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Abstract

A lightweight underwater image enhancement network is of great significance for
resource-constrained platforms, but balancing model size, computational efficiency, and
enhancement performance has proven difficult for previous approaches. In this work, we
propose the Five A™ Network (FA™ Net), a highly efficient and lightweight real-time un-
derwater image enhancement network with only ~ 9k parameters and ~ 0.01s processing
time. The FA™Net employs a two-stage enhancement structure. The powerful prior stage
aims to decompose challenging underwater degradations into sub-problems, while the
fine-grained stage incorporates multi-branch color enhancement module and pixel atten-
tion module to amplify the network’s perception of details. To the best of our knowledge,
FA T Net is the only network with the capability of real-time enhancement of 1080P im-
ages. Through extensive experiments and comprehensive visual comparisons, we show
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that FA™ Net outperforms previous approaches by obtaining state-of-the-art performance
on multiple datasets while significantly reducing both the number of parameters and com-
putational complexity. The code is available at https://github.com/Owen718/Five APlus-
Network.

1 Introduction

Underwater images are often plagued by severe blurring and color distortion, making it dif-
ficult to meet the demands of practical applications. With the rise of underwater archaeolo-
gies [15, 58] and marine ecological researches [27, 34, 49], some researchers have begun
to explore how to embed underwater image enhancement algorithms into platforms such as
underwater robots. However, due to the limited resources of underwater robots, underwater
cameras, and other equipment, traditionally gigantic learning-based models are challenging
to achieve efficient enhancement on these platforms [18, 29, 31, 60].

One potential solution to this issue is to design lightweight networks with fewer pa-
rameters and computations. For example, the Shallow-uwnet [37] constructed by introduc-
ing lightweight network components and residual convolution blocks. However, this purely
resource-driven approach are not necessarily result in lower computational complexity. Ad-
ditionally, no specific design has been proposed to target certain degradation phenomena in
underwater enhancement tasks, resulting in unsatisfactory visual effects and performance
metrics for the restored images.

Constructing a real-time underwater image enhancement framework that simultaneously
possesses ultra-lightweight parameters and powerful enhancement ability has been a long-
standing challenge in the field.

To overcome this longstanding challenge, we decompose the underwater degradations
into sub-problems based on the characteristics of the Underwater Image Enhancement (UIE)
task and design a lightweight and embedded real-time UIE network called the Five A™ Net-
work. The FA™T symbolizes that our network achieves superb performance in terms of PSNR,
SSIM, FPS, GFLOPs and Parameters. As demonstrated by Fig. 1, FA*Net achieves state-of-
the-art performance while saliently reducing both the number of parameters and computa-
tional complexity by an order of magnitude compared to previous methods by 10-100 times,
with a total number of parameters of less than 9K.

To reduce model complexity, some computationally expensive operators and operations
such as large-kernel convolutions [8, 10, 13] and self-attention [3, 4, 5, 43, 50, 62] were
discarded while channel dimensions are precisely restricted to control the number of pa-
rameters. For UIE, the problem can be addressed by breaking it down into sub-problems,
effectively solving the mixed degradation problem by separately correcting color distortion
and restoring details of the degraded image. Therefore, two complementary components
are proposed: Multi-Branch Color Enhancement Module(MCEM) and Multi-scale Pyramid
Module (MPM) in the strong prior stage. MCEM is an effective module for serious color dis-
tortion of underwater images. and MPM enables processing of input feature maps at multiple
scales, thus capturing detail information at varying scales to enhance the model’s perception
of image details. In this way, our strong prior-based designs endow the network with highly
effective restoring capabilities for underwater degradations.

Recently, some researchers have proposed the separation of global background light and
texture in the Fourier domain [32, 47]. Specifically, global background light is represented
by amplitude, while texture is intertwined with phase. By separating them in the Fourier
domain, Gaussian noise can be avoided when enhancing color, whilst providing abundant
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Figure 1: Comparison of recent state-of-the-art methods and our method: We report the computa-
tional efficiency (#Params, GFLOPs, and FPS) and numerical scores for two types of resto ration
quality measurement metrics including PSNR and SSIM, it can be easily observed that our method is
remarkably superior to others.

global information. To better extract valuable feature information from different compo-
nents’ outputs and capture global contextual information, we design a Spatial-frequency
Domain Feature Interaction Module(SDFIM). We utilize adjustable hyperparameter & to
control the fusion of spatial domain and frequency domain information. Moreover, Fast
Fourier Convolution (FFC) [6] is adopted to enlarge the receptive field of our network to
entire resolution, significantly amplifying the network’s perception ability. Although these
operations have shown basic success in addressing the mixed degradation issue, the complex
underwater environments are often impacted by multiple factors causing some challenging
detail problems. In these cases, typical single-stage networks may struggle to accurately
capture tiny objects, intricate colors, and textures. To further enhance the model’s perfor-
mance, we introduce a fine-grained stage for more in-depth image analysis, aiming to better
manage these intricate detail issues. MCEM and Pixel Attention module [42] are incorpo-
rated to assist the model in comprehending each image element and detail more effectively,
thereby improving the model’s performance and generalization capability. By introducing
the fine-grained stage, substantial progress is made in the model’s ability to tackle complex
underwater images, as it is better equipped for handling intricate detail issues.

The combination of these two stages not only proposes novel design ideas for underwater
image enhancement, but also expands the horizons of potential research in this field. Notably,
the ultra-lightweight parameters allow FA*Net to be embedded into edge devices, and we
are the only ones able to enhance 1080P images in real time on RTX 3090. Our model also
has high throughput, allowing for faster inference and processing of input data to meet the
requirements of mobile platforms such as underwater filming rigs and robotic platforms.

The main contributions of this paper are as follows:

» We introduce FA'Net, that reduces the the number of parameters of an enhancement
model to 8.9K, which is approximately 10 — 100x fewer than previous methods.

* We propose a two-stage architecture that provides novel designs and directions for
image enhancement. The strong prior stage decomposes mixed degradation into sub-
problems, while the fine-grained stage focuses on enhancing the network’s perception
of intricate details.
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» FA™Net is the only model capable of real-time enhancement for 1080P images, effi-
ciently running on an RTX 3090 GPU. It demonstrates exceptional performance across
multiple datasets, making it a viable choice for deployment on mobile platforms.

2 Related Work

2.1 Learning-based Underwater Image Enhancement Method

With the successful application of deep learning in high-level computer vision tasks [65],
an increasing number of researchers have begun to apply it to low-level computer vision
tasks [23, 24, 25, 26, 59, 61], such as underwater image enhancement [12, 20, 30, 60].
For instance, Jiang et al. [22] designed a novel domain adaptation framework based on
transfer learning to transform aerial image deblurring into realistic underwater image en-
hancement. Despite their varying degrees of success in terms of performance metrics, these
approaches fail to incorporate dedicated modules for addressing color shift and texture loss
of degraded images. Li et al. [31]presented an underwater image enhancement network via
medium transmission-guided multi-color space embedding, named Ucolor. Huo et al. [18]
employed wavelet-enhanced learning units to decompose hierarchical features into high-
frequency and low-frequency components, and then strengthen them with normalization and
attention mechanisms. Although this approach has shown excellent visual effects, its ex-
tensive network parameters (6.30M) and computational requirements (223.37G) make it un-
suitable for existing underwater devices. Moreover, it cannot effectively address the issue of
color distortion.

2.2 Efficient Neural Network For Image Restoration

Efficient neural network for image restoration [7, 55, 59] is a recent development in deep
learning-based image restoration and has been demonstrated to achieve state-of-the-art per-
formance while requiring fewer computational resources than other methods. For example,
Song et al. [45] proposed an efficient residual dense block search algorithm with multiple
objectives to identify fast, lightweight, and accurate networks for image super-resolution.
Guo et al. [14] presented an effective low-light image enhancement method (LIME) that
estimated the illumination of each pixel individually and refined it using a structure prior.
Naik et al. [37] proposed a lightweight underwater enhancement framework by introducing
lightweight components and residual blocks.

2.3 Fast Fourier Convolution

In order to address the low efficacy in connecting two distant locations in the network. Chi et
al. [6] proposed a novel convolutional operator dubbed as Fast Fourier Convolution (FFC),
which has the characteristics of non-local receptive fields and cross-scale fusion within the
convolutional unit. Furthermore, modern image inpainting systems commonly struggle with
large missing areas, complex geometric structures, and high-resolution images. To alleviate
this issue, Suvorov et al. [47] proposed a new method termed large mask inpainting that
is based on a new inpainting network architecture relying on FFCs. When dealing with
the challenging task of joint luminance enhancement and noise removal whilst remaining
efficient. Li et al. [32] devised a new solution, UHDFour, which differs from existing ap-
proaches that take a spatial domain-oriented approach. Specifically, UHDFour is motivated
by a few unique characteristics of the Fourier domain, such as the fact that most luminance
information is concentrated in amplitudes while noise is closely related to phases.
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Figure 2: The overall architecture of Five AT Network: FA*Net is composed of a strong prior stage
and a fine-grained stage, augmented by the efficient SDFIM. The core components of the network com-
prise: (c) MPM captures granular details across various scales, endowing the model with potent detail
perception; (d) MCEM perform consecutive processing of individual image pixels, thereby enabling
our network to achieve precise color restoration; and (e¢) SDFIM aids the network in sifting valuable
feature information from the outputs of diverse components and acquiring global contextual features,
and « is a hyperparameter that controls the fusion ratio of spatial-frequency domain information.

3 FA*'Net: An Ultra-lightweight Real-time Enhancement

Network
3.1 Motivation

Limited computing resources on embedded platforms, such as underwater robots, have posed
a significant challenge in achieving high-quality image enhancement using traditional deep
learning models. Consequently, recent methods [7, 14, 45] have prompted the development
of lightweight yet powerful models. In this context, FATNet emerges as a noteworthy contri-
bution, which has been demonstrated to be an efficient and innovative solution, as illustrated
in Fig. 2.

To ensure the computational efficiency of our model, we initially removed several com-
putationally expensive operators and operations, such as large kernel convolutions and self-
attention mechanisms. We also imposed constraints on the channel dimension to ensure
precise parameter control. Furthermore, to effectively address the mixed degradation chal-
lenge, we adopt a divide-and-conquer strategy to separately enhance color and restore details
from degraded images. Additionally, to improve our model’s overall performance, we intro-
duced a fine-grained stage for comprehensive image analysis. In combination, our approach
allows for effective color enhancement and detail restoration, even under extreme underwater
conditions.

3.2 Model Structure

3.2.1 Multi-Scale Pyramid Module

To recover fine details in degraded underwater images, we propose Multi-scale Pyramid
Module(MPM) in the strong prior stage. By downsampling the input image to different


Citation
Citation
{Cui, Li, Gu, Su, Gao, Jiang, Qiao, and Harada} 2022

Citation
Citation
{Guo, Li, and Ling} 2017

Citation
Citation
{Song, Xu, Jia, Chen, Xu, and Wang} 2020{}


6 JINGXIA JIANG ET AL.: 9K PARAMETERS FOR UNDERWATER IMAGE ENHANCEMENT

sizes, the network can capture features at multiple scales and resolutions, which is critical
for improving the appearance of objects with different sizes and shapes in challenging under-
water scenarios. To achieve real-time performance, we designed the MPM as a three-branch
structure with down-sampled target size of 32 x 32, 64 x 64, and 128 x 128. The selection of
this structure is based on a series of careful ablation experiments reported in supplementary
material, which ensured a good trade-off between performance and effectiveness.

3.2.2 Multi-branch Color Enhancement Module

The attenuation rates of different wavelengths of light in underwater environments vary, with
red light experiencing the fastest attenuation and blue and green light experiencing the slow-
est [21]. This results in conspicuous differences in the R, G, and B channels, leading to poor
contrast and color distortion in underwater images, which has been a largely unaddressed
issue in previous methods [1, 19, 31, 51].

To overcome this limitation, we propose the MCEM, which employs a branch enhance-
ment strategy to better capture the color feature distribution across R, G, and B channels.
Each pixel carries color information, and the 1 X 1 convolutional operations in MCEM can
be viewed as enhancing the color information on a per-pixel basis. Given the varying color
emphasis in feature extraction across different channels, MCEM specifically utilizes instance
normalization to normalize each channel separately, thereby mitigating the potential risk of
color border blurring associated with batch normalization.This approach is similar to the
underlying operation of a multi-layer perception [48], allowing our network to achieve ac-
curate color reproduction, which is particularly crucial for color-sensitive underwater image
enhancement tasks. Additionally, we opt not to use 3 x 3 convolutions due to their increased
parameter burden. As shown in Fig. 2(d), weights are not shared between each branch. The
effectiveness of this module is demonstrated in the supplementary material.

3.2.3 Spatial-frequency Domain Feature Interaction Module

Recent studies have shown that global background lighting and textures in underwater im-
ages can be partially decomposed in the Fourier domain, as evidenced by recent works such
as [6, 17, 32, 47, 64]. However, current methods for restoring degraded images mostly rely
on spatial domain processing, and traditional convolutional approaches tend to overlook the
rich global information present in the Fourier domain. To address this issue, we propose
the cross-domain design component called Spatial-Frequency Domain Interaction Module.
By fusing feature information in the Fourier domain, SDFIM achieves receptive field cov-
erage of the entire image, which improves the network’s perceptual quality and parameter
efficiency. The hyperparameter & in SDFIM controls the fusion ratio of spatial-frequency
domain information, and its varying values generate different visual effects. Furthermore, the
induction bias of FFC enhances the network’s generalization performance, thereby reducing
the requirements for extensive training data and computation.

The key operations of SDFIM are as follows, given the features X € REH*W from
MCEM and Y € RV from MPM:

F'=X+Y (1)
Fyiac, Fraa = trrr (F') )
Four = &|firrr (fre(Fuag), fre(Fpaa))] + (1 — o) F' 3

where Fysac and Fpy4 represent the magnitude component and phase component of the fea-
ture, respectively. frr7(-) denotes the fast Fourier transform, frc(-) represents the Fourier
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domain convolution operation, and firrr(-) denotes the inverse fast Fourier transform. The
hyperparameter & controls the fusion ratio of spatial-frequency domain information.

3.3 Loss Function

We introduce the Charbonnier Loss [2] as our basic reconstruction loss:

ﬁrec = £C(I(X)7\7gt) 4

where the Z(-) is our FA™ Net, X and J,, stand for the input and the corresponding ground-
truth, respectively. £, denotes the Charbonnier loss, which can be express as:

1 Y -
= — Xi_Y! 2
Lom g LIy re )

1

where constant € is empirically set to 1 x 1073 for all experiments of ours. In addition,
the perceptual level of the restored image is also critical. We apply a perceptual loss to
improve the restoration performance. To further enhance the restoration of degraded images
by preserving their intrinsic texture, we also introduce perceptual loss at the strong prior
stage, which is enforced as a form of deep supervision [16, 52, 57]. The perceptual loss can
be formulated as follows:
L ) :

perceptual J; Cj Hjo
where in the @; represents the 1-th and the 3-th layers of VGG19 [44]. C; , H; , W, represent
the channel number, height, and width of the feature map, respectively.

Many underwater image enhancement tasks use L2 loss for training. As shown by
[30, 36, 41], the L2 loss produces over-smoothed backgrounds and ghost artifacts, which is
detrimental to the semantic information. In order to better reflect the human visual system’s
perception of image quality, we adopt negative SSIM loss to focus on luminance, contrast,
and structure. The negative SSIM loss is:

119;(Z(x)) = 9;(I)lx (6)

Lysim = —SSIM(Z(X ), Tg1) @)

Where the Z(-) is our Five A™ Net, X and J, stand for the input and the corresponding
ground-truth, respectively.

Overall loss function can be expressed as:
L= )Ll Le+ AIZEperceptual + 2f3 Lysim + A4£perceptualspg 3

where the 41, A;, A3 and A4 are set to 1, 0.2, 0.5 and 0.2, respectively.

4 Experiments
4.1 Experiment details

All experiments are implemented using the PyTorch [39] framework with a single NVIDIA
A100 Tensor Core GPU (40GB). During training, the training epochs are set to 400, and
the total batch size is 100. We use Adam optimizer as the optimization algorithm. The
learning rate is set to 4 x 10~ at first, and the default values of B; and 3, are 0.9 and 0.999,
respectively. We used CyclicLR to adjust the learning rate, with an initial momentum of 0.9
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Figure 3: Visual comparison of UIE networks on T90.

and 0.999. Data augmentation included horizontal flipping, and randomly rotating the image
to 90, 180, and 270 degrees.

During the training process, the input data was randomly cropped as 256 x 256 patches
from original images. Underwater Image Enhancement Benchmark (UIEB) datasets [29]
contains 890 high-resolution raw underwater images and corresponding high-quality refer-
ence images, and 60 challenge images (C60) for which no corresponding reference images
were obtained. Despite consisting of only 890 high-quality images, it is still a well re-
garded benchmark dataset for its superb qualities, receiving broad acceptance and appreci-
ation within the research community. Li et al. carefully selected 45 authentic underwater
images, named U45 [33]. It is partitioned into three subsets according to the color cast of
underwater degradation, low contrast, and blur effects: green, blue, and haze. Then, 800
pairs of original images and clear images were extracted from UIEB to train the model. The
remaining 90 images in UIEB named T90 were used to test the effect of our method on de-
graded images. In order to evaluate the generalization performance of FA*Net, we used the
C60 and U45 datasets for testing.

4.2 Evaluation metrics

In order to acquire quantitative measurements, we use Peak Signal-to-Noise Ratio (PSNR)
[28], Structural Similarity Index (SSIM) [54], the Mean Squared Error (MSE) [35], Under-
water Color Image Quality Evaluation (UCIQE) [56], and Underwater Image Quality Metric
(UIQM) [38] as performance metrics for image quality. PSNR is a full-reference image qual-
ity evaluation metric based on errors between corresponding pixels. The higher the PSNR
score, the better the image quality. SSIM measures the visual quality of three features of an
image: brightness, contrast, and structure. A higher SSIM value indicates a higher similarity
between the enhanced and reference images. UCIQE mainly measures the degree of detail
and color recovery of distorted images. UCIQE is one of the most comprehensive image
evaluation standards. UIQM is required to evaluate color, sharpness, and contrast.

4.3 Comparison with SOTA methods

We compared FATNet with several state-of-the-art methods, including traditional methods
and deep learning methods. Traditional methods included UDCP [9], IBLA [40], SMBL [46]
and MLLE [63], and deep learning methods included UWCNN [30], Water-Net [29], PRW-
Net [18], Shallow-uwnet [37], Ucolor [31], UIEC*2-Net [53], UHD-SFNet [55], PUIE-Net
[11] and the latest NU2Net [12] for underwater image enhancement. We present the objec-
tive metrics comparison with previous SOTA methods in Table 1. From that, we can observe
that our method achieves the best results on PSNR, MSE and UCIQE metrics, proving that
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Table 1: Experimental results on T90 [29], C60 [29], and U45 [33] datasets, the best and second-
best results are marked in red and blue respectively. 1 represents the higher is the better as well as |
represents the lower is the better. The efficiency evaluation uses 720P images as input on RTX 3090.

90 C60 U045 Efficiency
Methods PSNRT_SSIMT_MSE | UCIQE] _UIQMT | UCIQET _UIQMT | UCIQET _UIQMT | GFLOPS(G) | #Params(M) | _#Runtime(s) | _FPS(Is)T
UDCP(ICCVW' 13)[9] 13415 0749 0228 0572 2755 | 0560 1859 | 0574 2275 B B 12135 E
IBLA(TIP’ 17)[40] 18054 0808 0.142 0582 2557 | 0584 1662 | 0565 2387 - - -
WaterNet(TIP"19)[29] 16305 0797 0161 0564 2916 | 0550 2113 | 0576 2957 193.70G 24.81M 0.680s
SMBL(TB’20)[46] 16681 0.801 0158 0589 2598 | 0571 1643 | 0571 2387 - - -
UWCNN(PR"20)[30] 17949 0847 0221 0517 3011 | 0492 2222 | 0527  3.063 - - - -
PRW-Net(ICCVW"21)[18] 20787 0823 0099 0603 3062 | 0572 2717 | 0625  3.026 223.4G 6.30M 02165 4.624
Shallow-uwnet(AAAI'21)[37] | 18278 0855  0.131 0544 2942 | 0521 2212 | 0545 3109 304.75G 0.22M 0.031s 31.836
Ucolor(TIP21)[31] 21093 0872 0096 0555 3049 | 0530 2067 | 0554  3.148 443.85G 157.42M 27585 -
UIECA2-Net(SPIC"21)[53] 22958 0907 0078 0599 2999 | 0580 2228 | 0.604  3.125 367.53G 0.53M 0.174s 5742
MLLE(TIP'22)[63] 19561 0845 0.115 0592 2624 | 0581 1977 | 0597 2454 - - - -
UHD-SFNet(ACCV'22)[55] | 18.877 0810  0.144 0559 2551 | 0528 1741 | 0585 2826 15.24G 37.31M 0.059s 16.769
PUIE-Net(ECCV'22)(11] 21382 0882 0093 0566 3021 | 0543 2155 | 0563 3.192 423.05G 1.40M 00715 14.194
NU2Ne(AAAI'23.0ra)[12] | 22419 0923 0086 0587 2936 | 0555 2222 | 0593 3.185 146.64G 3.15M 00245 42.345
Ours 23.061 0011 0076 0616 2.828 | 0393 _ 2.088 | 0609 _ 3.074 833G 0.009M 0.016s 60.724

Table 2: Performance comparison is tested on RTX 3090 using 1080P resolution (1920x 1080) im-
ages, best and second-best results are marked in red and blue respectively.

For 1080P Real-time Test
Methods GFLOPs(G)]  #Params(M)| #Runtime(s)] FPS(f/s)T
Shallow-uwnet(AAAT'21)[37] 685.70G 0.22M 0.0745s 13.4188
UHD-SENet(ACCV22)[55] 15.42G 37.31IM 0.0666s 15.0045
NU2Net(AAATI’'23,0ral)[12] 329.95G 3.15M 0.0516s 19.3495
Ours 18.74G 0.009M 0.0333s 29.9431

the proposed architecture has remarkable effects with detailed textures, restoring promising
contrast and color of images. Compared with the last method NU2Net on T90, we exceed
0.642dB, 0.01 and 0.029 on PSNR, MSE and UCIQE respectively.

According to the data in Table 1, our proposed FATNet outperforms all other designs
in terms of efficiency. The amount of parameters possessed by FA™Net is only 1/17500 of
that of Ucolor, yet manifests a considerable qualitative improvement. In comparison with
Shallow-uwnet, the quantity of parameters has reduced by more than 1/20, but the PSNR
index is 4.783dB higher, which clearly shows the superiority and viability of our method.
What’s even more noteworthy is that from Table 2, we can observe that FA*Net is the sole
network able to carry out real-time enhancement for 1080P size images.

Additionally, we also gave an intuitive comparison with previous SOTA methods in terms
of visual effects. As seen in Fig. 3, Shallow-net was incapable of sufficiently restoring under-
water images due to its straightforward network structure; the intensified image saturation
was low, and the edge processing effect was subpar; the enhancement result presented by
PRW-Net appeared layered; the image processed by UHD-SFNet still contains some local
patches; PRW-Net and PUIE-Net demonstrated poor perception of details, resulting in sig-
nificant erosion of texture details in the augmented photographs. On the other hand, NU2Net
lacked precise color control, hence leading to visible chromatic deviations that can be no-
ticed by the human eye. Our method exhibited quite compatible color and detail recovery,
enhancing the entire degraded image, and making its contrast and texture details meet the
sensory requirements of the human eye. That is credited to our carefully designed MCEM,
MPM, and SDFIM. More visual comparisons are available in the supplementary material.

4.4 Ablation Study of Model Structures

The detailed ablation experiments on the model’s structure are presented in Table 3, the data
demonstrates the effectiveness of each component in proposed method.

Based on the experimental outcomes of the control groups (a) and (b), it is evident that
the performance benefits brought by SDFIM are rather limited. However, in the supple-
mentary material, we have made additional noteworthy findings regarding the influence of
different hyperparameters o on enhancing image hues. Moreover, experiments (d) and (f)
clearly demonstrate that MCEM leads to significant performance enhancements. Addition-
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Table 3: Ablation study on structures of model. The best results are underlined. The second-
best results are in bold. 1 represents that higher is better, and | represents that lower is better.
O means the component is selected during experiments.

Setting | MCEM_I MPM SDFIM MCEM_2 PA | PSNRT SSIM] UCIQE] #Params(K)|
a) 0 0 21767 0890  0.597 572K
b) 0 0 0 21890 0899  0.602 8.15K
9} 0 0 0 | 21747 0893 0612 1.44K
d) 0 0 0 0 | 22528 0897  0.606 851K
e) 0 0 0 0 22889 0908  0.613 8.95K
f) 0 0 0 0 0 | 23061 0911 0616 8.99K

ally, the experiments conducted in groups (c) and (f) validate the feasibility of MPM. Despite
the relatively higher GFlops associated with the multi-scale pyramid, it makes exceptional
contributions to capturing and perceiving fine-grained details within the network.

5 Limitation

Although FA ™ Net has exhibited its effectiveness and exceptional performance in underwater
image enhancement tasks through experiments on multiple datasets, it is still restricted ow-
ing to insufficient numbers of training data and unrefined model optimization. Specifically,
FATNet may require more model design and optimization to improve its performance in
handling complex underwater image detail problems, such as those containing small objects,
complex colors, and textures. Additionally, even though FA™Net exhibits efficiency and flex-
ibility on resource-constrained mobile platforms, further experiments should be conducted
to validate its performance and dependability in practical applications.

In the future, we may consider appending more adaptive settings to transform FA™*Net
into a universal enhancement framework, thus enhancing its applicability and scalability.

6 Conclusion

This paper presents a highly lightweight model with fewer than 9K parameters, resulting
in a significant reduction in complexity. Notably, FA*Net stands as the sole network ca-
pable of real-time enhancement of 1080P images. Additionally, we propose a two-stage
structure to address mixed degradation, enhance color, and restore details for real-time un-
derwater image enhancement. Our motivation includes to develop a lightweight network
for underwater devices. Given the challenges posed by mixed degradations in underwater
images, generic solutions prove ineffective. To address this, we propose the Multi-Channel
Enhancement Module (MCEM) for per-pixel color processing. Additionally, the Multi-Pixel
Module (MPM) enhances image detail perception, while a parallel structure improves spatial
modeling. The Spatially Differentiable Fine-Grained Image Manipulation Module (SDFIM)
effectively mitigates noise and blurring during color enhancement. Moreover, a fine-grained
stage is introduced to capture fine details. The integrated approach presented in this paper
opens new avenues for underwater image enhancement research.
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