSE AND PRIVACY-ENHANCED REPRESENTATION FOR HPE

ne HP  Grayscale Figure 1: Examples from SPHP. Our mo-
3 tion vector sensor (MVS) can extract an

L edge image and a two-directional motion

'y i vector image (visualized as horizontal

B MVy and vertical MVy, respectively) at

W each time frame. We also provide anno-
(} i tated body joints for Human Poses (HP)
o 7 and corresponding grayscale images.

We aim to run these models efficiently on the edge device, which supports real-time response
and protects our privacy. Therefore, a sparse and privacy-enhanced representation for human
pose estimation is desired.

An event-based camera is a sparse representation approach that only records the intensity
variances between active pixels. Hence, privacy can be enhanced, and recorded identities
cannot be directly recognized compared to traditional cameras. Human pose estimation from
event data has been studied in recent years [5, 55]. However, networks trained with event
data usually have a significantly lower performance in HPE due to no event data recorded on
still body parts. In order to achieve better HPE performance by sparse representation, a new
approach is necessary for privacy-enhanced smart cameras on edge devices.

Inspired by the seminal edge (i.e., boundary) [28] and motion [4] literature before deep
learning, we advocate that edge information is essential for HPE, and motion vectors com-
plement edge information during fast movements. Besides, both edge and motion vectors
are sparse representations that can be efficiently processed and enhance privacy. Hence, we
propose to use edge to capture the contour of all body parts and replace event data with two-
directional motion vectors. Specifically, we use a proprietary motion vector sensor (MVS) to
extract an edge image and a two-directional motion vector image at each time frame. Thus,
our method differs from pure software solutions that may already contain privacy-sensitive
data. We propose a fusion network leveraging these complementary sparse representations
(i.e., edge and motion vectors) to perform better than each representation. Moreover, we
exploit the sparsity of our data to replace standard convolution with submanifold sparse con-
volutions [3] typically used for 3D voxels to speed up the inference time by 13 times.

Unlike RGB images, our proposed edge and motion vector representation lacks labeled
data. Therefore, we collect an in-house dataset called Sparse and Privacy-enhanced Dataset
for Human Pose Estimation (SPHP), as shown in Figure 1. This dataset includes recordings
of 40 individuals performing 16 exercise and fitness-related actions, such as stretching or
jogging, captured from 4 distinct viewing angles. We also collect grayscale images synchro-
nized with edge and motion vectors to speed up joint position annotation. First, we apply a
pre-trained natural-image-based HPE network on the grayscale images to obtain high-quality
"initial" joint labels. Next, we ask human annotators to check and correct the errors if needed.
This approach is estimated to save about 2,000 hours of manual joint labeling effort.

To demonstrate the applicability of our proposed framework, we begin by conducting
extensive experiments on our SPHP dataset. Our fusion method surpasses the performance
of individual modalities (i.e., edge or motion vectors) for human pose estimation, especially
for fast-moving joints, with a maximum relative improvement of 11% over using only the
edge modality. We also compare traditional and submanifold sparse convolutions to demon-
strate the advantage of our sparse data. The results show that sparse convolution networks
can reduce the number of FLOPs of HPE by 96% while maintaining an acceptable error rate.
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In addition, we achieve a 13x acceleration in inference time, which is particularly benefi-
cial for real-time applications. Besides, we confirm the generalizability of our approach on
additional HPE datasets, such as MMHPSDI[55] and HumanEva[41]. The results on MMH-
PSD highlight that motion vectors capture more valuable information compared to traditional
event cameras. To verify the privacy-enhanced attribute of our data, we use ArcFace [11] to
evaluate the cosine similarity between various modalities of faces on the large-scale face at-
tributes dataset, CelebA [26]. Using edge as input results in a 10.2% recall drop compared to
RGB images, indicating that privacy is enhanced by converting RGB images to edge images.
Moreover, we conduct a user study to check if humans can identify a specific individual from
10 leaked edge images, given a grayscale reference face. The significantly low accuracy of
18.8% demonstrates the limited ability of humans to recognize faces in edge modality.
Our main contributions are summarized as follows:

1. We introduce the Sparse and Privacy-enhanced Dataset for Human Pose Estimation
(SPHP), which consists of synchronized, complementary images of edge and motion
vectors along with ground truth labels for 13 joints.

2. Our fusion method outperforms individual modalities (i.e., edge or motion vectors) for
human pose estimation, particularly for fast-moving joints, with a maximum relative
improvement of 11% on our dataset when compared to using only the edge modality.
Additionally, we further demonstrate the generalizability on other HPE datasets.

3. The high sparsity of SPHP enables us to achieve a maximum 13x acceleration in infer-
ence time and decrease FLOPs by 96% after applying sparse convolution, significantly
reducing computational costs compared to traditional convolutional neural networks.

4. We demonstrate the privacy-enhanced nature of our sparse representation through face
recognition experiments. We utilize edge images as input and validate a recall drop of
over 10.2% in comparison to RGB images on the CelebA dataset. Furthermore, our
user study shows that humans have limited ability to recognize faces in edge modality.

2 Related work

2.1 Human Pose Estimation

Human Pose Estimation (HPE) is a rapidly developing field of research in computer vision,
intending to predict 2D/3D positions of joints from various types of input, including RGB,
grayscale, or even depth image [27, 39, 40]. HPE has numerous potential applications, such
as action recognition, health monitoring [7], and physical education. Currently, CNN-based
methods [13, 44, 47, 51, 54] achieve the state-of-the-art performance. Some focus on single-
person pose estimation [29, 45] while others can perform HPE on multi-person [8, 14, 53].
These methods are typically trained and evaluated on RGB-based image datasets such as
MS-COCO [25], MPII [1], and CrowdPose [24].

Top-down and bottom-up approaches are two common strategies in HPE. A top-down
approach is a two-stage method that performs human detection at each input image to find
the region of interest before predicting joint positions. The accuracy of a top-down ap-
proach may rely on the quality of the human detection process. Representative networks
for top-down paradigms include HRNet [43], Mask-RCNN [18], CEN [21], CPN [10], G-
RMI [31] and SimpleBaseline [50]. A bottom-up approach detects each joint position and
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assembles them into groups. Representative works are DeepCut [33], DeeperCut [22] and
OpenPose [8]. Bottom-up approaches have shown greater efficiency in HPE for multiple hu-
mans compared to top-down approaches and can effectively handle complex poses involving
self-occlusion. In this study, we adopt a bottom-up approach for our backbone networks.

2.2 Sparse Convolution

Convolution Neural Networks (CNNs) have been proven effective for many visual recog-
nition tasks, including human pose estimation. However, CNNs’ high computational cost
makes it challenging to use on resource-limited embedding systems. The cost significantly
increases when higher dimensional convolutions, such as 3D CNN on 3D point clouds, are
needed. Despite the challenge, several sparse convolution techniques have been proposed to
leverage the sparsity property within the data. For instance, [12, 15] propose sparse convolu-
tional layers for processing 3D data efficiently. [3] proposes submanifold sparse convolution,
which leads to computational saving but remains state-of-the-art performance. [46] designs a
sparse data structure and realizes fast computation for 3D shape analysis. [36, 42] use sparse
convolutional layers to maintain the efficiency for processing point clouds. Other than 3D
data, handwritten characters are a 2D sparse data example demonstrating sparse convolu-
tion’s effectiveness for character recognition [16]. Nevertheless, fewer studies [32] have
been conducted to leverage sparse convolution for human pose estimation.

2.3 Privacy Enhancing

Using RGB images to recognize human behavior has many useful applications but raises
privacy concerns. Hence, enhancing privacy using software or hardware-level techniques
becomes an essential research direction. At the software level, early methods [30] involved
algorithms such as encryption, image filtering, and object/people removal. Besides, [38] in-
troduces inverse super-resolution, generating multiple low-resolution training videos (e.g.,
16x12) from high-resolution videos for human activity recognition. [35, 49] adopt adver-
sarial learning to remove privacy-sensitive information from images while balancing the
trade-off between privacy and task. At the hardware level, privacy-enhanced optics are de-
signed to filter out private information while still retaining functionality such as human pose
estimation and action recognition. [34] applies privacy-enhanced optics to block sensitive
information from the incident light field before sensor measurements. [2, 19, 20] use opti-
mal encoders to protect privacy, and use convolutional neural networks to extract features of
specific tasks. In this work, we use a proprietary motion vector sensor (MVS) to extract an
edge image and a two-directional motion vector image at the hardware level. We show that
MYVS significantly enhances privacy through our designed face recognition experiments.

3 Approach

We describe the detailed process to obtain our sparse representation (Section 3.1). Then, we
introduce a fusion model (Section 3.2), which benefits from both edge and motion vectors.
To enhance the efficiency of our fusion model, we utilize sparse convolution (Section 3.3).

3.1 Sparse Representation

We use a proprietary Motion Vector Sensor (MVS) to extract an edge image and a two-
directional motion vector image at each time frame. Our MVS provides sparse and privacy-


Citation
Citation
{Pishchulin, Insafutdinov, Tang, Andres, Andriluka, Gehler, and Schiele} 2016

Citation
Citation
{Insafutdinov, Pishchulin, Andres, Andriluka, and Schiele} 2016

Citation
Citation
{Cao, Simon, Wei, and Sheikh} 2017

Citation
Citation
{Engelcke, Rao, Wang, Tong, and Posner} 2017

Citation
Citation
{Graham} 2015

Citation
Citation
{Benjaminprotect unhbox voidb@x protect penalty @M  {}Graham} 2018

Citation
Citation
{Wang, Liu, Guo, Sun, and Tong} 2017

Citation
Citation
{Riegler, Ulusoy, and Geiger} 2017

Citation
Citation
{Su, Jampani, Sun, Maji, Kalogerakis, Yang, and Kautz} 2018

Citation
Citation
{Graham} 2014

Citation
Citation
{Parger, Tang, Twigg, Keskin, Wang, and Steinberger} 2022

Citation
Citation
{Padilla-L{ó}pez, Chaaraoui, and Fl{ó}rez-Revuelta} 2015

Citation
Citation
{Ryoo, Rothrock, Fleming, and Yang} 2017

Citation
Citation
{Ren, Lee, and Ryoo} 2018

Citation
Citation
{Wu, Wang, Wang, and Jin} 2018

Citation
Citation
{Pittaluga and Koppal} 2015

Citation
Citation
{Arguello, Lopez, Hinojosa, and Arguello} 2022

Citation
Citation
{Hinojosa, Niebles, and Arguello} 2021

Citation
Citation
{Hinojosa, Marquez, Arguello, Adeli, Fei-Fei, and Niebles} 2022


LIN ET AL.: SPARSE AND PRIVACY-ENHANCED REPRESENTATION FOR HPE 5

enhanced representation, as detailed below, compared to traditional RGB/grayscale cameras.
Edge Image. MVS uses an efficient hardware implementation of edge detection, similar to
Canny edge detection [6], to generate edge images. Each pixel in the edge image has a value
within the range of {0, 255}. A higher value indicates a stronger intensity of the edge.
Motion Vector. Inspired by the motion detection of the Drosophila visual system [52] and
designed with patent-pending pixel-sensing technology, MVS detects vertical and horizontal
motion vectors, denoted as MVy and MVy shown in Figure 1, by analyzing changes in
illumination. Each value falls within the range of {-128, 128}. The magnitude and sign of a
value represent the strength and direction of motion, respectively.

Since MVS only produces non-zero values when detecting edge or motion vectors, the
resulting data can be very sparse. This greatly reduces resource usage during computation
and storage. Additionally, the output data from MVS only focuses on changes in illumination
over time and space, reducing the risk of privacy exposure (i.e., privacy-enhanced).

3.2 Fusion Model

Edge and motion vector information complement each other. While edge is sufficient for
detecting clear and non-blurred body joints, incorporating motion vectors into our model
can effectively address the challenges posed by fast movements and overlapping boundaries,
which may confuse edge-based HPE models. Hence, we aim to combine the complementary
information of edge and motion vectors while keeping our model compact and efficient. We
directly concatenate an edge image and a two-directional motion vector image, proposing the
early fusion model (referred to as FS) as illustrated in Figure 2. Our FS model can leverage
various single-branch network architectures designed for compactness and efficiency.

re@~||' —’|||I‘I||| ‘ /

fusion
backbone

Y network

dlfferem input
modalities

@ concatenation

Figure 2: Fusion model. We employ early Figure 3: Environment Setting. In an
fusion on different data modalities, includ- area of 6x5m?2, two MVSs are located
ing edge and two-directional motion vectors 3 meters away from the subject, with a
(MVy and MVy). The resulting output chan- viewing angle of 45 degrees centered on
nel N corresponds to the number of joints.  the subject’s position.

3.3 Sparse Convolution

Sparse convolution methods, studied mainly on 3D point clouds [48] and 2D hand-written
characters data [3], have shown on-par performance with dense methods while requiring sub-
stantially less computation. Our proposed edge and motion vector representation is 96.23%
and 99.13% sparse on average, respectively. Hence, we leverage the submanifold sparse con-
volution network introduced in [3] to train our compact fusion model. This approach offers a
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powerful tool for processing sparse data, allowing us to effectively exploit the sparsity of our
representation while capturing the necessary information for accurate predictions. We also
achieve on-par performance with 96% fewer FLOPs compared to traditional convolution.

4 Our SPHP Dataset

We use our proprietary MVS to collect an in-house edge and motion vector dataset with 16
types of actions performed by 40 users, as shown in Figure 1.

Data Format. Motion Vector Sensor (MVS) captures three channels of 8-bit information,
conveying edge, horizontal, and vertical motion vectors at each time frame. MVS has a res-
olution of 640x480 and a field-of-view of 60 degrees. When collecting data, MVS records
videos for 10 seconds per clip, with 30 frames per second.

Environment Setting. We collect the data in a room with an area of 6x5m>. Two MVSs
are located 3 meters away from the subject, with a viewing angle of 45 degrees centered on
the subject’s position as shown in Figure 3. This setup allows us to collect data from two
different viewing angles simultaneously, which increases the data collection efficiency.

4.1 Participants and Actions

We collected data from 40 subjects, having a balanced distribution of 20 male and 20 female
participants. The average ages of male and female participants are 32 years and 22 years,
respectively. Besides, the average heights of male and female participants are 172 and 161
centimeters, respectively. Participants performed 16 fitness-related actions, which are listed
in Table 1 and categorized into four classes based on the type of movement: C1 for upper-
body movements, C2 for lower-body movements, C3 for slow whole-body movements, and
C4 for fast whole-body movements.

To diversify the viewing angles of our dataset, we apply a novel strategy to capture each
action from multiple perspectives. Firstly, we place two cameras within an interval of 45
degrees. Then, we instruct the participants to face various directions (i.e., 0, 15, 30, and 45
degrees, respectively) while capturing their actions. In each direction, every participant will
perform four actions, totaling 16 actions, as listed in Table 1.

Table 1: The 16 actions in our SPHP dataset are categorized into four classes: C1 for upper-
body movements, C2 for lower-body movements, C3 for slow whole-body movements, and
C4 for fast whole-body movements.

Cl1 C2 C3 C4
1. Arm abduction 5. Leg knee lift 8. Squat 12. Elbow-to-knee
2. Arm bicep curl 6. Leg abduction 9. Walk in place 13. Jump in place
3. Wave hello 7. Leg pulling 10. Standing side bend 14. Jumping jack
4. Punch up forward 11. Roll wrists & ankles  15. Hop on one foot

16. Jog in place

4.2 Efficient Annotation

Our dataset is annotated with the positions of 13 joints: nose, left/right shoulder, left/right
elbow, left/right hand, left/right hip, left/right knee and left/right foot. We use a well-trained
grayscale HPE model to speed up the annotation process to mark the initial joint positions.
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Table 2: A comparison of our SPHP

Dataset Sub# Seq# Frame# Dir MM dataset with event-based datasets in terms
DHPI19 [5] 17 33 87K of the number of subjects (Sub#), ac-
MMHPSD [55] | 15 12 240K v tion sequences (Seq#) per subject, frames
SPHP (ours) 40 16 384K v v (Frame#), directional motion (Dir), and

multi-modality (MM).

Then, we manually confirm the initial position as acceptable or make fine-grained adjust-
ments on each frame. All videos in our dataset are fully annotated.

4.3 Dataset Comparison

We compare our SPHP dataset and two event-based datasets, namely DHP19 [5] and MMH-
PSD [55], in Table 2. Our dataset outperforms these datasets in various aspects. Firstly,
our multi-modality data includes two-directional motion vectors, providing more detailed
and nuanced information about actions. Secondly, SPHP boasts the highest number of sub-
jects and frames, and exhibits greater diversity in different unique action types compared to
DHP19, which has a large proportion of symmetric actions. Additionally, unlike DHP19 and
MMHPSD, SPHP captures 10-second videos for each action rather than recording a fixed
number of repetitions, thus providing more comprehensive information.

5 Experimental results

5.1 Human Pose Estimation

To showcase the superiority of our sparse data in HPE, we conduct the experiments on three
datasets: SPHP, MMHPSD [55] and HumanEva [41]. Within our SPHP dataset, we compare
the performance across various input modalities, including edge, motion vectors, a fusion of
edge and motion vectors, and grayscale images. Besides traditional convolution, we also
employ submanifold sparse convolution to assess the computational efficiency gained from
exploiting the sparsity in input data. Additionally, we assess the generalization capability
of our method on MMHPSD and HumanEva. Notably, within the MMHPSD dataset, we
incorporate the provided event data for further comparison with our motion vectors.
Implementation. We test on 3 CNN backbones, including the DHP19 [5] proposed model
(218K), U-Net-Small (1.9M), and U-Net-Large (7.7M). U-Net-Small and U-Net-Large are
built based on the architecture proposed by [37], incorporating three downsampling and
upsampling operations. The output dimensions of the 3 x 3 convolutions in the U-Net-Large
are twice as large as those of the U-Net-Small. The input frames are resized to 288 x 384 for
the SPHP dataset, whereas the MMHPSD dataset retains its original size of 256 x 256. For
each joint, the model outputs a heatmap that indicates the likelihood of the joint position at
each pixel. To generate a target heatmap for a joint, we initialize an all-zero map of the same
size as the input frame and set a value of 1 to the pixel corresponding to the annotated joint
position. The heatmap is then smoothed using Gaussian blur with 0 = 4. Mean Squared
Error (MSE) is employed as the loss function.

Evaluation Metrics. Mean Per Joint Position Error (MPJPE) is chosen for evaluation.
MPJPE = 4 ¥, ||lyi — ¥i| calculates the Euclidean distance between predicted positions
and ground truth positions y; for each joint, where N is the number of joints.
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Table 3: MPJPE (lower is better) on SPHP with different input types. Different input modal-
ities, "GR", "ED", "MV", and "FS", are grayscale, edge, motion vector, and fusion (edge and
motion vector), respectivetly. C1, C2, C3, C4 are four classes listed in Table 1. C and SC are
traditional and sparse convolutions, respectively.

C SC

Backbone 4 of Params  Input =13 4 Nean Cl  C2 C3 C4 Mean
GR 262 3.08 333 362 320 } - } - -
MV 1696 650 643 5.11 866 5696 27.12 2586 14.12 30.20

DHP19 [5] 218K ED  3.14 364 371 403 365 518 647 594 676  6.10
FS 336 332 356 388 356 500 652 610 645 601

GR 182 208 213 248 215 - - - - -

MV 1956 541 569 382 852 5429 2093 1925 811 2485
ED 320 349 319 349 335 335 378 348 395 3.65
FS 332 291 279 318 3.07 342 361 341 369 354

GR 1.73 2.14 200 233 206 - - - - -

MV 1876 527 554 379 825 52.08 20.00 18.65 7.77 23.86
ED 295 3.08 286 327 3.05 332 370 347 386 3.60
FS 268 294 279 314 290 332 364 341 3.64  3.50

U-Net-Small 1.OM

U-Net-Large 7.7M

Table 4: MPJPE at different speed levels. Table 5: Comparison of GFLOPs and FPS
Each joint is classified into three levels, (frames per second). All of the experi-
slow, medium, and fast. "ED," "MV," and ments are conducted for the fusion input
"FS" stand for edge, motion vector, and modality on SPHP. "C" and "SC" are tra-

fusion (edge and motion vectors). ditional and sparse convolutions.

Backbone  Input Slow Medium Fast Backbone = Params Conv. GFLOPs FPS
MV 3666  9.66  9.65 C 27545 2689

DHP19 [5] ED 5.66 6.90 8.22 DHP19 [5] 218K 33.25 38.88
FS 569 676 734 SC o (871%)  (1.5%)

MV 31.07 5.33 477 C 1135 11.82

U-Net-Small ED  3.51 3.95 433  U-Net-Small 1.9M 46.74  36.13
FS 348 362 385 SC (196%) (%)

MV  29.84 5.10 4.57 C 4510 1.07

U-Net-Large ED  3.47 382 422 U-Net-Large 7.7M 186.80  13.89
FS 344 362 384 SC o (196%)  (13%)

HPE Performance on SPHP. The results in Table 3 show that our fusion (FS) model
achieves the best results compared to other sparse inputs (i.e., Edge (ED) and Motion Vector
(MYV)) for both traditional and sparse convolution networks. Besides, the gap between tradi-
tional and sparse convolutions is small in the U-Net-Small/U-Net-Large backbone, whereas
the gap becomes more significant when using the smallest model (DHP19).

In Table 4, we evaluate MPJPE with sparse convolution networks based on the speed of
each joint, categorized into three levels: slow, medium, and fast. For a 640x480 image, a
joint that moves less than 4 pixels compared to the previous frame is considered slow; be-
tween 4-6 pixels is medium; more than 6 pixels is fast. The results show that the gap between
FS and ED is the largest for fast-moving joints. U-Net-Small shows the most noteworthy rel-
ative improvement of 11% (from 4.33 to 3.85), validating that motion vectors complement
edges in detecting fast movements. See supplementary materials for more performance anal-
ysis of backbones and joint speed.

The qualitative results are shown in Figure 4. According to the results, the edge images
alone can lead to motion blur and decreased accuracy. For instance, the joint predictions in
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Edge MV Edge Fusion Edge MV Edge Fusion
input input pred. pred. input input pred. pred.

Figure 4: Qualitative results. Our fusion (i.e., edge and MV) method rectifies the inaccurately
predicted joints caused by motion blur and unclear contour when using only edge inputs, as
shown in yellow circles. Green dots denote the ground truth, and red ones represent the
predictions. Note that the grayscale images in the figure are for better visualization only and
are not used as input for both predictions.

Figure 4(a)(b) are incorrect due to motion blur. Moreover, the unclear contour may also lead
to inaccurate prediction, as shown in Figure 4(c)(d). Performing early fusion on edge and
motion data enables models to rectify pose estimation.

Computational Efficiency. As shown in Table 5, sparse convolution can achieve a notewor-
thy 96% reduction in FLOPs. We also evaluate frames per second (FPS) on an Intel Core
19-7940 3.1GHz CPU and observe a 3x and 13x acceleration in U-Nets. With sparse convo-
lution, U-Net-Small strikes the best balance between accuracy (MPJPE) and speed (FPS).
Experiments on more complex datasets. We evaluate our method on the MMHPSD [55],
which provides event frames. On MMHPSD, we generate MV data using an off-the-shelf ap-
proach. The experimental results are presented in Table 6. Notably, our "MV + edge" fusion
approach exhibits superior performance compared to using edge or MV modalities alone.
This shows the generalizability of our method across various datasets. Furthermore, using
"MV" as input demonstrates superior performance compared to using the "event" provided
by MMHPSD, both with and without edges. This serves as evidence that MV captures better
information than traditional event cameras. Besides MMHPSD, we include the experimental
results from HumanEva [41] dataset in the supplementary material.

Table 6: MPJPE on MMHPSD [55] with different input types. Conv. stands for convolutions.
Edge Event MV Event+ Edge MV + Edge

Conv. 350 4.66 3.30 3.26 2.95
Sparse Conv. 3.84 9.75 691 3.28 3.06

5.2 Privacy-enhanced Representation

Face Recognition. To demonstrate the privacy-enhanced nature of our sparse data, we con-
duct face recognition experiments on CelebA [26] featuring over 10,000 individuals. We
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Table 7: Face recognition performance for

various input types on CelebA [26]. We
RGB 88.9 - 84.1 § train the ResNet-50 [17] backbone with Arc-

Grayscale | 88.7 0.2 842 -0l face [11] loss to perform face recognition. The
Edge 848 4l 739 102 recall of edge input drops by 10.2.

Input Acc. Drop | Recall Drop

convert CelebA’s RGB images into grayscale and edge images for comparison. Note that
facial motion is typically small or absent, so it is not included. We perform face recognition
on each type of image using the ResNet-50 [17] backbone with Arcface [11] loss.

Table 7 shows that face recognition performances are similar for RGB and grayscale
images. However, when using edge input, the accuracy drops by 4.1% compared to RGB,
while the recall drops even more significantly by 10.2%. This indicates that using the edge
format can help reduce individuals’ privacy exposure compared to the other two formats.
Human Ability for Cross-modality Face Matching. We further test the cross-modality
face-matching ability of humans on our SPHP dataset. To simulate people identifying dif-
ferent faces, we design a survey to analyze the ability of 100 participants to match leaked
edge faces with grayscale faces from different angles and appearances. Each participant will
be asked ten questions. In each question, the participant should identify the person from
ten choices of edge faces given a grayscale reference face. In order to make the test more
complicated, faces in the choices are presented from various angles and differ from those in
the questions. The average test accuracy is only 18.8%, whereas the accuracy increases to
87.3% if we change the choices to grayscale images. These results suggest that people have
a restricted ability to recognize daily faces from leaked edge images.

6 Conclusion

We introduce the novel SPHP dataset, which contains sparse edge images and two-directional
motion vectors. Our proposed fusion model exhibits enhanced performance in human pose
estimation compared to individual modalities using only edge or motion vectors. By lever-
aging our sparse data with submanifold sparse convolutions, we further reduce the FLOPs by
96% and achieve a 13x speed-up compared to traditional convolutional neural networks. In
addition, we showcase the generalization capability of our method through experiments on
MMHPSD and HumanEva datasets. Furthermore, to verify the privacy-enhanced nature of
our representation, we conduct a face recognition experiment using edge images as inputs,
which results in a recall drop of 10.2% compared to the use of RGB images. Finally, we
carry out a user study to demonstrate the limited ability of humans to recognize faces across
leaked edge and daily grayscale images.
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