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Abstract

In this paper, we propose a novel way, namely UniLip, to utilize uni-modal texts and
uni-modal talking face videos for lip reading. With only uni-modal data, we achieve to-
tally unsupervised lip reading for the first time. We reformulate the lip reading task with
uni-modal data into two sub-tasks: learning linguistic priors from uni-modal texts and
mapping uni-modal videos to texts under the constraint of the learned linguistic priors.
We formulate the two sub-tasks as language modeling and conditional generation tasks,
respectively, and introduce a multi-grained adversarial learning strategy to embed these
two sub-tasks into a unified framework. Specifically, for the language modeling sub-
task, we introduce a novel multi-grained discrimination strategy based on local n-gram
sub-utterances, considering the linguistic features often related to local language patterns
such as word spelling and grammar correctness. For the conditional generation sub-task,
we first leverage self-supervised models to extract base visual features, and then construct
a generator by adapting them to our task with a multi-grained feature fusion module that
aggregates both local and global information. With only uni-modal data, we yield a best
unsupervised Word Error Rate of 51.2% and 57.3% on LRS3 and LRS2, respectively.
The result on LRS3 is comparable with mainstream supervised models trained on it.
With both uni-modal and labeled data, we show that UniLip could co-work with tradi-
tional supervised frameworks. In our case, it improves supervised Seq2Seq methods by
relatively 4.2% and 1.4% on LRS3 and LRS2, respectively. Our UniLip’s ability to work
with uni-modal data under the settings of both with and without supervision shows its
great potential for real-world applications.

1 Introduction
Lip reading, also known as Visual Speech Recognition (VSR), is the task of recognizing
speech by analyzing talking face videos. Its core is to build the correct mapping from visual
features to textual modality, which is still a challenging task at present due to the large
variations in both visual appearance and spoken words. With the availability of large-scale lip
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reading datasets [2, 4, 9, 30, 35], several works[27, 31, 38] have made amazing achievements
by taking advantage of labeled transcriptions. In this work, we investigate how to use easily
accessible unlabeled uni-modal videos and texts for lip reading.

The main idea behind our approach is that uni-modal texts can provide valuable prior in-
formation about the target language to be recognized, including word spelling, phrase com-
position, and grammatical structure. Although we have no access to the exact speech content
of an unlabeled uni-modal talking face video, we can use the learned linguistic knowledge
of the same language to constrain the mapping of the visual features to the textual modality.
For example, in English, "From the core of the earth" is more likely to be a correct output
than "Frum the kare ov the erth".

Based on this idea, we take advantage of the uni-modal texts to learn the linguistic priors
of the target language. The learned priors are then used to supervise the mapping process
of the uni-modal videos to plausible texts. In this process, we can not require the model to
map each visual input to its exact textual transcription because we have no annotated labels.
But we are able to narrow the output space to a correct space by restraining the model’s
text outputs to adhere to the priors and characteristics of the target language. Specifically,
we subdivide the lip reading task with uni-modal data into two sub-tasks: (S1) learning
linguistic priors from uni-modal texts and (S2) learning to map uni-modal videos to texts
consistent with such priors. For (S1), we formulate it as a language modeling task based on
various uni-modal texts. For (S2), we formulate it as a text generation task conditioned on
visual features, constrained by the learned priors in (S1). The overview of our method is
shown in Figure 1.
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Figure 1: (a) The Traditional Supervised Approach (b) Our Approach

We face two obstacles in the learning process. Firstly, the uni-modal texts are often
collected from various sources and have source-specific characteristics. Linguistic priors
learned from these texts may not accurately reflect the properties of the target language
because the training uni-modal texts are easily biased to specific domains and sources. Sec-
ondly, with only uni-modal data, we lack strong and explicit supervision signals to effectively
capture visual speech cues from talking face videos, which poses challenges to providing
solid visual conditions for mapping lip movements to spoken words.

To overcome the above two issues, we propose a multi-grained learning strategy. Firstly,
even though texts collected from various sources differ in some ways, they still share com-
mon linguistic characteristics in local spelling grammars owning to the specific type of target
language. The common linguistic characteristics are mainly reflected in short n-gram clips
and these n-grams are capable of encoding general linguistic features and alleviating bias
from text sources. We introduce a novel multi-grained discrimination strategy based on n-
gram sub-utterances. It breaks down the whole text and only focuses on the realness of its
n-gram clips. Secondly, we first leverage on-the-shelf self-supervised models to extract base
visual features and then introduce a multi-grained feature fusion module to adapt these fea-



XIA, YANG, SHAN AND CHEN: UNILIP: UNI-MODAL DATA FOR LIP READING 3

tures for our task by integrating both local information of individual frames and the global
context of the whole sequence.

In conclusion, our contributions can be summarized as below:
• We propose UniLip, a novel way to utilize uni-modal videos and texts for lip reading.
• We subdivide lip reading with uni-modal data into two sub-tasks of language modeling

and conditional text generation, and embed them into a unified training framework by
a multi-grained adversarial learning strategy.

• We demonstrate UniLip’s advantages to utilize uni-modal data both with and without
labeled data and provide further analyses of its capacity to work with data of different
scales and sources.

2 Related Work
2.1 Lip Reading
Existing lip reading methods can be categorized into two categories: fully-
supervised methods and self-supervised methods. In the fully-supervised category, the model
typically consists of a visual front-end, an encoder, and a decoder. These methods mainly
rely on large-scale labeled data to learn how to encode speech-related visual features from
talking face videos and decode them into corresponding textual transcriptions. Several works
attempt to tackle lip reading by proposing effective network architectures to achieve bet-
ter feature extraction, feature integration, or decoding, including attention-enhanced visual
front-end[27], MS-TCN encoder[24] and transducer-based decoder[23], respectively. Re-
cently, some works have explored multi-modal self-supervised pre-training with unlabeled
data and finetuning on labeled data for the final lip reading task[14, 28, 39]. They utilize
unlabeled audio-video pairs to perform pre-training with a multi-modal masked prediction
task and then finetune on labeled video-text pairs. In this work, we propose a way to both
perform unsupervised training with unlabeled data and semi-supervised training with labeled
and unlabeled data.

2.2 Self-supervised and Unsupervised Automatic Speech Recognition
In recent years, numerous self-supervised automatic speech recognition(ASR) methods have
emerged. Most methods are based on a masked prediction strategy, such as wav2vec
2.0[5], HuBERT[16], W2V-BERT[11] and BEST-RQ[8]. With the availability of high-
quality auditory pre-trained models, researchers have attempted to completely eliminate the
reliance on labeled textual transcriptions in ASR. One notable example is wav2vec-U[6] and
its successor wav2vec-U 2.0[19]. Prior to these advancements, early works have also made
valuable contributions to unsupervised ASR[7, 18, 20]. Their ideas of adversarial training
have inspired later works. However, even though lip reading and ASR share a lot in task
formulation, there have never been efforts made to achieve entirely unsupervised lip read-
ing. This is mainly because current unsupervised ASR methods severely rely on high-quality
speech representations, which are still hard to obtain in lip reading.

3 UniLip

3.1 Overview
Given an unlabeled talking face video x = (x1,x2, · · · ,xT ) with T frames, the goal of our
method is to recognize its speech contents. In this work, we aim to learn the semantic
mapping from the talking face videos to their textual transcriptions by taking advantage of
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uni-modal videos and texts. We decompose this target into two steps: (S1) learning linguistic
priors from uni-modal texts of the target language and (S2) mapping the uni-modal videos
to texts with constraints of the learned linguistic priors. Then we unify the two tasks via an
adversarial training framework.

For (S1), we formulate it as a language modeling task and introduce a multi-grained dis-
criminator D to finish it by judging inputs from uni-modal texts as real. We use causal tempo-
ral convolutions to construct D. This causal design requires each judgment only made based
on its history inputs, which is similar to causal language modeling. Formally, given a sen-
tence t = (t1, t2, · · · , tT ) from the text corpus T , it is tokenized into a sequence of phonemes.
Then each phoneme in the sequence is encoded as a one-hot vector. The one-hot encoded
phoneme sequence is denoted as p = (p1, p2, ·, pT ′ ), where each pi is a |V |-dimensional one-
hot vector and |V | is the size of the phoneme set. Finally, with the input p, D is trained to
output a probability as close to 1 as possible for the input uni-modal texts, maximizing the
confidence of p being real. We choose phoneme for tokenization here because each phoneme
could represent a visual vocal pattern, making it suitable for our task.

For (S2), we formulate it as a text generation task conditioned on visual features of lip
movements, which is constrained by the linguistic priors learned in (S1). We introduce a
generator G to finish this task. G receives visual inputs x = (x1,x2, · · · ,xT ), and outputs a
sequence of phoneme posterior distributions p̂ = ( p̂1, p̂2, · · · , p̂T ′′ ) where p̂i,∀i ∈ 1, · · · ,T ′′

is a distribution over the phoneme set V . Then G sends p̂ to D and tries to deceive D into
outputting a probability close to 1.

During training, G receives the extracted raw features of uni-modal videos and generates
phonemes, and is optimized by the loss that D judges the realness of the generated phonemes.
D receives both real phonemes from uni-modal texts and fake phonemes from G, and is
optimized by the losses to judge real phonemes as real and fake phonemes as fake. In this
adversarial game, if G succeeds in producing outputs that are indistinguishable by D, it is
believed to be able to produce reasonable textual transcriptions based on uni-modal talking
face videos. During inference, G’s outputs are decoded into word-level sentences via HLG
decoding built with k21. The whole framework is shown in Figure 2.

3.2 Multi-grained Learning of Linguistic Priors
In this section, we elaborate on our detailed design of D. When learning linguistic priors
from uni-modal texts, we do not impose any restrictions on the source of texts so that our
method could be universally applied to texts collected in various ways.

Generally, texts collected from different sources often share some local linguistic proper-
ties, such as grammar and spelling patterns, but they may also differ in some holistic aspects,
such as sentence average length and topic. Based on this observation, we aim to build a
multi-grained criterion to learn the consistent and valid priors of the target language from
different texts considering removing biases introduced by different text sources.

Specifically, we propose GramNet, short for ngram-based discrimination network, to
formulate D. GramNet focuses on capturing multi-grained linguistic characteristics from
local n-grams so as to reduce source-specific biases among different texts. Because these
short n-gram clips mainly reflect the rule of basic linguistic characteristics, they allow us to
capture underlying language properties that are less influenced by text sources.

Formally, GramNet clips the real or fake input sequence into n n-gram clips along the
temporal dimension and feeds each n-gram into 3 causal convolutional layers, then calculates

1https://github.com/k2-fsa

https://github.com/k2-fsa


XIA, YANG, SHAN AND CHEN: UNILIP: UNI-MODAL DATA FOR LIP READING 5

𝐿6

𝐿5

𝐿4

𝐿3

𝐿2

𝐿1

GAN 

Objective

Loss 

Average

Ngram-Based 

Discrimination Network

F R AH M DH AH K AO R AH V DH AH ER TH 𝑠2

𝑠1 F R AH M DH AH K AO R AH V DH AH ER TH 

F R AH M DH AH K AO R AH V DH AH ER TH 𝑠3

F R AH M DH AH K AO R AH V DH AH ER TH𝑠5

F R AH M DH AH K AO R AH V DH AH ER TH 𝑠6

𝑠4 F R AH M DH AH K AO R AH V DH AH ER TH 

F R AH M DH AH K AO R AH V DH AH ER TH 

Ngram SamplingCausal Convolutions

𝑇

Conv3
Conv2
Conv1

Softmax

Pooling

Linear

Conv1d

Predict

Cluster Indexes

Clustering

B
atch

 N
o
rm

“F R AH M DH AH … DH AH ER TH”“FROM THE CORE OF THE EARTH”

One-hot    Encoding
Phoneme

Conversion

…

AH THERAHDHF R A

H

M DH

Fake

Real

F R AH M DHAH ER TH

𝑇

𝑉

…

…

Frequency 

Adaptor

HLG 

Decoding 

“From … of the earth”

Inference

Multi-Grained 

Feature Fusion

+ ++

Attention

Head
Attention

Head
Attention

Head
Attention

Head

[0,1]

Uni-modal 

Videos

Uni-modal 

Texts

Figure 2: Model Architecture

the loss of the input by mean-averaging the losses of these n n-gram clips, as shown in Figure
2. We denote the minimum and maximum lengths of n-grams as lmin and lmax respectively.
Given an input phoneme sequence p = (p1, p2, · · · , pn), the start position of its i-th n-gram
sti is set to i∗ lmin, and its length is sampled from the uniform distribution U(lmin, lmax). This
sampling strategy ensures that all the n-grams uniformly cover the whole sequence, which
promises the input to be fully utilized.

3.3 Multi-grained Visual-Textual Mapping

In this section, we elucidate our design of G. In our framework, G is responsible for mapping
videos to texts with constraints of the linguistic priors. It mainly includes a BatchNorm
layer, a linear layer, and a 1D temporal convolution layer. In the forward pass, G receives a
sequence of talking face images and outputs a sequence of textual posterior distributions. The
output sequence is then down-sampled along the temporal dimension by merging adjacent
time steps that share the same phoneme prediction[19], denoted by "Frequency Adaptor"
in Figure 2. However, due to the small receptive field of the 1D temporal convolution, G’s
output at each time step is just a local aggregation of the input features from adjacent visual
frames. This assumes a strong local correspondence between input visual features and output
texts, which is hard to stand due to homophones and the difficulty of visual feature extraction.
Even though we leverage pre-trained models to extract base visual features, we empirically
prove that these features are not capable of directly building a mapping with texts in our task,
as Section 5.1 suggests.

To alleviate this issue, we ease the above localness assumption by providing the generator
with global context information to obtain multi-grained visual feature integration. Formally,
we add a temporal self-attention module[32] after the addition block of the BatchNorm and
linear layers to extract the global temporal context and fuse its output with the addition
block’s output through summation.
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3.4 Optimization Objective
In our setup, the overall optimization objective includes the classical GAN objective and four
task-oriented auxiliary losses:

min
G

max
D

E
p∼P

[log(D(p))]− E
x∼X

[log(D(G(x))]−λLgp + γLsp + εLpd +µLaux, (1)

where p ∼ P is a sequence of one-hot encoded phonemes from uni-modal texts and x ∼ X
is a sequence of lip images of uni-modal videos. The first two terms are the classical GAN
objective[12] on real and fake samples, respectively. Lgp is a gradient penalty[13] to aid D’s
training. Lsp, Lpd and Laux are specialized for G to generate more plausible texts, which
stand for smoothness penalty, phoneme diversity, and auxiliary prediction loss, respectively.

Gradient Penalty. We use the gradient penalty technique to constrain the gradient norm
of D with respect to mixtures of real and fake text samples. This approach has been shown
to be beneficial for convergence[13]. Let x′ denote a mixture of real and fake samples and
the gradient penalty is as below:

Lgp = E
x′∼X ′

[
(||∇D(x′)||−1)2] . (2)

Smoothness Penalty. Via phoneme-level CTC decoding, we find that adjacent phoneme
distributions in G’s outputs often correlate with the same phoneme segment. This indicates
that G’s outputs should be temporally consistent within each phoneme segment and different
at phoneme segment boundaries. We introduce Lsp to achieve the two requirements:

Lsp = ∑
(xt ,xt+1)∈G(x)

||xt+1 − xt ||2 −ξ . (3)

The first term tries to force the phoneme outputs at adjacent time steps consistent with each
other, and the threshold ξ ensures tolerance for segment boundaries.

Phoneme Diversity. We incorporate a phoneme diversity loss Lpd [6] to encourage G to
produce diverse contents by maximizing the entropy of G’s outputs:

Lpd =− 1
|T | ∑

x∈X
−H(G(x)). (4)

Auxiliary Prediction. Different from ordinary generation tasks, our G receives visual
features instead of Gaussian noises. In this formulation, G may overlook the visual inputs
and produces irrelevant textual outputs. We regularize G’s outputs related to visual inputs by
auxiliary prediction loss Laux as below:

Laux =− ∑
x∈X

T

∑
t=1

logP(yt |xt). (5)

Before training, we cluster the frame-level visual features of the whole dataset and dump
cluster indexes of each frame. Within a sequence of image features, the cluster index of the
i-th feature xi is denoted by yi. P(yi|xi) is the probability of correctly predicting the cluster
index yi by xi, obtained by applying a linear transformation and a softmax function to G’s
BatchNorm layer output.

4 Experiments

4.1 Datasets
We choose our uni-modal videos and texts from three video and five text datasets separately
in different settings, and report performances on lip reading datasets LRS3[2] and LRS2[30].
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Uni-modal Videos. LRS3[2], LRS2[30], and Vox2-en-433h. LRS3 is currently the largest
English lip reading dataset, with a total of 433 hours. LRS2 is a 224-hour lip reading dataset.
Vox2-en-433h is a 433-hour subset of VoxCeleb2[10], containing uni-modal English talking
face videos collected from YouTube videos.
Uni-modal Texts. LRS3[2], LRS2[30], TEDLIUM-v3[15], Cantab-TEDLIUM[33] and
LibriSpeech[25]. LRS3 contains 0.19 million sentences, and LRS2 contains 0.14 million
sentences2. TEDLIUM-v3 and LibriSpeech are both ASR datasets, containing 452 and 960
hours of transcribed audio, respectively. We use their textual transcriptions as uni-modal
texts for experiments here, where TEDLIUM-v3 has 0.27 million sentences and LibriSpeech
has 0.29 million sentences. Cantab-TEDLIUM is a text corpus containing over 7 million En-
glish sentences. Among them, LRS3, TEDLIUM-v3 and Cantab-TEDLIUM are all collected
from TED talks, while LRS2 is from BBC programs and LibriSpeech is from audiobooks. In
TEDLIUM-v3 and Cantab-TEDLIUM, sentences overlapped with the test split of LRS3 have
been removed. To simplify notation, TEDLIUM-v3 and Cantab-TEDLIUM are denoted by
TEDLIUM and Cantab, respectively.
Pre-processing. We use the recently released VatLM[39] to extract the raw visual features.
When tokenizing texts, we first perform phonemization[26], and then add <SIL> token be-
fore the first word, after the last word, and between every two adjacent words with a proba-
bility of 0.5 following [6].

4.2 Experimental Settings
The 1D convolution in G has a kernel size of 6, a stride of 2, and a padding of 3. All of
the convolution layers in D are of the configuration of kernel size 6, stride 1, and padding
5. The minimum and maximum lengths of n-gram clips are set to 20 and 25, respectively.
G and D are trained alternately for a total of 100 epochs with a batch size of 20, optimized
by Adam[17] with a fixed learning rate of 1.5e-5 and 1.5e-4, respectively. The threshold ξ
in Lsp is set to 0.5. The weights γ , ε , and µ are set to 0.1, 3.0, and 0.5, respectively, and
kept constant in all experiments, while different λ are adopted for different text datasets. It
is typically chosen from {0.35, 0.40, 0.45, 0.50}, except LibriSpeech where it is 0.2.

4.3 Unsupervised VSR
In this section, we present the results of unsupervised VSR. The uni-modal videos are from
all the training videos of LRS3, LRS2, or Vox2-en-433h. The uni-modal texts are from
LRS3, LRS2, TEDLIUM, Cantab, or LibriSpeech. The models are tested on the test sets of
LRS3 and LRS2.
Text Settings. We evaluate our method with two settings of the uni-modal texts: constrained
and unconstrained. In the constrained setting, only a subset of texts is used to make the
number of text samples equal to video samples, i.e. 0.19 million in LRS3 and 0.14 million in
LRS2. In the unconstrained setting, all available texts in each text dataset are used. In Table
1, the down arrows in the last column indicate the WER reduction when enlarging texts from
constrained to unconstrained, and N/A indicates failure of convergence.
Quantitative Results. On LRS3, We achieve a test WER of 51.2%, rivaling mainstream lip
reading models trained with labeled data[29, 34]. On LRS2, even though LRS2 isn’t utilized
in VatLM’s pre-training and the training videos are totally "unseen" for the feature extractor,
we still yield a test WER of 57.3%.

2We split samples in LRS3 and LRS2 with a maximum length of 15s.
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Main Conclusions. (a) UniLip’s performance scales with the size of texts; (b) UniLip can ef-
fectively accommodate videos and texts from different sources. On LRS3, when the amount
of text increases, UniLip shows better performance and easier convergence on Cantab and
LibriSpeech. On LRS2, UniLip’s ability to scale performance with the size of texts is further
demonstrated, achieving better WER by average 1.6%. Among all the experiments in Table
1, 13 out of 16 successfully converge, demonstrating that UniLip could work with data from
different sources. Surprisingly, constrained TEDLIUM’s WER is 1.9% lower than the un-
constrained one. We assume it’s because the usage of TEDLIUM’s texts during VatLM’s[39]
pre-training makes it somehow insensitive to the text scale in our experiments.

Table 1: Results of Unsupervised VSR on LRS3 and LRS2
Training

Video
Training

Text
Test WER/%(↓)
(Constrained)

Test WER/%(↓)
(Unconstrained)

LRS3

LRS3 - 51.9(-)
TEDLIUM 51.2 53.1(1.9↑)

Cantab 61.8 60.8(1.0↓)
LibriSpeech N/A 64.9(∞↓)

LRS2

LRS2 - 57.2(-)
LRS3 59.7 57.8(1.9↓)

TEDLIUM 58.3 57.3(1.0↓)
Cantab 60.7 58.9(1.8↓)

LibriSpeech N/A N/A

In Table 2, we compare our method with other mainstream works in lip reading. Among
the supervised results, except for [23] which uses 31000 hours of labeled data, UniLip’s per-
formance is comparable with all other results, even surpassing four of them. This indicates
UniLip’s potential to perform lip reading even with only uni-modal data.

Table 2: Comparison with Other Works on LRS3

Method Backbone Criterion Labeled
Data/h

Unlabeled
AV Data/h

Test
WER/%()

Supervised
Zhang et al. [36] CNN CE 855 - 60.1
Afouras et al. [1] Transformer CE 1519 - 58.9

Xu et al. [34] RNN CE 590 - 57.8
Shillingford et al. [29] RNN CTC 3886 - 55.1

Ma et al. [22] Conformer CTC+CE 433 - 46.9
Ma et al. [22] Conformer CTC+CE 590 - 43.3

Makino et al. [23] RNN Transducer 31000 - 33.6
Semi-supervised&Self-supervised

Afouras et al. [3] CNN CTC 590 334 59.8
Zhang et al. [37] Transformer CTC 30 433 67.8

Ma et al[21] Transformer CE 433 1759 49.6

AV-HuBERT[28] Transformer-Base CE 433 1759 34.8
Transformer-Large CE 433 1759 28.6

VATLM[39] Transformer-Base CE 433 1759 34.2
Transformer-Large CE 433 1759 28.4

RAVEn[14] Transformer-Base CTC+CE 433 1759 33.1
Transformer-Large CTC+CE 433 1759 28.2

Unsupervised
UniLip(Ours) GAN GAN - 1759 51.2



XIA, YANG, SHAN AND CHEN: UNILIP: UNI-MODAL DATA FOR LIP READING 9

4.4 Semi-supervised VSR
In the presence of labeled data, UniLip could also be incorporated into traditional supervised
frameworks. We mainly consider the popular Seq2Seq models in this work. We show that
UniLip could help Seq2Seq models bridge the gap between visual and textual modality,
by evaluating the realness of phonemes generated based on the Seq2Seq model encoder’s
output. Specifically, we first train the unsupervised model and then freeze and save the
best model. We use G to generate phoneme distributions based on the encoder’s output and
evaluate their realness with D. The total loss is formulated as below, where Lseq2seq is the
conventional cross-entropy loss and LGAN is the loss provided by D:

L = Lseq2seq +αLGAN . (6)
Settings. We report the results in VatLM[39] and our reproduced baselines(marked with *).
We use a smaller and shallower 6-layer Transformer decoder due to the constraint of com-
putation budgets and compare two settings of uni-modal data: with and without extra uni-
modal data, as shown in Table 3. If without extra uni-modal data, we use videos and texts in
LRS2 or LRS3 in an unpaired way to train unsupervised parts. Otherwise, we use uni-modal
data from two different datasets, e.g. videos of Vox2-en-433h and texts of TEDLIUM-v3.
Meanwhile, we leverage labeled data for Seq2Seq training. We set α to 0.001 or 0.01 in all
experiments and N/A denotes that the corresponding unsupervised model fails to converge.
Main Conclusions. UniLip could achieve better efficacy of annotated data and also effec-
tively incorporate extra uni-modal data into the Seq2Seq framework. When no extra uni-
modal data is involved, UniLip boosts performances by at most relatively 2.7% as shown in
the third row of the full set of LRS3. When extra uni-modal data is involved, a maximum
relative improvement of 4.2% is observed in the last row of the 30h subset of LRS3.

Table 3: Results of Semi-supervised VSR on LRS3 and LRS2
Labeled
Hours/h

Uni-modal
Videos

Uni-modal
Texts

Test WER/%(↓)
(Base)

Test WER/%(↓)
(Large)

LRS2

224
- 30.6[39] 24.3[39]

32.0* 28.1*
LRS2 LRS2 31.2(0.8↓) 27.8(0.3↓)

Vox2-en-433h TEDLIUM 31.0(1.0↓) 27.7(0.4↓)
LRS3

30 - 42.6[39] 31.6[39]
42.0* 35.5*

LRS2 TEDLIUM 41.1(0.9↓) 34.0(1.5↓)

433

- 34.2[39] 28.4[39]
36.6* 32.6*

LRS3 LRS3 35.4(1.2↓) 31.7(0.9↓)
Vox2-en-433h TEDLIUM N/A 31.5(1.1↓)

LRS2 TEDLIUM 36.2(0.4↓) N/A

5 More Analysis
5.1 Model Ablation
In Table 4, With only either the local or the global feature, the model fails to converge,
demonstrating the necessity of our multi-grained feature fusion module. For the discrimina-
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tor, the ngram-based discrimination network(GramNet) outperforms the naive one by 0.8%.
Combined with the conclusions in Section 4.3, it is shown that GramNet could not only
incorporate texts from various sources but also bring better performances.

Table 4: Ablation of Model Architectures
Generator Discriminator Test WER

Local Feature Naive N/A
Global Feature N/A

Feature Fusion Naive 52.7%
GramNet 51.9%

5.2 Visualization
We perform phoneme-level decoding on the LRS3 test set and retrieve the corresponding
input lip images of each phoneme according to the decoding results. The results are shown in
Figure 3. We found that UniLip successfully maps different phonemes to different lip shapes,
such as "CH" and "M". Surprisingly, we also notice that UniLip could associate phonemes
of similar pronunciations with similar lip shapes, even though they’re not homophones. For
example, "AE" and "AY" both require an open mouth, but "AY" requires a wider stretch
of the mouth horizontally, while "AE" requires a greater stretch of the mouth vertically.
These findings demonstrate UniLip’s capacity for learning fine-grained semantic mappings
between textual and visual modalities in lip reading.

AA AE AYB EYFHH IHIY MOWP SV Z CH

Figure 3: Visualization of Phonemes

5.3 Unsupervised Results on Combined Datasets
Since UniLip does not require any video-text pairs, we combine videos of LRS3 and Vox2-
en-433h and texts of TEDLIUM and Cantab for unsupervised training, yielding a test WER
of 57.4% on LRS3 and 60.8% on LRS2. This is likely due to the difficulty of handling
multiple datasets with such a simple model described in Section 3. Better techniques will be
explored to extend UniLip to combined datasets.

6 Conclusion
We propose a novel way to perform lip reading by incorporating uni-modal data, namely
UniLip. With uni-modal data, we achieve unsupervised lip reading for the first time. When
also provided labeled data, UniLip is capable of incorporating extra uni-modal data and
further improves the efficacy of labeled data. The results show its great potential for real-
world applications.
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