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Abstract

Video frame interpolation (VFI) is a challenging task that aims to generate interme-
diate frames between two consecutive frames in a video. Existing learning-based VFI
methods have achieved great success, but they still suffer from limited generalization
ability due to the limited motion distribution of training datasets. In this paper, we pro-
pose a novel optimization-based VFI method that can adapt to unseen motions at test
time. Our method is based on a cycle-consistency adaptation strategy that leverages
the motion characteristics among video frames. We also introduce a lightweight adapter
that can be inserted into the motion estimation module of existing pre-trained VFI models
to improve the efficiency of adaptation. Extensive experiments on various benchmarks
demonstrate that our method can boost the performance of two-frame VFI models, out-
performing the existing state-of-the-art methods, even those that use extra input frames.
Project page: https://haoningwu3639.github.io/VFI_Adapter_Webpage/

1 Introduction
Video frame interpolation (VFI) is a technique that increases the temporal resolution of a
video by synthesizing intermediate frames between existing frames. This results in smoother
transitions between frames, which can improve the overall quality of the video. VFI has
a wide range of applications, including video compression [35, 47], slow-motion genera-
tion [25] and novel-view synthesis [8, 17], etc. In the literature, existing VFI approaches
can be roughly divided into two categories: flow-agnostic and flow-based frame synthesis.
Flow-agnostic approaches do not use optical flow to compensate for motion between frames,
instead, they typically use a combination of adaptive convolution kernel and interpolation
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Figure 1. High-level idea overview. (a) To address the generalisation challenge of VFI models due
to domain gap on unseen data, we propose the optimisation-based video frame interpolation. By
performing test-time motion adaptation on our proposed lightweight adapter, we achieve the gener-
alization of VFI models across different video scenarios and subsequently boost their performance.
(b) Visual comparison on the cases with complex and large-scale motions from DAVIS [36] dataset.
Our method assists VFI models in generalising to diverse scenarios and synthesizing high-quality
frames with clearer structures and fewer distortions.

techniques. Flow-based approaches, on the other hand, do use optical flow to estimate the
motion between frames. This information is then used to synthesize the intermediate frames.
Recently, thanks to the rapid progress in optical flow estimation [43, 45], flow-based VFI
approaches [2, 9, 14, 15, 29] have become the dominant approach in the field.

Existing flow-based frame interpolation models are learning-based, that usually follow a
similar pipeline: extract visual features from the input frames, estimate optical flows between
the reference and target frame to be synthesized, warp the input frames and their contextual
features based on the estimated flows, then finally synthesize the intermediate frame based
on the aligned visual features. Under such design, various model architectures have been
explored, such as constructing multi-scale pyramids [11, 15, 19] and designing vision trans-
former [27, 40]. Additionally, the incorporation of extra input information, such as depth [1],
or more adjacent frames [18, 23, 40, 49], have also been explored as potential solutions. De-
spite training such meticulously-designed models on a large amount of videos, generalisation
towards real videos with complex and large-scale motions still remains challenging.

Unlike existing approaches on architecture design, we explore an alternative direction for
boosting models’ performance at inference time, i.e. optimisation-based frame interpolation
via test-time motion adaptation. Test-time adaptation has been proven effective in enhanc-
ing the performance of models in specific scenarios, as demonstrated in numerous computer
vision tasks, such as image super-resolution [10, 28, 41] and image deblurring [4], etc, it re-
mains unexplored in the domain of video frame interpolation. To this end, we devise a novel
strategy suitable for video frame interpolation, namely cycle-consistency adaptation. The
key idea is to construct triplet samples with consecutive frames from low frame-rate videos
during test time and optimise model parameters on each video sequence by leveraging the
inter-frame consistency. Considering that the adaptation process necessitates considerable
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inference time, we further propose a simple, yet effective adapter that can be injected into
the existing motion estimation module of VFI, enabling motion refinement with less than 4%
trainable parameters comparing to the original model.

To summarise, we make the following contributions in this paper: (i) to improve the
generalisation ability of existing VFI models and boost their performance, we propose an
optimisation-based motion adaptation strategy based on cycle-consistency, that allows to
tune the model on each test video sequence at inference time; (ii) to address the drawback of
high time cost associated with test-time adaptation, we design a simple, yet effective plug-in
adapter to refine the motion flow estimated by VFI models, with minimal tuning cost; (iii)
we experiment on various models and benchmarks, demonstrating that our optimisation-
based method can always boost the performance of existing two-frame VFI models, even
outperforming approaches with extra inputs.

2 Related Work

Video Frame Interpolation. Video frame interpolation (VFI) is a long-standing computer
vision research topic and has been widely studied. The recent literature on training deep neu-
ral networks has demonstrated extraordinary performance for video frame interpolation. De-
pending on whether optical flow is used, VFI methods can be broadly classified into two cat-
egories: flow-agnostic [3, 6, 18, 21, 31, 32, 39] and flow-based ones [2, 9, 14, 15, 16, 29, 30,
33, 34]. With the rapid development of optical flow estimation algorithms [12, 13, 43, 45],
flow-based approaches have taken the dominant position, which typically employ optical
flow to warp visual features of adjacent frames to synthesize intermediate frame, hence the
quality of the generated frame is highly affected by the accuracy of motion estimation. Vari-
ous strategies have been explored to improve the performance of flow-based methods. These
include exploring depth information for occlusion reasoning [1], guiding the learning of mo-
tion estimation via knowledge distillation [11, 19], designing efficient architectures for high-
resolution videos with relatively large motion [37, 42], utilizing the long-range dependency
modeling capability of transformer for processing extensive motion [27, 40], and making
full use of multiple adjacent frames for complex motion modeling [18, 23, 40, 49].

In contrast to the aforementioned learning-based methods that aim to enhance VFI model
generalisation and performance by modifying model architecture or incorporating extra input
information, we consider an optimisation-based video frame interpolation that adapts pre-
trained VFI models to the motion patterns in different video sequences at inference time.

Cycle Consistency. The idea of cycle consistency has been widely explored in various self-
supervised methods, such as image representation and correspondence learning [7, 20, 46,
48, 53]. For low-level vision tasks, CycleGAN [54] utilizes cycle-consistency loss to con-
strain the training process of generative adversarial networks on image2image translation
task. ARIS [52] exploits cycle-consistency constraint to augment the models’ ability for ar-
bitrary super-resolution. CyclicGen [24] and Reda et al. [38] learn video frame interpolation
in an unsupervised manner with the proposed cycle-consistency loss on general video data.

Test-time Adaptation. Test-time adaptation manages to adapt the trained model to test data
distribution for performance improvement, and has been successful in tasks such as classifi-
cation [44] and pose estimation [22], etc. Moreover, the idea has also been widely employed
in low-level vision, such as super-resolution [10, 28, 41], in order to improve the generali-
sation ability of models on various data. For video frame interpolation, SAVFI [5] utilizes a
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meta-learning framework for training models to achieve scene-adaptive frame synthesis.
In this paper, we exploit cycle-consistency for test-time motion adaptation in video frame

interpolation task, optimising motion for test video sequences on-the-fly, thus improving per-
formance steadily. Moreover, a lightweight yet effective plug-in adapter has been proposed
to improve the efficiency of VFI test-time adaptation.

3 Methods
In this section, we start by introducing the considered problem scenario, e.g., learning-based
and our proposed optimisation-based video frame interpolation (Sec. 3.1). Subsequently, we
detail our proposed motion adaptation strategy that is suitable for video frame interpolation,
namely cycle-consistency adaptation (Sec. 3.2). Lastly, to further improve the efficiency of
test-time adaptation, we present a lightweight adapter that can serve as a plug-in module for
better motion estimation in VFI models (Sec. 3.3).

3.1 Problem Scenario
Given a low frame-rate input video, the goal of video frame interpolation is to synthesize
intermediate frame between two or multiple adjacent frames, ending up of high-frame videos
with smoother motion. In a learning-based VFI model, it typically takes two consecutive
frames (Ii−1 and Ii+1) as input and outputs one single intermediate frame (Ii) between
them, the model’s parameters are learnt by minimizing the empirical risk on a training set:

LD(Θ) = ED(||Îi−Ii||) where Îi = Φ(Ii−1,Ii+1;Θ) (1)

Φ(·) refers to the video frame interpolation model, Θ denotes the parameters to be learnt on a
large-scale training set (D), and {Îi} denote the predicted intermediate frames. At inference
time, the model is expected to generalise towards unseen videos. However, in practise, these
models can sometimes be fragile on cases with diverse and complex motions.

In this paper, we consider to improve the model’s efficacy, with optimisation-based video
frame interpolation via test-time motion adaptation:

Θ̂V = argmin
Θ
LV(Φ,V;Θ) (2)

where Φ(·) denotes a pre-trained VFI model with parameters Θ, and we aim to further op-
timise its parameters to boost the performance on one given test video sequence (V). In the
following section, we aim to answer the core question: how can we design the objective
function (LV ), given only low frame-rate videos are presented at inference time ?

3.2 Cycle-Consistency Adaptation
At inference time, we construct a series of triplet samples from the given test video sequence,
each consists of three consecutive frames, for example,D1 = {I1,I3,I5},D2 = {I3,I5,I7},
etc. Our goal is to optimise the model’s parameters using D1, and to boost the performance
on synthesizing intermediate frames {Î2, Î4} by exploiting the cycle-consistency constraint.

As detailed in Figure 2 (a), taking the triplet D1 = {I1,I3,I5} for demonstration, we
can generate the intermediate frames with a pre-trained off-the-shelf VFI model on input
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Figure 2. Proposed cycle-consistency adaptation strategy and plug-in adapter module for effi-
cient test-time adaptation. (a) Cycle-consistency adaptation first synthesizes intermediate frames
between each two input frames and reuses them to interpolate the target frame to calculate cycle-loss,
which fully utilizes the consistency within video sequences. (b) To improve efficiency, we freeze all
the parameters of pre-trained VFI models and solely optimise the proposed plug-in adapter, which
predicts a set of parameters {α,β} based on the extracted visual features. The pixel-wise weights α

and biases β are used for rectifying the estimated flow to fit each video sequence.

consecutive video frames,

Î2 = Φ(I1,I3;Θ) Î4 = Φ(I3,I5;Θ) (3)

and reuse the synthesized frames to predict the target frame:

Î3 = Φ(Î2, Î4;Θ) (4)

The model’s parameters Θ can be updated according to:

Θ←Θ−η∇ΘLV(Î3,I3) where LV(Θ) = ||Î3−I3|| (5)

η denotes the adaptation learning rate. This cycle-consistency adaptation strategy enables
the model to make full use of inter-frame consistency, thereby acquiring motion patterns that
are more suitable for testing scenarios and achieving stable performance improvements.

3.3 Lightweight Motion Adaptation with Plug-in Adapter
Optimising the entire model for test-time motion adaptation incurs computation overhead,
here, we further propose a simple, lightweight plug-in adapter module that can be inserted
into the motion estimation module of existing pre-trained VFI models, requiring minimal
tuning to boost the performance. As depicted in Figure 2 (b), we freeze all parameters of
the pre-trained VFI model, e.g., feature extraction, motion estimation and frame synthesis
modules, then incorporate the proposed adapter into the motion estimation module, which
takes visual features extracted from adjacent frames as input, and predicts a set of parameters
{α,β} to adjust motion estimation per video sequence.

To be specific, the adapter reuses the convolutional features from motion estimation mod-
ule, and subsequently employs a 1× 1 Convolution layer to transform the feature map into
pixel-wise weights α and biases β :

F̂ = αF +β , where {α,β}= Conv(Ψ(M)) (6)
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M represents the extracted visual feature map and Ψ denotes the resused convolutional lay-
ers, then the predicted {α,β} are used to modify the estimated motion flow F . During
test-time adaptation, we only finetune the parameters in adapter, effectively refining the esti-
mated motion flow and boosting the performance of video frame interpolation model.

4 Experiments
In this paper, we start from a series of VFI models that have been pre-trained on Vimeo90K-
Triplet dataset [50], then train our proposed adapter module on the same dataset. For test-
time motion adaptation, the model is further optimised on each testing sequence from three
benchmark datasets, including Vimeo90K-Septuplet [50], DAVIS [36], and SNU-FILM [6].

Training Set. Vimeo90K-Triplet [50] training set comprises 51,312 triplets, wherein each
triplet contains three consecutive video frames with a spatial resolution of 448×256 pixels.

Testing Set. Vimeo90K-Septuplet [50] dataset encompasses 7,824 seven-frame sequences
for testing, with a fixed spatial resolution of 448×256 pixels. DAVIS [36] is a typically high-
quality video segmentation dataset with a fixed resolution of 854× 480 pixels. Following
FLAVR [18] and VFIT [40], we also report performance on 2,847 septuplet test samples
from DAVIS. SNU-FILM [6] dataset contains 1,240 triplets, with a predominant resolution
of approximately 1280×720 pixels. It comprises of four categories with ascending motion
scales: easy, medium, hard, and extreme. We further sample the surrounding frames of the
ground truth and extend each triplet into a septuplet. As a result, the easy, medium, and
hard categories contain 310 sequences, while the extreme category contains 234 sequences.
Among these septuplets in the above three benchmarks, the four odd frames compose the
input video sequence of the VFI model, as described in Sec. 3.1. And the intermediate frame
is regarded as the ground truth for the frame to be interpolated in our experiments.

Evaluation Metrics. Following common practise, we report Peak Signal-to-Noise Ratio
(PSNR) and Structural-Similarity-Image-Metric (SSIM) on the RGB channel of the target
interpolated frame for the three benchmark datasets.

Training Details. To start with, we freeze the parameters of the pre-trained VFI models
and only train our proposed plug-in adapter on Vimeo90K for 30 epochs with a batch size
of 16. We randomly crop 256× 256 patches and augment the training data using horizon-
tal and vertical flipping, temporal order reversing and RGB channel flipping. We use the
AdamW [26] optimizer with β1 = 0.9 and β2 = 0.99, and the learning rate is gradually re-
duced from 3×10−4 to 3×10−5 using cosine annealing during the whole training process.
Considering the high resolution of some video data, optimisation-based VFI is performed on
one 40G NVIDIA A100 GPU. During test-time adaptation for the full model, we use a fixed
learning rate of 1× 10−5 and calculate L1 loss to fine-tune parameters of VFI models. As
for adapter-boosted models, since other parameters have been frozen, we adapt the plug-in
adapter module to each test sequence with a larger learning rate of 1×10−4 for IFRNet [19],
3×10−4 for UPRNet [15], and 1×10−3 for RIFE [11], respectively.

5 Results
In this section, we start by providing experimental results for comparison with existing state-
of-the-art approaches (Sec. 5.1), showing the effectiveness of our proposed cycle-consistency
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Methods Adaptation Vimeo90K [50] DAVIS [36] SNU-FILM [6]

e2e plugin Easy Medium Hard Extreme

SepConv [32] % % 33.72 / 0.9639 26.65 / 0.8611 40.21 / 0.9909 35.45 / 0.9785 29.62 / 0.9302 24.16 / 0.8457
SepConv-ours-e2e ! % 33.96 / 0.9650 26.83 / 0.8639 40.41 / 0.9911 35.71 / 0.9794 29.80 / 0.9313 24.26 / 0.8479
EDSC [3] % % 34.55 / 0.9677 26.83 / 0.8578 40.66 / 0.9915 35.77 / 0.9795 29.75 / 0.9301 24.12 / 0.8420
EDSC-ours-e2e ! % 34.73 / 0.9685 26.96 / 0.8600 40.88 / 0.9917 35.98 / 0.9803 29.85 / 0.9313 24.19 / 0.8436

RIFE [11] % % 35.28 / 0.9704 27.61 / 0.8760 40.74 / 0.9916 36.18 / 0.9808 30.30 / 0.9368 24.62 / 0.8531
RIFE-ours-e2e ! % 35.57 / 0.9717 27.81 / 0.8798 40.95 / 0.9918 36.58 / 0.9816 30.49 / 0.9386 24.71 / 0.8549
RIFE-ours-e2e++ ! % 35.93 / 0.9733 28.10 / 0.8850 41.20 / 0.9924 36.94 / 0.9835 30.83 / 0.9430 24.87 / 0.8589
RIFE-ours-plugin % ! 35.56 / 0.9714 27.76 / 0.8771 40.99 / 0.9918 36.55 / 0.9825 30.48 / 0.9387 24.64 / 0.8533

IFRNet [19] % % 35.86 / 0.9729 28.03 / 0.8851 40.91 / 0.9918 36.58 / 0.9816 30.75 / 0.9403 24.85 / 0.8590
IFRNet-ours-e2e ! % 36.38 / 0.9753 28.45 / 0.8936 41.21 / 0.9921 37.03 / 0.9832 31.10 / 0.9440 25.03 / 0.8634
IFRNet-ours-e2e++ ! % 36.68 / 0.9760 28.78 / 0.8995 41.48 / 0.9923 37.57 / 0.9850 31.45 / 0.9482 25.22 / 0.8694
IFRNet-ours-plugin % ! 36.01 / 0.9734 28.16 / 0.8825 41.06 / 0.9920 36.92 / 0.9834 30.88 / 0.9404 24.93 / 0.8599

UPRNet [15] % % 36.07 / 0.9735 28.38 / 0.8914 41.01 / 0.9919 36.80 / 0.9819 31.22 / 0.9422 25.39 / 0.8648
UPRNet-ours-e2e ! % 36.68 / 0.9758 28.84 / 0.8997 41.31 / 0.9923 37.24 / 0.9836 31.66 / 0.9464 25.64 / 0.8699
UPRNet-ours-e2e++ ! % 36.90 / 0.9768 29.15 / 0.9062 41.48 / 0.9925 37.66 / 0.9855 32.00 / 0.9519 25.99 / 0.8798
UPRNet-ours-plugin % ! 36.44 / 0.9751 28.69 / 0.8945 41.32 / 0.9923 37.38 / 0.9843 31.64 / 0.9448 25.69 / 0.8705

VFIformer [27] % % 36.14 / 0.9738 28.33 / 0.8898 40.93 / 0.9918 36.53 / 0.9815 30.52 / 0.9392 24.92 / 0.8580
EMA-VFI [51] % % 36.23 / 0.9740 28.07 / 0.8826 41.04 / 0.9921 36.73 / 0.9821 30.88 / 0.9400 24.92 / 0.8580
FLAVR [18] % % 36.22 / 0.9746 27.97 / 0.8806 41.09 / 0.9918 36.85 / 0.9830 31.10 / 0.9456 25.23 / 0.8676
VFIT-S [40] % % 36.42 / 0.9760 28.46 / 0.8926 41.15 / 0.9920 37.07 / 0.9845 31.39 / 0.9501 25.52 / 0.8717
VFIT-B [40] % % 36.89 / 0.9775 28.60 / 0.8945 41.24 / 0.9921 37.06 / 0.9839 31.39 / 0.9501 25.61 / 0.8731

Table 1. Quantitative (PSNR/SSIM) comparison. We compare our boosted models to represen-
tative state-of-the-art methods on Vimeo90K [50], DAVIS [36] and SNU-FILM [6] benchmarks.
Both of the optimisation approaches exhibit a substantial improvement in performance. Note that
FLAVR [18] and VFIT [40] take multiple frames as input, but our boosted models can still outper-
form them. RED: best performance, BLUE: second best performance.

adaptation, in both end-to-end and plug-in adapter finetuning scenarios. After that, we con-
duct a series of ablation studies on the critical design choices on our adaptation strategy and
the plug-in adapter module (Sec. 5.2).

5.1 Comparison to state-of-the-art
Quantitative Results. We compare our boosted models with 9 representative learning-
based models trained on Vimeo90K-Triplet [50], including flow-free ones: SepConv [32],
EDSC [3] and FLAVR [18] and flow-based ones: RIFE [11], UPRNet [15] and etc. Among
them, FLAVR [18] and VFIT [40] take four frames as input, while others only use two ad-
jacent frames. Specifically, we consider two scenarios, namely, end-to-end finetuning (e2e),
or plug-in adapter finetuning (plugin), the former optimises all parameters in the model, de-
noted as [model-ours-e2e], while the latter only updates adapters, denoted as [model-ours-
plugin]. By default, all test-time motion adaptations are only conducted for 10-step updates,
with one exception on [model-ours-e2e++], which has performed 30-step adaptation, aiming
to show the performance variation with more optimisation steps.

As shown in Table 1, we can draw the following three observations: (i) comparing with
the off-the-shelf VFI models, our proposed cycle-consistency adaptation strategy with end-
to-end finetuning can always bring significant PSNR performance gain on all benchmarks,
that confirms the universality of our approach; (ii) the end-to-end adapted IFRNet-ours-e2e
and UPRNet-ours-e2e have exhibited comparable performance to state-of-the-art methods,
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such as EMA-VFI [51] and etc. And notably, UPRNet-ours-e2e++ with further adaptation
improves 0.83dB (36.90dB vs 36.07dB) on Vimeo90K testset and has consistently exhibited
a performance gain of over 0.47dB on other benchmarks, even outperforming the methods
that take multiple frames as input, showing the effectiveness of test-time motion adapta-
tion for unleashing the potential of pre-trained two-frame VFI models; (iii) models with
the proposed plug-in adapter module have exhibited similar performance improvement to
end-to-end finetuning, simultaneously incurring efficiency and efficacy.
Qualitative Results. We demonstrate the qualitative results in Figure 3, with the following
observations: (i) comparing with existing state-of-the-art methods, the images generated by
the models boosted via end-to-end adaptation and plug-in adapter present more details and
have higher fidelity; (ii) our test-time optimised models generate less motion blur in the
synthesized intermediate frame, indicating that the model has better adapted to the special
motion characteristics in each scenario, thus improving the quality of synthesized frames.

Inputs (Overlay) UPRNet-ours-e2e++UPRNet-ours-pluginVFIT-BFLAVR UPRNet Ground Truth

(a) Qualitative Comparison on Vimeo90K [50]

Inputs (Overlay) UPRNet-ours-e2e++UPRNet-ours-pluginVFIT-BFLAVR UPRNet Ground Truth

(b) Qualitative Comparison on SNU-FILM [6] and DAVIS [36]

Figure 3. Qualitative comparison against the state-of-the-art VFI algorithms. We show visual-
ization on Vimeo90K [50], SNU-FILM [6] and DAVIS [36] benchmarks for comparison. The patches
for careful comparison are marked with red in the original images. Our boosted models can generate
higher-quality results with clearer structures and fewer distortions.

5.2 Ablation Studies
In this section, we have conducted thorough ablation studies to quantitatively and qualita-
tively demonstrate the effectiveness of the proposed cycle-consistency adaptation strategy
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Strategies #Adaptations SepConv [32] EDSC [3] RIFE [11] IFRNet [19] UPRNet [15]

Original 0 33.72 / 0.9639 34.55 / 0.9677 35.28 / 0.9704 35.86 / 0.9729 36.07 / 0.9735

Naïve

5 33.77 / 0.9641 34.62 / 0.9679 35.36 / 0.9708 35.95 / 0.9734 36.23 / 0.9744
10 33.83 / 0.9644 34.69 / 0.9683 35.45 / 0.9713 35.81 / 0.9731 36.16 / 0.9747
20 33.91 / 0.9647 34.80 / 0.9687 35.45 / 0.9715 35.03 / 0.9685 35.79 / 0.9737
30 33.95 / 0.9648 34.85 / 0.9688 35.33 / 0.9710 34.09 / 0.9615 35.51 / 0.9721

Cycle

5 33.83 / 0.9644 34.63 / 0.9680 35.41 / 0.9710 36.14 / 0.9741 36.49 / 0.9750
10 33.96 / 0.9650 34.73 / 0.9685 35.57 / 0.9717 36.38 / 0.9753 36.68 / 0.9758
20 34.17 / 0.9659 34.94 / 0.9693 35.80 / 0.9728 36.60 / 0.9759 36.84 / 0.9766
30 34.29 / 0.9662 35.06 / 0.9699 35.93 / 0.9733 36.68 / 0.9760 36.90 / 0.9768

Table 2. Quantitative (PSNR/SSIM) comparison of adaptation strategies. The experiments on
Vimeo90K [50] dataset have shown that cycle-consistency adaptation steadily boosts VFI models by
fully leveraging the inter-frame consistency to learn motion characteristics within the test sequence.

and adapter module from the perspectives of stability and efficiency.

Adaptation Approach. In addition to the cycle-consistency adaptation proposed by us, we
here consider a baseline approach for test-time adaptation, which is to directly optimise the
distance between I3 and Î3 synthesized with I1 and I5 as input, denoted as naïve optimisa-
tion. It is noteworthy that the inter-frame temporal distance during such adaptation is larger
than that of test scenario. As shown in Table 2, we compare the two adaption strategies on
five VFI methods, and have the following observations: (i) under the same adaptation steps,
the performance gain of our proposed cycle-consistency adaptation is significantly higher
than that of naïve adaptation; (ii) as the steps of adaptation increase, naïve adaptation may
lead to a drop in performance improvement and even result in inferior performance compared
to the original pre-trained models, whereas cycle-consistency adaptation can steadily boost
VFI models, as it fully utilizes the inter-frame consistency to learn motion characteristics
within the test video sequence.

Adaptation Cost. As mentioned in Sec. 3.3, the proposed plug-in adapter is designed to
improve the efficiency of test-time motion adaptation. Here, we conduct end-to-end and
plug-in adapter finetuning on three VFI models, and compare the number of parameters
to be optimised and the time required for each step of adaptation. The results in Table 3
have illustrated that with the support of our proposed plug-in adapter, we can achieve a 2
times acceleration with less than 4% parameters to be optimised, while maintaining infer-
ence efficiency and similar quantitative performance improvement comparing to end-to-end
finetuning. This confirms the efficiency and feasibility of our proposed plug-in adapter.

Methods #Finetuning Adaptation Time (ms) Inference Time (ms)
Parameters Vimeo90K DAVIS SNU-FILM Vimeo90K DAVIS SNU-FILM

RIFE-ours-e2e 10.21M 145.6 162.7 260.8 10.94 12.74 23.61
RIFE-ours-plugin 0.087M 83.13 86.84 125.4 11.79 14.67 24.79

IFRNet-ours-e2e 18.79M 107.7 196.2 403.3 18.61 25.94 55.54
IFRNet-ours-plugin 0.676M 39.08 73.79 158.1 19.11 29.32 61.58

UPRNet-ours-e2e 6.260M 285.5 507.0 1487.8 28.33 49.90 90.85
UPRNet-ours-plugin 0.009M 162.0 237.6 872.7 29.20 50.72 92.60

Table 3. Ablation Study on end-to-end and plug-in adapter adaptation. Models boosted by our
proposed plug-in adapter require minimal finetuning parameters for adaptation, resulting in a 2 times
improvement in efficiency while maintaining comparable inference efficiency and performance.
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RGB Ground Truth Motion before adaptation Motion after adaptation Motion Ground TruthUPRNet (Pre-trained) UPRNet (Adapted)

Figure 4. Motion field visualization. The VFI model boosted by our proposed motion adaptation
can estimate more precise motion fields, thereby producing synthesized frames with higher quality.

Motion Field Visualization. As stated in Sec. 3.2, our proposed cycle-consistency adap-
tation strategy enables VFI models to fully use inter-frame consistency, and thus acquire
motion patterns that are more suitable for testing scenarios. To qualitatively verify this
idea, we visualize the motion fields estimated by the VFI model before and after adapta-
tion. Specifically, we compute the optical flow between the target frame and the reference
frame by RAFT [45] as motion ground truth, and compare the motion fields estimated by
UPRNet [15] before and after adaptation. As shown in Figure 4, the model boosted by our
proposed motion adaptation can output smoother motion fields and more precise motion
edges, leading to steady improvement in the quality of synthesized images.

6 Conclusion

In this paper, we present optimisation-based video frame interpolation to tackle the generali-
sation challenge of VFI models and boost their performance at inference time. To this end, a
test-time motion adaptation strategy that is suitable for video frame interpolation has been in-
troduced, namely cycle-consistency adaptation. In order to address the efficiency drawback
of motion adaptation, we further propose a lightweight yet effective plug-in adapter module
which can be injected into the motion estimation module of existing pre-trained VFI models
to refine the estimated motion flow, thus synthesizing higher-quality intermediate frames.
Extensive experiments on various models and benchmarks have demonstrated the effective-
ness of the proposed cycle-consistency adaptation strategy on VFI task and confirmed that
the proposed plug-in adapter module can efficiently and steadily boost the performance of
VFI models, even outperforming approaches with extra inputs.
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