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Abstract

The construction of 3D medical image datasets presents several issues, including
requiring significant financial costs in data collection and specialized expertise for anno-
tation, as well as strict privacy concerns for patient confidentiality compared to natural
image datasets. Therefore, it has become a pressing issue in 3D medical image segmen-
tation to enable data-efficient learning with limited 3D medical data and supervision. A
promising approach is pre-training, but improving its performance in 3D medical image
segmentation is difficult due to the small size of existing 3D medical image datasets.
We thus present the Primitive Geometry Segment Pre-training (PrimGeoSeg) method to
enable the learning of 3D semantic features by pre-training segmentation tasks using
only primitive geometric objects for 3D medical image segmentation. PrimGeoSeg per-
forms more accurate and efficient 3D medical image segmentation without manual data
collection and annotation. Further, experimental results show that PrimGeoSeg on Swi-
nUNETR improves performance over learning from scratch on BTCV, MSD (Task06),
and BraTS datasets by 3.7%, 4.4%, and 0.3%, respectively. Remarkably, the perfor-
mance was equal to or better than state-of-the-art self-supervised learning despite the
equal number of pre-training data. From experimental results, we conclude that effective
pre-training can be achieved by looking at primitive geometric objects only. Code and
dataset are available at https://github.com/SUPER-TADORY/PrimGeoSeg.

1 Introduction
3D medical image analysis using deep learning is expected to enhance diagnostics and im-
prove patient outcomes through the more accurate detection and visualization of geometric
structures inside the human body. For example, 3D medical image segmentation estimates
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the location and category of human organs from computed tomography (CT) and magnetic
resonance imaging (MRI) images. More accurate segmentation of 3D medical images re-
quires a large amount of training data and rich semantic annotation. However, training data
collection is difficult due to the high imaging costs and stringent privacy protections. In
addition, the annotation process requires expert knowledge of medical science.

In order to solve the above problems, there have been many studies in terms of pre-
training methods toward more data-efficient learning under limited training data conditions.
In particular, self-supervised learning (SSL) has emerged as a promising approach for pre-
training in 3D medical image segmentation [4, 6, 7, 9, 13, 21, 24, 25, 26, 28, 29, 30, 31, 32],
as it learns 3D structural features and reduces manual annotation costs by designing and
learning a pre-text task on unsupervised data. Chen et al. [6] achieved state-of-the-art per-
formance on the Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) dataset [2] and
Medical Segmentation Decathlon (MSD) [1] dataset by merging existing 3D medical im-
age datasets and pre-training three pseudo tasks. Nevertheless, pre-training methods for 3D
medical image segmentation have lagged compared with other 3D object recognition tasks
because of the small scale of pre-training datasets. Therefore, an alternative pre-training ap-
proach is needed to address dataset construction issues in 3D medical image segmentation.

Formula-driven supervised learning (FDSL) [14, 15] has been proposed as a synthetic
pre-training method without real data and human annotations, which automatically generates
synthetic data and supervised labels based on a specific principle rule of the real world.
Therefore, a significant advantage of FDSL is that the properties of the synthetic data can
be designed considering fine-tuning tasks different from real data. Furthermore, as much as
possible, FDSL can reduce dataset issues related to real data, such as social bias and personal
information protection. Recently, Nakashima et al. [20] reported that Vision Transformer
(ViT) tends to focus on the outlines of an object on images in pre-training. Inspired by
the above insight, Kataoka et al. [16] proposed a Radial Counter DataBase (RCDB) that has
improved the complexity of outlines and pre-training performance. Furthermore, Yamada et
al. [27] proposed a Point Cloud Fractal DataBase (PC-FractalDB) based on fractal geometry
to improve performance by designing 3D object detection pre-training. From these insights,
we hypothesize that we can design segmentation tasks using only primitive geometric objects
to achieve an effective pre-training method for 3D medical segmentation.

•••

•••
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Figure 1: The overview of PrimGeoSeg.

The present study proposes a prim-
itive geometry segmentation (Prim-
GeoSeg) for 3D medical image seg-
mentation by automatically generating
pre-training data and expressing se-
mantically supervised labels as an as-
sembly of primitive geometric objects
in 3D space, as shown in Figure 1. We
generate a primitive geometric object
from independent laws in the xy-plane
and z-axis directions. We also con-
struct a pre-training dataset by arrang-
ing multiple primitive geometric ob-
jects in 3D space, overlapping each ob-
ject. We designed this generation pro-
cess to consider two aspects of the in-
ternal structure of the human body; (i) the variability among individuals and (ii) the com-
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plexity with ambiguous boundaries between organs. The experimental results found that
primitive geometric objects only are sufficient to learn the necessary 3D structural represen-
tations for achieving a superior pre-training effect for 3D medical image segmentation.

The contributions of this work are as follows: (i) We propose PrimGeoSeg as a pre-
training method that enables pre-training by segmentation without real data collection and
manual annotation. (ii) We show that pre-training both UNETR and SwinUNETR with Prim-
GroSeg outperform state-of-the-art SSL accuracy on BTCV and MSD in 3D medical image
segmentation. Notably, the number of synthetic pre-training data was almost equal (see Fig-
ure 1). In addition, PrimGeoSeg also demonstrates remarkable data efficiency, performing
as well with only 30% of the BTCV data as it does when learning from scratch with 100% of
training data. (iii) Our proposed method for pre-training synthetic data can reduce problems
such as the privacy of 3D medical images.

2 Related Works
Pre-training for 3D medical image segmentation. In 3D medical image segmentation, SSL
has been attracting attention for its ability to achieve highly accurate segmentation results by
pre-training unsupervised 3D medical images [4, 5, 6, 7, 9, 13, 24, 25, 26, 28, 29, 30,
31, 32]. Even in transformer-based models that achieve higher accuracy than conventional
CNN-based models for 3D medical images [10, 11], SSL has shown substantial accuracy
improvements. Chen et al. [6] improved performance on UNETR through pre-training via
masked image modeling, which masks a portion of 3D medical images. In addition, Tang
et al. [25] achieved state-of-the-art results using the SwinUNETR [10] on BTCV [2] and
MSD [1] datasets by pre-training three pre-text tasks including image inpainting, 3D rotation
prediction, and contrastive learning. As shown above, SSL can improve the performance of
3D image medical segmentation. However, SSL improvements may be limited by training
data available, as SSL performance is often dependent on the amount of training data. We
thus believe that the performance of the pre-training of 3D medical image segmentation will
be further improved by solving the dataset construction issues.
Formula-driven supervised learning (FDSL). Recently, large-scale pre-training has made
tremendous developments in computer vision [3, 8, 18], and among its methods, FDSL can
perform large-scale pre-training without real data and manual annotation [12, 14, 15, 16, 17,
20, 23]. Specifically, pre-training data and its label are automatically generated from math-
ematical formulations based on real-world principles, such as fractal geometry and Perlin
noise. Kataoka et al. [16], proposed RCDB inspired that ViT pays attention to the outer con-
tours of the fractal region when pre-training with the Fractal Database (FractalDB). RCDB
pre-trained model surpasses the ImageNet pre-trained model on ViT despite not learning nat-
ural images. More recently, Yamada et al. [27] proposed the PC-FractalDB for pre-training
in 3D object detection using 3D point clouds. They concluded that one factor for success in
pre-training is initializing not only the backbone network but also the entire model.

Based on these findings, we hypothesize that synthetic pre-training through the same
segmentation task, similar to the fine-tuning task, will have a greater effectiveness in 3D
medical image segmentation using the transformer-based model. Furthermore, we think that
learning from synthetic pre-training data, rather than from 3D medical images, can effec-
tively address several issues commonly associated with 3D medical data usage. These issues
include societal bias, privacy concerns, and copyright infringement.

This paper notably extends the experiments in [22] and provides new contributions of our proposed method.
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Figure 2: The generation process of assembled objects as pre-training data for Prim-
GeoSeg. We generate an assembled object by arranging randomly multiple primitive objects
generated from the individual xy-plane and z-axis rules.

3 PrimGeoSeg: Primitive Geometry Segment Pre-training
In this section, we introduce PrimGeoSeg method, which is the pre-training strategy of gener-
ating primitive geometric objects and performing segment pre-training for downstream tasks
in 3D medical image segmentation. We generate an assembled object as pre-training data
for PrimGeoSeg based on the design concept of the property of 3D medical images by (i) the
variability among individuals and (ii) the complexity with ambiguous boundaries between
organs. The pre-training dataset consisting of assembled objects and supervised labels de-
noted by D = {(Si,mi)}N

i=1, where Si ∈ RW×H×D is an assembled object, mi ∈ LW×H×D is a
corresponding segmentation mask, and N is the number of pre-training data for PrimGeoSeg.
L is a set of integers denoting the segmentation label.

As shown in Figure 2, the generation procedure of an assembled object is composed of
two steps: (i) primitive object generation and (ii) arrangement of primitive objects. (i) First,
we set a class of each primitive object based on xy-plane and z-axis rules. Moreover, we
generate a primitive object based on randomly determined parameters regarding the num-
ber of vertices in the xy-plane and the similarity ratio along the z-axis. (ii) Second, in the
arrangement of primitive objects, we generate an assembled object Si and its corresponding
segmentation mask mi by arranging multiple primitive objects in 3D space. Finally, we repeat
(i) – (ii) steps N times to automatically construct pre-training dataset D for PrimGeoSeg.

3.1 Pre-training Data Generation
Primitive object generation. Each primitive object is generated by stacking xy-plane slices,
with the similarity ratio of each slice varying along the z-axis. The generation process of
a primitive object is based on two rules: the xy-plane rule, which dictates the shape of the
slices, and the z-axis rule, which controls the changing rate of the similarity ratio along the
z-axis. We define a class of a primitive object considering combing the xy-plane and z-axis
rules. We set the maximum 32 classes consisting of eight classes in the xy-plane rule and
four classes in the z-axis rule (see Figure 2). The size of the primitive object along the z-
axis, denoted as zmax, is randomly selected from a uniform distribution, zmax ∼ U(10,50).
For each t in the range 0 ≤ t ≤ zmax, a slice Pt is generated. The similarity ratio of the slice
at z = t is determined by a function f (z = t) according to the z-axis rule. The z-axis rule
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consists of four classes: {‘concave’, ‘convex’, ‘pillar’, ‘cone’} in this paper. We define qz
by randomly selecting from the above four classes. Here, the function f (z) represents the
similarity ratio of the slices along with the z-axis direction as shown below;

f (o1,o2,o3,z) =
{

o1 +(o2 −o1)
z
zc

(0 ≤ z ≤ zc)

o2 +(o3 −o2)
z−zc

zmax −zc
(zc < z ≤ zmax )

(1)

where zc ∼ U(3,zmax − 3) and o1, o2, and o3 are defined as certain values when qz was
selected. For instance, in the ‘pillar’ class, all parameters are set to 1: o1 = o2 = o3 = 1. In
the ‘cone’ class, we use o1 = 0, o2 = z0

zmax
, and o3 = 1. For ‘concave’, o1,o3 ∼ U(0.8,1),

and o2 ∼ U(0.2,0.5). For ‘convex’, o1,o3 ∼ U(0.2,0.5), and o2 ∼ U(0.8,1). Choosing a
z-axis rule determines the values of o1, o2, and o3, defining the unique function f (z).

We generate the slice Pt using both f (z) and the xy-plane rule. The xy-plane rule is
defined by a set of shape definitions: {‘ellipse’, ‘3-poly’, ‘4-poly’, ‘5-poly’, ‘6-poly’, ‘7-
poly’, ‘8-poly’, ‘9-poly’}, where w-poly represents a w-sided polygon. One shape definition
qxy is selected from the above eight rules. To define the size of the slice Pt , we set parameters
Rmin = 15 and Rmax ∼ U(30,80). If qxy is defined as a polygon, the slice Pt forms a closed
shape bounded by edges in the set E(t):

V =
{
(rk cosθk,rk sinθk) | 1 ≤ k ≤Cxy

}
(2)

E(z = t) =
{

f (t)
(

vk + s(v(k+1) mod Cxy − vk)
)
| vk ∈V,1 ≤ k ≤Cxy,0 ≤ s ≤ 1

}
(3)

where rk ∼U (Rmin,Rmax ) ,θk ∼U
(

2k
Cxy

π, 2(k+1)
Cxy

π

)
is polar coordinates and Cxy is the num-

ber of vertices. We have tolerated the alignment of three adjacent vertices in a straight line as
acceptable noise. If Kxy is defined as ‘ellipse", Pt is a closed shape that satisfies the equation

x2

(a f (t))2 +
y2

(b f (t))2 = 1, where a,b ∼ U(Rmin,Rmax) is the major and minor axes of the ellipse.
By integrating the slices Pt from z = 0 to zmax along the z-axis, we create a single primitive
object Il . By repeating M times, we generate a set of primitive objects G = {Il}M

l=1. Here, M
is the number of primitive objects to be positioned in assembled object Si.
Arrangement of primitive objects. As shown in Figure 3, we place a collection of M prim-
itive objects from set G into a 3D volume F ∈RW×H×D in descending order of their volume.

Figure 3: The details of the arrange-
ment of primitive objects.

Initially, the elements of the primitive objects set G
are sorted in descending order according to the vol-
umes of the primitive objects and are re-indexed as l′

to reflect the sorted order. We set a condition regard-
ing overlaps for the arrangement of primitive objects.
When placing the object I j in 3D volume F , we de-
fine the area already occupied by the objects {Il′}

j−1
l′=1

as A j, and the area that I j occupies as B j. The con-
dition for overlap stipulates that the volume overlap
ratio, represented as O(A j∩B j)

O(B j)
, should be less than a threshold r. If this condition is met, we

proceed with the placement. In this context, r denotes the maximum overlap ratio of the
shapes, and O is a function representing the volume of the occupied region. The placement
procedure for each primitive object comprises two main steps: (1) position selection and (2)
arrangement. (1) position selection: randomly select a position of the center of the primitive
object in the 3D volume F . (2) arrangement: placing the primitive object based on the over-
lap condition shown in Figure 3. If the overlap condition is met at the position from (1), we
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place the primitive object. If not, we revert to (1). This (1) and (2) process is repeated up to a
maximum of Max_iter (=100). If the (1) and (2) process fails after 100 iterations, the primi-
tive object is rejected. We repeat the placement process for each object Il′ a total of M times,
proceeding sequentially from l′ = 1 to l′ = M. The outcome of arranging the contours of the
primitive objects is denoted as the assembled object Si. The outcome of placing the primitive
objects filled in the interior is denoted as mi. In this study, we set the intensity values of the
contours for the primitive objects within the assembled object to a fixed value, Intensity. We
iteratively generate pairs (Si,mi) for N times, thereby automatically creating the pre-training
dataset D for PrimGeoSeg. Combining various random parameters increases the diversity
of geometric shapes within each class. We call this intra-class diversity of shapes instance
augmentation. Please refer to the Supplementary Materials for the parameters and values
required to generate the pre-training data for PrimGeoSeg.

3.2 Hypothesis and Motivation of PrimGeoSeg

Reasons for independent rules in the xy-plane and z-axis: 3D medical images are created
by constructing of xy slices and reconstructing them along the z-axis. We thus generate
primitive objects by stacking slice images on the xy-plane according to the z-axis rule.
Why is each xy-plane and z-axis rule defined as described above?: 3D general object
recognition recognizes diverse and complex 3D objects in the real world. On the other hand,
3D medical image segmentation recognizes only a limited number of 3D objects within the
human body’s internal anatomy. Therefore, in PrimGeoSeg, we considered that a certain
number of primitive objects should be sufficient for 3D image segmentation.
Why introduce the overlap when arranging primitive objects? The internal structure of
a human being is such that blood vessels can penetrate the interior of organs. In this case,
3D medical images are represented as if the blood vessels overlap a part of the organ region.
Therefore, we introduce the overlap when arranging multiple primitive objects to create an
assembled object in which the part region that overlaps more closely resembles the internal
structure of the human body.

4 Experiments

4.1 Experimental Settings

Datasets. In this experiment, we evaluate the effectiveness of PrimGeoSeg using several
datasets: BTCV [2], MSD [1], and the 2021 edition of the Multi-modal Brain Tumor Seg-
mentation Challenge (BraTS). BTCV has 30 samples for organ segmentation, and we split
the BTCV training data in an 8:2 ratio for offline evaluation as in [6]. MSD has the lung
(Task06) with 63 samples, and the spleen (Task09) has 41 samples for organ segmentation.
In the MSD, we focused on the lung (Task06) and the spleen (Task09) due to computational
resource constraints, and we split the training data in an 8:2 ratio for offline evaluation as in
[28]. BraTS has 1,251 samples for brain tumor segmentation, we performed segmentation
of three types of tumors: whole tumor (WT), tumor core (TC), and enhancing tumor (ET),
splitting the training data in an 8:2 ratio for offline evaluation, as follows [10].
Architectures. We utilized the prominent transformer-based models, UNETR [11] and Swi-
nUNETR [10], as architectures for 3D medical image segmentation. Both UNETR and
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SwinUNETR have demonstrated their state-of-the-art performance on test leaderboards for
the BTCV and MSD, surpassing the capabilities of conventional CNN-based models.
Implementation details. PrimGeoSeg executes the segmentation task with assembled ob-
jects Si ∈ R96×96×96 as input data and the mask mi ∈ R96×96×96 as ground truth in pre-
training. During pre-training of PrimGeoSeg, we used 96× 96× 96 patches, a batch size
of 8, a learning rate of 0.0001, and a weight decay of 0.00001, optimizing the dice loss.
We employ AdamW [19] with a warmup cosine scheduler for training. For the number of
iterations, when the pre-training data is {5K,50K}, the iterations are set to {100K,375K}.
Concerning the pre-training data for PrimGeoSeg, constructing a dataset of 5,000 objects
requires less than two hours on a 400GiB CPU memory system, and the storage used is un-
der 3GB. The pre-training process on NVIDIA A100 GPUs takes up to five GPU days for
100,000 iterations. For fine-tuning on BTCV, MSD, and BraTS, we follow the conditions of
the hyperparameters on each fine-tuning dataset. For specific hyperparameter settings, we
refer readers to the respective conventional research. Specifically, for SwinUNETR in BTCV
and BraTS, refer to [25]; and for UNETR in BTCV and MSD, consult [11]. In addition,
please see [11] in terms of MSD. All experiments for downstream tasks are conducted using
a dice similarity coefficient (Dice) as an evaluation metric. For more detailed settings, please
refer to the supplementary materials.

4.2 Fundamental Experiments (see Table 1)

Fundamental experiments aim to clarify the effectiveness of PrimGeoSeg pre-trained model.
We focus on five aspects: (a) effects of volumetric shapes, (b) effects of the number of
classes, (c) effects of instance augmentation (IA), (d) effects of overlap, and (e) effects of
dataset size. We pre-trained UNETR using 2,500 data of PrimGeoSeg for all experiments.
Effects of volumetric shapes: This fundamental experiment (a) aims to compare the effec-
tiveness of pre-training between planar shapes and volumetric shapes.

Figure 4: Expetiment (a).

We compare the effects of pre-training when arranging planar
shapes and volumetric shapes in 3D space as shown in Fig-
ure 4. Table 1a shows that volumetric shapes improve the
Dice metrics by 7.78 points compared to planar shapes. This
result demonstrates that incorporating volumetric information
leads to an improved performance of the pre-training for 3D
medical image segmentation.
Effects of the number of classes: This fundamental experiment (b) aims to investigate
the validity of each xy-plane and z-axis rule of our generation method. Table 1b shows
that both xy and z rules contribute to the effective pre-training. Moreover, the pre-training
effect improves as the number of classes increases. For example, a maximum performance
difference of +2.4 points was observed at 1 class and 32 classes. This result shows that
the pre-training effect is enhanced even for primitive shapes when increasing diversity in the
shape of the class. We clarify that the diversity of shapes in the xy-plane and z-axis directions
in the 3D structure are both important factors in improving the pre-training effect.
Effects of instance augmentation (IA): This fundamental experiment (c) aims to examine
the pre-training effect of our proposed IA method, as it considers individual primitive object
variations similar to 3D medical images. As demonstrated in Table 1c, IA improves +3.31
points compared to the performance when not using IA pre-training performance. Also,
while IA improves accuracy by 3.31 points, class diversity enhances 2.4 points (Table 1b).
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Table 1: Fundamental experiments for BTCV. Each table show: (a) Effects of volumetric
shapes, (b) Effects of the number of classes, (c) Effects of instance augmentation (IA), (d)
Effects of overlap, and (e) Effects of the number of pre-training data.

(a) Shapes
Dice

Planar 69.11
Volumetric 76.89

(b) Classes
Dice

xy:1, z:1 75.12
xy:1, z:4 76.00
xy:8, z:1 76.89
xy:8, z:4 77.52

(c) IA
Dice

w/o IA 74.21
w IA 77.52

(d) Overlap
Dice

w/o overlap 77.52
w overlap 78.14

(e) Dataset size
Dice

0.8K 77.39
2.5K 78.14
50K 80.86

This result suggests that intra-class shape diversity holds equal or greater importance than
inter-class shape diversity in pre-training for 3D medical image segmentation.
Effects of overlap: This fundamental experiment (d) aims to investigate the pre-training
effect of overlapping among 3D primitive objects. Because we hypothesize that overlaps
between primitive objects could assist pre-training performance by considering, for example,
fuzzy boundaries and overlapping regions within the human body. Table 1d shows that
overlapping 3D volumetric shapes led to a higher accuracy of +0.62 points. This result
suggests that the overlap between primitive objects contributes toward improving the pre-
training effect of 3D medical image segmentation.
Effects of dataset size: One of the key advantages of PrimGeoSeg is its ability to generate
primitive geometric objects automatically, which enables easily scaling of the pre-training
dataset. As demonstrated in Table 1e, there is a positive correlation between the amount of
pre-training data and the effectiveness of pre-training, where more data leads to better pre-
training outcomes. Note that this experiment is limited to a certain amount of data size due
to computational resource constraints.

The above experimental results revealed that volumetric shape extensibility, the number
of classes, IA, overlap between primitive objects, and data scalability in PrimGeoSeg con-
tribute to pre-training effects. The above fundamental experiments offered valuable insights
into the key elements essential for pre-training in 3D medical image segmentation.

4.3 Organ and Tumor Segmentation (see Table 2 and Figure 5)

In this section, we verify the effectiveness of PrimGeoSeg on organ segmentation (BTCV and
MSD Task09) and tumor segmentation (MSD Task06 and BraTS). We employed [6, 25] of
the state-of-the-art SSL only because of limited computational resources and non-integrality
of various conditions such as test data, architecture and input size.
BTCV. In Table 2a, we compare the fine-tuning results of our proposed method, learning
from scratch, and the recent state-of-the-art SSL [6, 25], respectively. PrimGeoSeg showed
an overall higher recognition performance than Scratch for each class. Even when utiliz-
ing an equivalent volume of pre-training data as with the SSL, we observed performance
improvements: UNETR increased by 1.6 points and SwinUNETR by 0.4 points in average
Dice score. Moreover, as detailed in Section 4.2, the performance of UNETR continued to
improve as we increased the volume of pre-training data. It is worth noting that with only
synthetic 3D pre-training data, the performance of our proposed method is superior to that of
the baseline. In addition, Figure 5 shows several examples of SwinUNETR output results in
BTCV. In areas that are over or under-segmented by Scratch and SSL, PrimGeoSeg is able
to segment more accurately. Thus, we speculate that the distinct contours of PrimGeoSeg
allow for the acquisition of more accurate 3D structual features during pre-training.
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Table 2: 3D medical image segmentation benchmark datasets. The results for Prim-
GeoSeg on BTCV, MSD, and BraTS in comparison to the previous SSL. The best value for
each fine-tuning dataset is in bold.

(a) Comparison of performance in BTCV.

Pre-training PT Num Type Avg. Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan rad lad

UNETR
Scratch 0 – 73.0 90.2 91.1 90.7 47.0 63.8 95.3 76.5 85.1 82.1 67.9 72.3 46.1 40.8
Chen et al. [6] 0.8K SSL 75.8 95.2 95.5 93.8 51.9 52.3 98.8 80.0 87.8 82.7 66.1 68.9 60.8 51.3
PrimGeoSeg 0.8K FDSL 77.4 88.9 94.0 93.8 59.8 65.7 95.4 79.3 88.3 82.6 69.9 76.8 58.5 53.3
PrimGeoSeg 50K FDSL 80.9 95.7 94.2 94.1 61.9 69.6 96.7 85.5 89.5 84.4 74.7 81.9 64.3 58.7

SwinUNETR
Scratch 0 – 78.3 92.3 93.2 93.8 55.9 61.3 94.0 77.0 87.5 80.4 74.2 76.1 68.8 63.6
Tang et al. [25] 5K SSL 81.6 95.3 93.2 93.0 63.6 74.0 96.2 79.3 90.0 83.3 76.1 82.3 69.0 65.1
PrimGeoSeg 5K FDSL 82.0 95.7 94.4 94.4 61.0 75.5 96.7 83.3 89.1 85.6 75.2 84.3 67.9 62.4

(b) Comparison of performance in MSD.

UNETR SwinUNETR
Pre-training Type Lung Spleen Lung Spleen

Scratch – 52.5 95.0 63.5 96.3
Tang et al. [25] SSL – – 65.2 96.5
PrimGeoSeg FDSL 62.2 96.3 67.9 96.6

(c) Comparison of performance in BraTS.

UNETR SwinUNETR
Pre-training Type Avg. ET WT TC Avg. ET WT TC

Scratch – 88.1 84.8 91.3 88.1 90.0 86.8 92.9 90.3
PrimGeoSeg FDSL 88.7 85.6 91.8 88.9 90.3 87.0 92.9 91.0

Figure 5: Qualitative results on BTCV. Red dashes indicate misidentified areas and blue
dashes indicate more accurately identified areas.

MSD. Table 2b shows the accuracy when fine-tuning to MSD (Task06 and Task09). For
lung segmentation, both UNETR and SwinUNETR, initialized by PrimGeoSeg improved
accuracy compared to training from scratch by 9.7 points and 4.4 points, respectively. In ad-
dition, PrimGeoSeg on SwinUNETR showed a 2.7 points accuracy improvement compared
to SSL. For spleen segmentation, when using PrimGeoSeg on UNETR and SwinUNETR,
PrimGeoSeg exhibited accuracy improvements from Scratch of 1.3 points and 0.3 points,
respectively. PrimGeoSeg on SwinUNETR had a 0.1 points accuracy improvement com-
pared to SSL. From this result, PrimGeoSeg demonstrates superior pre-training performance
without depending on a specific dataset.
BraTS. We verify the effectiveness of PrimGeoSeg for tumor segmentation. Due to the diffi-
culty in conducting a fair comparison with other pre-training methods, we primarily focused
on comparing PrimGeoSeg with Scratch. The BraTS results shown in Table 2c, indicate that
PrimGeoSeg improves accuracy by approximately 0.5 points for ET, WT, and TC, respec-
tively. Interestingly, although PrimGeoSeg is designed considering the key elements of the
human body’s internal structure, it has been proven effective for brain tumor segmentation.
This suggests that PrimGeoSeg is capable of acquiring a 3D structural representation.
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Figure 6: Performance with limited training data.

4.4 Pre-training Effect on Limited Training Data (see Figure 6)

In 3D medical image segmentation, achieving accurate recognition using a small number of
3D medical images is considered ideal. Figure 6 illustrates the results of limited training
data in BTCV. Specifically, this experiment used training data (10% [2 samples], 30% [6
samples], 70% [15 samples]) to compare the performances of Scratch and PrimGeoSeg. As
shown in Figure 6, the accuracy improvements of PrimGeoSeg over Scratch were {19.9,
20.3, 17.9}, respectively. Even more surprising, PrimGeoSeg uses only 30% of the training
data, yet it achieves a performance comparable to that of Scratch, which uses 100% of the
training data. This result demonstrates that PrimGeoSeg is beneficial, even with limited
training data. Therefore, we consider it a promising pre-training approach to handling limited
training data for 3D medical image segmentation.

5 Conclusion

This paper demonstrated the effectiveness of pre-training the proposed PrimGeoSeg, result-
ing in significant accuracy improvements compared to training from scratch for organ and
tumor segmentation. Our proposed method also showed equal or superior performance to
self-supervised learning. The findings through experimental results are described below;
The effect of the intra-class diversity. We observed that despite organs in the human body
being essentially identical, the size and shape of these organs differ from person to person. In
light of this observation, we experimented with a variety of 3D object types and shapes while
building PrimGeoSeg. The results demonstrated that increasing the diversity of 3D objects
contributes to the enhancement of medical image segmentation performance (see Table 1c).
The effect of spatial overlap of 3D objects. We also focused on the fact that the anatomical
structure of the human body is complex and the boundaries between different tissues and or-
gans are ambiguous, resulting in overlapping regions. Through our exploratory experiments
on overlap (see Table 1d), it became clear that incorporating a certain amount of overlap can
help improve performance.

While we empirically confirmed the performance enhancement due to shape pre-training,
further analytical justification is required. Although the current focus is on addressing data
scarcity in segmentation tasks, we plan to investigate the applicability of our method to other
domains, such as 3D medical image classification and registration, in future research.
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