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Abstract

Large-scale pre-trained Vision-Language Models (VLMs), such as CLIP and ALIGN,
have introduced a new paradigm for learning transferable visual representations. Re-
cently, there has been a surge of interest among researchers in developing lightweight
fine-tuning techniques to adapt these models to downstream visual tasks. We recognize
that current state-of-the-art fine-tuning methods, such as Tip-Adapter, simply consider
the covariance between the query image feature and features of support few-shot train-
ing samples, which only captures linear relations and potentially instigates a deceptive
perception of independence. To address this issue, in this work, we innovatively intro-
duce Brownian Distance Covariance (BDC) to the field of vision-language reasoning.
The BDC metric can model all possible relations, providing a robust metric for measur-
ing feature dependence. Based on this, we present a novel method called BDC-Adapter,
which integrates BDC prototype similarity reasoning and multi-modal reasoning network
prediction to perform classification tasks. Our extensive experimental results show that
the proposed BDC-Adapter can freely handle non-linear relations and fully characterize
independence, outperforming the current state-of-the-art methods by large margins.

1 Introduction

Recently, large-scale pre-trained Vision-Language Models (VLMs), such as CLIP [39] and
ALIGN [25], have introduced a new paradigm for generic visual recognition [24]. These
VLMs jointly learn both visual and textual representations in a shared feature space through
pre-training on large-scale datasets retrieved from the Internet, enabling them to recognize a
wide range of visual concepts without the need for additional annotated data [17, 39].
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Figure 1: A comparison on Tip-Adapter (left) vs. our proposed BDC-Adapter (right).
Our BDC-Adapter represents each image by a BDC matrix, which considers the joint distri-
butions and measures non-linear dependence during inference. Note that in this figure, E,,,
is the modified image encoder of CLIP without the last attention pooling layer.

However, due to the massive size of VLMs, it is impractical for individuals to re-train
those models. Therefore, lightweight fine-tuning techniques have become essential for adapt-
ing VLMs to downstream visual tasks, such as image classification [39, 68], object detection
[13, 41], and image captioning [30, 52, 59]. One research direction focuses on the prompt
tuning method, which aims to learn the prompt from downstream data. For instance, CoOp
[68] firstly introduces the prompt tuning method to fine-tune CLIP, while CoCoOp [67] uses
prompts conditioned on model inputs to address the generalization problem. Another ap-
proach is the adapter-based method, which directly adapts the extracted features. CLIP-
Adapter [18] and Tip-Adapter [63] are examples of this approach, both of which introduce
feature adapters to enhance CLIP’s performance on various downstream tasks.

‘We notice that the current state-of-the-art Tip-Adapter [63] method, as shown in Figure 1,
establishes a key-value cache model and evaluates the similarities of the query image feature
and features of support few-shot training samples to perform classification. However, we
recognize that Tip-Adapter [63] simply considers the covariance between each image feature
pair, which only measures marginal distributions and captures linear relations. If the relation
between features is non-linear [46, 47], the covariance might be zero, potentially instigating
a deceptive perception of independence. This problem, if not effectively addressed, will
hinder our capabilities to fine-tune VLMs.

In this paper, we introduce Brownian Distance Covariance (BDC) to the field of vision-
language reasoning to provide a robust metric for measuring feature dependence. While
classical covariance can only capture linear relations, Brownian covariance can model all
possible relations [46, 47]. Based on this, we propose a novel approach called BDC-Adapter
that leverages BDC to enhance vision-language reasoning ability. During the training stage,
we first train a one-layer multi-modal reasoning network that learns from few-shot examples
across different modalities (i.e., vision and language). Then, we introduce a BDC module
that takes feature maps as input and outputs a BDC matrix as a visual representation. Using
this, we compute class-specific prototypes by averaging the BDC matrices of the few-shot
image samples for each class, which act as a support set for test image classification. In
Figure 1, we show the BDC prototype similarity reasoning process of our proposed BDC-
Adapter. During the inference stage, we combine the BDC prototype similarity reasoning
and multi-modal reasoning network prediction to perform classification tasks. To evaluate
the effectiveness of our BDC-Adapter, we conduct experiments on few-shot learning, domain
generalization, and visual reasoning tasks. Our extensive experimental results show that
BDC-Adapter outperforms the current state-of-the-art methods by large margins.
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2 Related Work

Fine-Tuning Vision-Language Models. In recent studies on VLMs, researchers have ex-
plored the semantic correspondence between the textual and visual modalities by leveraging
a huge amount of image-text pairs [7, 10, 19, 25, 39, 43, 53, 55, 61, 62]. Researchers
have demonstrated that with sufficient fine-tuning, the large-scale pre-trained VLMs can be
transferred to various downstream tasks, such as image retrieval [14, 32], visual grounding
[30, 59], semantic segmentation [33], and visual question answering [14, 29, 69].

Recent advances in fine-tuning VLMs can be classified into two major categories: prompt
tuning methods and adapter-based methods. As the pioneering work in the context of prompt
tuning, CoOp [68] learns a set of additional vectors to optimize the prompt context. Further,
Zhou et al. [67] extend CoOp to generate image-conditioned vectors to tackle the general-
ization problem. TPT [42] can adaptively learn prompts for each test sample in the inference
stage. Adapter-based methods directly adapt the extracted visual and textual representations.
For example, CLIP-Adapter [18] introduces a feature adapter that generates the adapted
features to enhance the performance of few-shot recognition. Further, Tip-Adapter [63] pro-
poses a training-free scheme, which achieves higher accuracy by establishing a key-value
cache model. UP-Adapter [65] proposes to generate pseudo-labels for the unannotated im-
ages, which will be used to train a prototype adapter module.

Cross-Modal Few-Shot Image Classification. Few-shot learning is an important problem
in machine learning, which attempts to enable models’ transferability to new tasks with
limited labeled examples [48, 54]. Traditional few-shot learning methods typically rely on
training from base classes in the source domain, which limits their generalization capabili-
ties to the novel target domains [1, 16, 38, 60, 71]. With the help of large-scale pre-trained
VLMs, an alternative direction of work focus on tackling the few-shot classification task
without source-domain training [31, 39]. By freezing the pre-trained weights and training
additional sets of learnable parameters for downstream tasks, these models can achieve re-
markable performance with very limited training samples [39, 65, 66].

Brownian Distance Covariance. The BDC metric, defined as the Euclidean distance be-
tween the joint characteristic function and the product of the marginals, was first proposed in
Székely et al. [46, 47]. While classical covariance can only model linear relations, Brownian
covariance can model all possible relations. Therefore, the BDC metric has been introduced
into appearance matching [2] and people recognition [3, 4] to provide more complementary
information for the network model. In recent years, the BDC metric has also been applied in
other computer vision applications, such as object detection [56], hyperspectral image clas-
sification [64], and few-shot learning [58] tasks. In this work, we use the BDC metric for
representation learning mainly in the few-shot classification setting.

3 Method

3.1 Background

Contrastive Language-Image Pre-Training. CLIP [39] has demonstrated remarkable per-
formance on visual tasks by encoding images and text descriptions onto a shared embedding
space and exploiting contrastive learning on noisy image-text pairs on the Internet. We de-
note CLIP’s encoders as {E;, E, }, where E; is the text encoder (typically a Transformer [49]),
E, is the image encoder (typically a ResNet [20] or ViT [12]). In the zero-shot scenario, given
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(a) Multi-Modal Few-Shot Learning (b) Class-Specific BDC Prototype Generation
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Figure 2: Overview of our BDC-Adapter method. E, and E; are the original image and
text encoders of CLIP respectively, and E,, is the modified image encoder of CLIP that does
not include the last attention pooling layer. (a) shows the multi-modal few-shot learning
process, (b) shows the class-specific BDC prototype generation process, and (c¢) presents the
whole BDC-Adapter inference process.

a test image x;.y for a N-class classification problem, we utilize CLIP’s encoders to extract
the visual feature f, = E, (X5 ) and N text features f;, = E;({m;y;}) for all classes, where the
class name y; is appended to a hand-crafted prompt 7, such as “a photo of a”. The prediction
probability on x;.5; can be computed as

exp(Sim (ftl fv) /T)
p(y = yilxtest) = Y exp (sim(fy, f,) /T)

where 7 is the temperature hyper-parameter of the softmax function, and sim(-,-) indicates
the cosine similarity.

ey

Brownian Distance Covariance. The concept of Brownian Distance Covariance (BDC)
was first formalized in the literature by Székely er al. [46, 47], with a foundation in charac-
teristic function theory. Suppose X € R?,Y € R? denote random vectors with dimensions p
and g respectively, and pxy(x,y) represents their joint probability density function (PDF).
With t standing as the characteristic of the distribution X and s for that of Y, the joint char-
acteristic functions of (X,Y), expressed as fxy (t,s) = F(pxy(x,y)), embody a collection of
functions that encapsulate the interrelation within the random distributions X and Y. Here, F
is a mapping from the distribution space to the feature space. The selection of fxy (t,s) can
be diverse, and in our experiments, we employ a network as the characteristic function. In
accordance with the definitions of the joint and marginal characteristic functions, and assum-
ing that random vectors X and Y possess finite first moments, the BDC metric, quantifying
the similarity between the characteristics of distributions X and Y, can be expressed as

Il fxr (t,8) — fx (£) fyr (s)||*
V(X,Y) /ERP /s N dsdt. )

cpcqlltl P s+
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Here, | - || denotes the Euclidean norm, ¢, = (! *?)/2/T'((1 + p)/2), and T represents the
complete gamma function. Despite Equation (2) is complicated in its current form, the BDC
metric possesses a closed-form expression for discrete observations as established in the
work by Székely et al. [46], which is elaborated in the following Section 3.2.

3.2 BDC Module for Image Representation

Let the pair of observation data matrices (T,S) represent the observation of the joint char-
acteristic function fyy (t,s). Here, the i-th observation’s t;,s; constitute the i-th column of T
and S respectively. The Euclidean distance matrix, derived from each observational pair of
X, is denoted as DT = (dkTJ) € R™™ where dkTJ = ||t — t;]|-

The Euclidean distance matrix D’]I‘ can be calculated by first computing the squared Eu-
clidean distance matrix Dg and subsequently taking the square root. Through this process,
we can obtain a closed-form expression of DlT in terms of T:

D{ =/DY, DI =1(T'Tol)+(TT  oI)1-2T'T. 3)
In this equation, 1 € R*¢ is a matrix where each element equals 1, I signifies the identity
matrix, o denotes the Hadamard product, and T represents the matrix transpose.

The entry located at the k-th row and /-th column r,?, of the so-called BDC matrix, de-

noted as RT = (r,? 1), is defined relative to the Euclidean distance dle as

lnl

rkz—dkz—*dez—*zdkl—*zzd/zp 4)
k=1i=1

where the final three terms represent the means of the /-th column, k-th row, and all entries
of DlT, respectively. Consequently, we can represent RT concerning D? as

1 1
RT=DT - 2(1D1T+D1TT1) + 1071, 5)

The matrix RS can be derived analogously from S. Subsequently, the BDC metric assumes
the ensuing form, as per [46]:

V(X,¥) =tr(R"'RS). ©6)

Here, tr(-) denotes the matrix trace.

Referring to the above derivation, it is clear that the BDC metric facilitates an explicit
expression in terms of the feature matrix. Subsequent to this, the construction of the BDC
module proceeds as follows. Specifically, we devise a dual-layer module, which firstly re-
duces feature dimension and then computes the BDC matrix. (1) Dimension Reduction:
Owing to the polynomial increase in the computation complexity of the BDC matrix with
respect to the number of channels of the feature, we incorporate a convolution layer for the
purpose of dimension reduction. (2) Calculation of BDC Matrix: Assuming that the previ-
ous layer embeds the input image u € R”*%>3 into the feature represented by a g x d tensor
and each column or each row of the tensor can be considered as a characteristic of observa-
tion from X. In the second layer, we calculate the BDC matrix according to Equation (3) and
Equation (5). It should be noted that this layer contains no learnable parameters.
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As a result, we characterize the BDC module as a training-free pooling layer. Deriv-
ing from Equation (3) and (5), it is obvious that the BDC matrix encapsulates non-linear
interrelations among channels via the Euclidean distance. Consequently, when the relation
between features is non-linear, the traditional covariance might be zero, which may poten-
tially instigate a deceptive perception of independence. In contrast, the BDC is invariably
non-negative and only amounts to zero when the features are indeed independent [46, 47].
This constitutes an advantage over conventional covariance, thereby positioning BDC as a
more robust metric for evaluating dependence between features.

3.3 BDC-Adapter for CLIP

An overview of our proposed BDC-Adapter method is shown in Figure 2. In this section, we
introduce each component of our proposed BDC-Adapter method in detail.

Multi-Modal Few-Shot Learning. Following prior works [31], we first construct text sam-
ples by appending the class label y; to a hand-crafted prompt such as = = “a photo of a",
then we get the text descriptions #; = {7;y;} for each class y; in all N classes. In each train-
ing batch, we randomly sample n; text descriptions {f;}',, n, image samples {x;};>, and
their labels {y;}"_,, where n = n| +n; is the number of samples in a batch. We then extract
the text feature or image feature f; for each sample, denoted as f; = E,(x;) for images or
fi = E;(1;) for texts. Here we use f; for both features since the text or image samples will be
projected onto the same dimensional embedding space by encoders of CLIP. Note that the
multi-modal features { f;}?_, in each batch is also L2 normalized. Based on these features,
we learn a one-layer mu1t1 modal reasoning network y to classify the image, which can be
denoted as

w(x)=W'x, )
where W is the parameter of the multi-modal reasoning network  initialized with text fea-
tures by wy, = E;(;),Vi € [1,N], where w,, is the classification weight for class y; in param-
eter matrix W. The weights in this linear layer can be updated by gradient descent with the
following cross-entropy loss during training:

n et fi
Lee =Y H@iv(f) Zlog( f> 8)
i=1 i=1

Class-Specific BDC Prototype Generation. In a few-shot learning task, it provides M-shot
N-class training samples (i.e. M annotated images in each of the N categories) in a new
dataset. We can denote the M images in a class as {x,,}}/_, and the class labels as {y,}"_,.
For each image x within class y, we first utilize a modified visual encoder of CLIP E,,, to gen-
erate its L2 normalized visual feature, then feed it to a BDC module to produce a BDC matrix
By(x). Given all the BDC matrix {By(x,,)}_, of M images within class y, we define the
prototype of class y to be the average of the BDC matrices, denoted as P, = 4; Zm 1Bv (xm)-
Therefore, for the entire training dataset, we can build a prototype set 77 {Py, Yoi

BDC-Adapter Inference. During inference, for a test image x;.sr, we first utilize the visual
encoder to extract its image feature fi.y; = E, (X5 ). Therefore, the prediction of the multi-
modal reasoning network can be denoted as

Pm(y = )’n|xtest) =Wy, * Jrest 9)

where 1 <n < N is the class index.
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After the BDC prototype generation process, we have obtained the prototype of the few-
shot training samples. Similarly, we utilize E,,, to generate the image feature of x;., then
feed it into the BDC module and obtain the BDC matrix B (x5 ). We can get the prediction
of image x5 via calculating the similarity between B (x5 ) and the prototypes in the set P,
denoted as

Dby = ulesr) = exp (=8 (1= vee (B (xiea)) - vec (B,,), (10)

where vec(-) denotes the vectorization of a matrix. The term vec (B (xes)) - Vec(Py,) is
equivalent to the cosine similarities between the BDC matrix of the test image x5 and the
prototype matrix P,,. The exponential function is adopted to convert the similarities into
non-negative values with 6 adjusting its sharpness.

We then combine p,, and p;, to get the final prediction,

p(y = Yn|xtest) = OCPb(y = Ynlxtest) +Pm()’ = ))n|xtest)

11
— crexp(—8 (1~ vee (B (xien))-vee (Po)) + Wy - frews

where « is the residual ratio to combine two predictions. Note that wy, is the weight for class
¥, in the linear layer y and can be updated by L defined in Equation (8) during training.
The final predicted label of test image x5 is produced by § = argmax p(y [t )-

For clarity, we also analyze the sensitivity levels of the hyper-parameters and provide the
pseudo-code of our method in the Supplemental Materials.

4 Experiment

4.1 Experiment Setup

To comprehensively evaluate the performance of our proposed BDC-Adapter method, we
conduct experiments on few-shot image recognition, domain generalization, and visual rea-
soning tasks. For few-shot image recognition, we follow prior methods [63, 68] and adopt
the common few-shot protocol to evaluate our method on 11 well-known image classification
datasets, including generic object classification, fine-grained object classification, remote
sensing recognition, texture classification, scene recognition, and action recognition: Ima-
geNet [40], Caltech101 [15], OxfordPets [37], StandfordCars [28], Flowers102 [36], Food-
101 [5], FGVC Aircraft [34], DTD [9], SUN397 [57], EuroSAT [21], and UCF101 [45].
These datasets provide a comprehensive benchmark to evaluate the few-shot learning perfor-
mance of each method. For domain generalization, we evaluate the model’s robustness to
natural distribution shifts by training on 16-shot ImageNet [11] and testing on four variants
of ImageNet: ImageNet-V2 [40], ImageNet-Sketch [51], ImageNet-A [23], and ImageNet-
R [22]. Those variant datasets have been treated as out-of-distribution data for ImageNet
in previous work [42, 67]. For visual reasoning on human object interaction (HOI), we
conduct experiments on Bongard-HOI [26] benchmark to evaluate the effectiveness of our
proposed BDC-Adapter method on visual reasoning tasks.

4.2 Implementation Details

Our BDC-Adapter is based on CLIP [39] with ResNet-50 image encoder and Transformer
text encoder. In the training stage, we freeze the weights to inherit the prior knowledge.
Note that E,,, defined in Section 3.3 is the modified image encoder of CLIP that does not
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Figure 3: Performance comparisons on few-shot learning on 11 datasets. For each
dataset, we report the accuracy on 1-/2-/4-/8-/16-shot settings. The top-left subfigure shows
the average accuracy over all 11 datasets.

include the last attention pooling layer, whose output will be fed to the BDC module. For
multi-modal few-shot learning introduced in Section 3.3, there are no requirements for the
image and text samples to be exactly matched, and the number of samples for each modality
can vary in a batch, which means »; (the number of image samples) is not always equal to n;
(the number of text samples). Therein, n; is equal to the number of shots for training (i.e., 1,
2, 4, 8, 16 in our experiments). Following prior methods, we apply the data pre-processing
protocol in CLIP [39], such as resizing and random cropping operations, efc. On all the
datasets in our experiments, we train our model for 30 epochs and set the initial learning
rate as 1 x 1073, The AdamW [27] optimizer with a cosine annealing scheduler is used to
optimize the parameters. Our method is parameter-efficient and lightweight, and we only
use one single NVIDIA RTX 3090 GPU for training. For the visual reasoning on HOI task,
we further introduce the implementation details in the Supplemental Materials.

4.3 Performance Analysis
4.3.1 Few-Shot Learning

Figure 3 compares the performance of our method with five baseline methods on all 11
datasets. We also present the average accuracy in the top-left sub-figure of Figure 3. We
observe that our BDC-Adapter outperforms other state-of-the-art methods and obtains the
highest average accuracy. In comparison to Tip-Adapter-F [63] (a fine-tuned version of Tip-
Adapter), our method consistently outperforms it by large margins on all 11 datasets. This
proves that our proposed BDC-Adapter can capture the non-linear relations ignored by Tip-
Adapter-F [63] and fully characterize independence.
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We notice that our method experiences a performance drop when using 4 shots on Food101,
which appears to be a common overfitting challenge encountered not only by our approach
but also by several existing adaptation methods like PLOT [6] and CoOp [68]. However, the
overall results have demonstrated the effectiveness of our BDC-Adapter.

4.3.2 Domain Generalization  Table 1: Performance comparisons on robustness to
natural distribution shifts. All the experiments are
conducted with ResNet-50 visual backbone. The best
results are in bold and the second are underlined.

Table | summarizes the perfor-
mance of our proposed BDC-
Adapter and other state-of-the-

art methods. For a fair com-  Memod Source Target
parison, we directly include the ImageNet V2 -Sketch -A R Ave
. Zero-Shot CLIP [39] 6033 5327 3544 2165 5600 4159
results of other baselines from {37700 "o il Se13 asel 1903 1274 3486 2809
their Original paper. We report CoOp [68] 63.33 5540  34.67 23.06 56.60 42.43
he classificati ¢ th CoCoOp [67] 6281 5572 3448 2332 5774 4282
the classification accuracy of the  pyGrdarmo) 6217 5470 3440 2305 5677 4223
source domaln (ImageNet [] ]])’ PLOT [6] 63.01 55.11 33.00 21.86 55.61 41.40
) DeFo [50] 6400 5841 3318 2168 5584 42.8
target domain (ImageNet-V2 [40],  tpr42 6074 5470 3500 2667 59.11 43.89
ImageNet-Sketch [51], ImageNet- ~ TPT+CoOp [42] 0473 5783 3586 3032 3899 4575

BDC-Adapter (Ours) 66.46 5805 3692 30.77 59.52 46.31

A [23], and ImageNet-R [22]), and
the average accuracy on out-of-distribution data. Our method outperforms the DeFo [50]
method on 3 out of 4 target datasets, and surpasses all other baselines in all metrics. These
results indicate that our BDC-Adapter exhibits remarkable robustness to distribution shifts.

4.3.3 Visual Reasoning on Bongard-HOI

In Figure 4, we illustrate some  Typle 2: Performance comparisons on the Bongard-HOI
instances in the Bongard-HOI ' [26] dataset. The last column shows the average accuracy.

dataset [26]. Note that there The best results are in bold and the second are underlined.
are 6 positive examples, 6 neg-

Test Splits

ative example& and 1 quefy Method Seen act.  Unseen act. Seen act. Unseen act. Ave
image in a test instance, Wthh Seenobj.  Seenobj.  Unseen obj. Unseen obj. &
. . . CNN-Baseline [35] 50.03 49.89 49.77 50.01 49.92
is different from the illustra- Meta-Baseline [§] 58.82 58.75 58.56 5704 5830
tion here. Following the ex- ProtoNet [44] 58.90 58.77 57.11 58.34 58.28
. R . R HOITrans [72] 59.50 64.38 63.10 62.87 62.46
perlmental dCSIgn outlined in TPT (RN50) [42] 66.39 68.50 65.98 65.48 66.59
BDC-Adapter (RN50)  68.36 69.15 67.67 67.82 68.25

Jiang et al. [26], the compar-
ison is conducted on four distinct test splits of the Bongard-HOI dataset. It should be noted
that the results for the other baselines are sourced directly from the research paper by Jiang
et al. [26]. For more details on this task, interested readers are directed to this paper. We

Positive Examples Negative Examples Query Image
wash dog !wash dog Positive Negative

Figure 4: Illustration of a few-shot learning instance from the Bongard-HOI [26] bench-
mark. The left side shows positive images that depict the visual relationship of a person
washing a dog. In contrast, negative examples do not exhibit such relationships. The right
side shows query images, where the ground-truth labels are positive or negative, respectively.
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compare the performance of the proposed BDC-Adapter approach with previous approaches
in Table 2. Remarkably, our method outperforms the conventional methods, including Pro-
toNet [44] and HOITrans [72], by large margins. Even compared to the CLIP-based TPT
method, BDC-Adapter still yields better performance in all 4 test splits.

4.4 Ablation Study Table 3: Effectiveness of different compo-

nents in our BDC-Adapter method. MRN
To systematically evaluate the effectiveness  represents multi-modal reasoning network and
of our proposed BDC-Adapter, we conduct BpC represents BDC prototype similarity rea-

an ablation study on the ImageNet [11] soning, init. stands for initialization.
dataset to analyze the impacts of different ———— Setop 1 2 n s ”

components in our BDC-Adapter. Table  ~ypxi i, 60.55 6107 61.89 63.04 63.57
3 presents the performance results, where = MRN (w/ init) 61.12 6177 6273 63.78 64.68
the last row shows the accuracy of our full ~_MEN+BDC(Ours) 6219 6291 6395 6483 6646
BDC-Adapter. We can see that both initialization of the multi-modal reasoning network and
BDC prototype similarity reasoning contribute significantly to the overall performance.

4.5 Efficiency Comparison

In order to show the great fine-tuning effi- Table 4: Efficiency comparisons on 16'51}0t
ciency of our BDC-Adapter, we compare ImageNet. We report the results using a sin-
the number of training epochs, training &le NVIDIA RTX 3090 GPU.

time’ Computational cost, and number of Method | Epochs  Training GFLOPs Param.  Acc.

. CoOp [68] 200 15h >10 0.0IM 62.95
parameters of our method with other state- ¢ 1p sgupier 15) 200 S0min 0004 0.52M 63.59
Of-the-art methOdS on 16-Sh0t ImageNet us- Tip-Adapter-F [63] 20 5 min 0.030 16.3M  65.51

BDC-Adapter (Ours) 20 2 min 0.001 1.02M  66.46

ing a single NVIDIA RTX 3090 GPU. We
report the comprehensive results in Table 4. Our BDC-Adapter has only a single linear layer
for training, thereby exhibiting great efficiency in fine-tuning VLMs. With just 2 minutes
of training and 1 MFLOP on a single RTX 3090, our BDC-Adapter achieves a remarkable
accuracy of 66.46% on 16-shot ImageNet. In comparison, the CoOp method needs about
15 hours of training and 4 MFLOPs to achieve 62.26% accuracy; the Tip-Adapter-F method
needs 5 minutes of training and 30 MFLOPs to achieve 65.51% accuracy.

5 Conclusion

In this work, we innovatively introduce Brownian Distance Covariance to the field of vision-
language reasoning, which provides a more robust metric for measuring feature dependence
to enable beter generalization capability. Based on this, we present a novel method called
BDC-Adapter, which takes advantage of the BDC metric in computing the similarities be-
tween the few-shot BDC prototypes and the BDC matrix of the test image. Meanwhile,
BDC-Adapter only introduces a one-layer multi-modal reasoning network that learns from
multi-modal few-shot instances, to adapt VLMs to downstream tasks using limited training
data. Our extensive experiment results indicate the effectiveness of our proposed BDC-
Adapter method for fine-tuning VLMs. With its lightweight and parameter-efficient design,
BDC-Adapter not only exhibits better vision-language reasoning capabilities but also has
lower computational complexity, which makes it suitable for practical applications.
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