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Abstract

Current methods for egocentric view action recognition often face challenges in per-
ceiving dynamic hand movements relying solely on geometrical or physical information.
In this work, we effectively address this problem by gaining insights into the correla-
tion between functional hand configurations and objects, which improves the detailed
interpretation of real-world scenarios. To this end, we introduce a practical taxonomy
of hand types based on the functioning perspective and utilize it for per-frame hand type
labeling on existing datasets. We also propose a novel hand action recognition frame-
work considering semantic details of the hand type as prior. This approach boosts the
network’s understanding of the continuous hand interaction throughout the action se-
quence. Our whole pipeline consists of three main modules: (1) Feature Extraction,
(2) Egocentric Knowledge Module, which estimates 3D hand pose, object category, and
hand type leveraging short-term cues, and (2) Egocentric Action Module, which aggre-
gates per-frame knowledge, including text embeddings of hand type, over a longer time.
In our extensive experiments with large-scale benchmarks, FPHA and H2O, our model
outperforms current state-of-the-art methods, demonstrating its superior performance.
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Figure 1: Examples of actions and corresponding hand types from the FPHA dataset [15].
While each action shares the goal of opening objects, the specific interactions between hands
and each object are different. Further, both activities involve holding and opening the lid, but
the semantic functions of these motions differ significantly. To highlight the continuously
repeated shape during the operation, we represent it using “Dynamic”.

1 Introduction
Understanding dynamic interacting human hands is a promising computer vision task be-
cause people use their hands to handle objects and communicate with others throughout
daily activities. Recently, various hand-based visual applications have been proposed, such
as human-robot collaboration [13, 14, 33, 47] and imitation learning [31, 36, 37]. More-
over, the advancement of low-cost wearable sensors and VR/AR technologies motivates the
computer vision community to tackle egocentric view hand action recognition.

In real-world egocentric view scenarios, substantial occlusion and truncation often oc-
cur, especially when the hand actively interacts with other hands or objects. To address these
issues, recent approaches [8, 24, 26, 28, 40, 43, 44, 49, 51, 52] in hand action recogni-
tion primarily focus on the temporal context of 3D hand position or high-level object labels.
However, these methods still face challenges in perceiving dynamic hand movements relying
solely on geometrical information. In this work, we go beyond mere physical information
and focus on the semantical hand interactions to provide valuable details for a comprehen-
sive understanding of hand action sequences. For example, as illustrated in Fig. 1, there are
semantic differences between everyday hand actions such as “Open Juice Bottle” and “Open
Liquid Soap”. Although each action shares the goal of opening objects, the specific inter-
actions between hands and each object differ. Therefore, gaining insights into the semantic
relationships between functional hand configurations and other hands or various objects is
essential for addressing complex real-world hand scenarios. From this observation, we con-
sider utilizing contextual knowledge of hand types to understand complex hand interactions
above simply relying on the physical hand positions.

One of the best ways to specify hand type at semantic level is hand type taxonomy. The
concept of hand type represents a figurative expression of human intention when conducting
tasks with hands. Most previous studies [2, 6, 11, 12, 34, 39] organize hand type taxonomies
based on the properties of objects since humans usually use the similar grasp types for spe-
cific objects. In other words, they design and utilize hierarchical hand type categorization
criteria based on object grasp manner. Although this hierarchy helps explain the appearance
of the hand, this approach overlooks the importance of hand functionality or how the hand
operates in various tasks. The function of the hand plays a crucial role in effectively un-
derstanding each action, as it accurately reflects the hand-object correlation as well as the
intention behind the movement. To this end, we carefully redefine a practical taxonomy of
hand types focused on the functioning perspective for diverse hand-related vision tasks, in-
cluding egocentric view action recognition. Then, we supervise the hand action recognition
network with hand type labels annotated with newly defined taxonomy.
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Built upon [49] framework, which considers the high-level action recognition task as a
mixture of two low-level tasks: 3D hand pose estimation and object classification, we espe-
cially utilize hand type estimation network to provide valuable semantic cues. Our model
consists of three main modules: (1) Feature Extraction, (2) Egocentric Knowledge Module,
which estimates 3D hand pose, object category, and hand type leveraging short-term cues,
and (3) Egocentric Action Module, which aggregates per-frame knowledge, including text
embeddings of hand type, with long-term cues. To the best of our knowledge, we are the first
to adopt the usefulness of semantic cues of hand type for hand action recognition. Our pro-
posed framework outperforms the existing state-of-the-art works on 3D hand pose estimation
and action recognition. To summarize, our main contributions are listed as follows:

• We newly define the practical taxonomy of functional hand types based on the func-
tioning perspective for diverse hand-related vision tasks, including hand action recog-
nition. We also provide precise hand type annotations for existing datasets.

• We present a novel hand action recognition framework utilizing semantic details of
the hand type in each frame. This approach guides the entire network to learn deep
understandings of the continuous interaction across hands and objects throughout the
action sequence. To the best of our knowledge, our work is the first to leverage the
semantic knowledge of hand type in the context of hand perception.

• We analyze the effectiveness of our proposed hand type prior framework on large-
scale benchmarks, including FPHA and H2O. Extensive experiments validate that our
method generates a new State-of-the-Art score on 3D hand pose estimation and action
recognition from egocentric view monocular videos.

2 Related Work
3D Hand Pose Estimation & Hand Action Recognition Hand action typically involves
the interaction of hands and objects. 3D hand position provides important information
about the object geometry and grasp type, which is positively correlated with hand ac-
tion [3, 4, 41, 53]. Therefore, the hand pose is an influential feature for hand action recogni-
tion [15, 44]. Recently, CNN-based approaches [35, 46], and graph convolutional network-
based methods [24, 40, 51] have learned important hand pose information from extracted
meaningful spatial features. However, since hand actions are not static representations, it
is difficult to perceive the continuous movement of hands. Thus, it is crucial to consider
temporal information to improve understanding of hand activities. Alternative action recog-
nition models such as temporal CNN-based [20, 22, 30, 52], LSTM-based [27, 28, 44], and
two-stream networks [5, 9, 10, 42] appear, yet they still rely on either information. To con-
sider both spatial and temporal information, current state-of-the-art works [25, 29] introduce
transformer-based approaches with the multi-head self-attention network that helps find the
relationship between the input sequences. From these observations, we adopt hierarchical
transformers model architecture to learn not only spatial information through positional en-
coding, but also geometric 3D hand position with short-term temporal cues and semantic
action flow with long-term temporal cues hierarchically at once.
Hand Type Taxonomy The relation between hand grasp type and object has been widely
studied for decades [3, 16, 23]. The grasp types reveal the characteristics of the object be-
cause people generally use the same or similar hand grasp types for particular things. Early
work by Schelesinger et al. [39] first categorized hand grasp type into six major types based
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Figure 2: Taxonomy of hand types based on functionality. We categorize the mainly used
hand types focusing on the role of the hand. Beyond static hand grasp types, we further
define dynamic hand types to Control to explain more real-life hand behaviors.

on object shape, hand surfaces, and hand shape. Also, Napier et al. [34] divided hand move-
ments into two main groups, prehensile and non-prehensile, and established the concept of
power and precision grasp types. Furthermore, in recent hand-related works [19, 32, 50], the
grasp taxonomy proposed by Feix et al. [12] has been widely used in hand analysis. Under-
standing the hand grasp type helps the model recognize the user’s intention more accurately
and improves the accuracy of hand action recognition. Therefore, we precisely redefine the
taxonomy of hand grasp types based on functionality for practical action comprehension.

3 Function-Based Hand Type Taxonomy
Insight into the context between functional hand configurations and objects could signifi-
cantly advance understanding of hand action. In this work, we consider the semantic prior
of the human-level hand type as a critical indicator of perceiving egocentric view scenes. To
achieve this goal, we first carefully design a useful taxonomy of hand types based on the
functioning perspective and make use of them for effective dataset curation.
Redesign Taxonomy The grasp type is a figurative expression of human intention when
performing tasks with hands, and it is closely related to hand action. Furthermore, since
we interact with the other person’s hand or object to perform many activities, it is very
important to identify the hand type in understanding the relationship between the hand and
the others. Most previous studies [1, 3, 18] have defined hand type taxonomies based on
the characteristics of objects interacting with the hand because people usually use the same
or similar grasp types for specific objects. They design and utilize hierarchical hand type
categorization criteria based on grasp manner. We empirically observe that this hierarchy
helps understand the appearance of the hand. However, to better understand the activity in
the egocentric view video clip, it is more beneficial to categorize based on the function and
role of the hand as well as the appearance of the hand. In other words, there are limitations
to traditional taxonomy in explaining various hand action scenarios in everyday life. Our
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carefully designed taxonomy starts from this observation.
As shown in Fig. 2, we first categorize the mainly used hand types into two groups:

Isolated and Interaction. Isolated represents independent hand types that do not interact
with other people or objects, and Interaction describes hand types that are actively interacting
with other people or objects. We then organize the hand types as Interaction into Grasp and
Control, focusing on the functions in the activity. Grasp includes hand types that hold an
object even over time, which are further divided into Power, Precision, and Intermediate
depending on the hand’s appearance. We also distinguish between Circular and Prismatic
pivoting on the shape of the interacting objects. On the other hand, Control includes hand
types that manipulate objects over time. Here, we classify hand types, concentrating on the
deformation of the object. For example, the hand type that turns the lid does not deform the
object, but the hand type that crumples the paper or the hand type that opens the can deform
the object. Thus, we differentiate them as Non-Deformable and Deformable according to
these criteria.
Dataset Annotation Ultimately, we perform hand type annotation for all frames of the
FPHA [15] and H2O [24] dataset based on the newly defined taxonomy. We implement hand
type labeling on the right hand for FPHA, as it contains information only for the right hand.
However, for the H2O dataset, which provides data for both hands, we label both hands.
Note that more details about dataset annotation are provided in supplemental material.

4 Learning Functional Hand Type
In this section, we advocate for leveraging human-level hand type knowledge to provide
semantically rich cues beyond using simply physical-level hand pose information. In partic-
ular, we explicitly guide the action recognition pipeline via rich semantic prior of the hand
type based on hand type taxonomy that we proposed in Sec. 3.

It is noteworthy that temporal information for estimated 3D hand position and high-level
object labels enhances action recognition accuracy. Although existing techniques [24, 44,
49] benefit from the generous geometric potential of 3D position, they do not cover diverse
real-world scenarios. Specifically, they overlook the semantic role of hand motions in various
scenarios and still face challenges in perceiving dynamic hand movements relying solely on
geometrical or physical information. Therefore, we propose to utilize semantic knowledge
of hand type in each frame to encourage the network to understand the continuous interaction
between the primary hand and the assistive hand/object in the video clip.

4.1 Overview
We illustrate the outline of our framework in Fig 3. Built upon hierarchical temporal trans-
former (HTT [49]), which considers the high-level action recognition task as a mixture of
two low-level tasks: 3D hand pose estimation and object classification, we especially uti-
lize hand type estimation network to provide valuable semantic cues. Our model consists
of three main modules: (1) Feature Extraction, (2) Egocentric Knowledge Module, which
estimates 3D hand pose, object category and hand type leveraging the short-term tempo-
ral cue and (3) Egocentric Action Module, which aggregates per-frame pose, object and
hand type information over a longer time span. First, our model takes aligned 2D video
clip V = {Xi ∈ R3×H×W |i = 1, ...,K} consisting of K frames as input, which are converted
into feature vector FI containing fine details. Then we employ temporal-dependent features
FH from the Local Transformer to estimate the per-frame 3D hand pose with feature vector
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Figure 3: Overview of our proposed model. Our framework consists of three main mod-
ules: (1) Feature Extraction, (2) Egocentric Knowledge Module, which estimates 3D hand
pose, object category and hand type leveraging short-term temporal cues, and (3) Egocentric
Action Module, which aggregates per-frame pose, object and hand type information over a
longer time span.

FP, which contains geometric potential, and the category of interacting objects with feature
vector FO. Additionally, the hand type estimation network takes FH and outputs hand type
feature vectors FT . Here, we utilize language models to provide the deep semantic cues of
hand type based on our proposed functional hand type taxonomy. Subsequently, the Egocen-
tric Action Module aggregates the predicted embeddings: hand position FP, object category
FO, and hand type FT for action recognition.

4.2 Egocentric Knowledge Module
To construct Egocentric Knowledge Module input sequence, we first divide the long video
clip V into m consecutive segment segk(V ) = (V̄1,V̄2, ...,V̄m), where m denotes ⌈K/k⌉. In
order to capture the temporal cue of consecutive segment for hand pose estimation, the mod-
ule processes each segment V̄ ∈ segk(V ) in parallel. Then transformer takes the sequence
of per-frame feature vector FI from the image encoder and outputs temporal-dependent fea-
tures FH . To decode the hand pose information, these features FH are fed into simple MLP
layers, yielding joint coordinates in the 2D image plane P2D ∈ RJ×2 and the joint depth to
the camera Pdep ∈RJ×1. We train the 3D pose estimation module to minimize the following
pose loss (L1-loss):

Lpose =
1
J
(||P2D −P2D

gt ||1 +λpose||Pdep −Pdep
gt ||1) (1)

where J denotes hand joints and λpose is a hyperparameter to balance the different intensities
of the 2D and depth losses. The 3D positions of the hand joints in the camera space P3D ∈
RJ×3 for I can be inferred operating the camera intrinsics.

In addition to using 3D hand pose information, which gives precise geometric knowledge
about egocentric view scenarios, we advocate for leveraging hand type information to guide
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the entire network to learn deep semantic understanding. In particular, the context details
of hand type can serve as a practical semantic key representing hand-object relationships
for identifying hand actions. Thus, we introduce a simple but novel hand-type classification
network φT to predict the hand type ti for i= {1,2, . . . ,Nt} from temporal-dependent features
FH . Given the ground truth hand type label tgt from the dataset annotation process (see
Sec. 3), the target probability is defined as a one-hot vector wt . For training, we formulate
the following cross-entropy loss to train the hand type classification network φT :

Ltype =−Et,wt∼D

[
∑

r∈Nt

wt [r] logφT (t)[r]

]
(2)

where D is (input) data distribution. Also, we predict the object category oi in each frame
with the object classification network φO. Similar to hand type classifier, the classifier φO is
supervised to minimize the cross entropy loss Lob j.

4.3 Boosting the Action Recognition with Hand Type Prior

We introduce the strategies using semantic prior of the human-level hand type, potentially
improving not only action recognition but also 3D hand pose estimation. Specifically, we
explicitly pilot the Egocentric Action Module to learn rich semantic hand type variant infor-
mation via utilizing the power of the prevalent language model, Contrastive Language-Image
Pre-Training [38] (CLIP). Given the candidate of hand type from the hand type classifica-
tion network φT , we map the type number ti with the corresponding text descriptions (e.g.,
“Hand Clench”, “Tip Pinch”). Next, the text label of hand type goes through the large-scale
pre-trained language model, which outputs text embedding vector FT . Importantly, we con-
sider these text embedding vector of predicted hand type descriptions as critical indicators to
deliver semantic knowledge to the action recognition pipeline.

4.4 Egocentric Action Module

We adopt the previous approaches [7, 21] presenting trainable tokens to aggregate the global
information across the input video clip V . Each token encodes short-term temporal informa-
tion such as temporal-dependent features, hand pose, object label, and hand type details. We
design the fully connected layer for each cues, which outputs features of the same dimension,
then concatenates these aligned features for input of the Global Transformer as follows:

Fagg = FC[FH ⊕ FP ⊕ FO ⊕ FT ] (3)

where ⊕ indicates channel-wise concatenation of feature vectors and FC[·] reduces the fea-
tures into d-dim to fit in the token dimension of Global Transformer. After mixing features
that potentially contain geometric and semantic knowledge, we feed these feature vector Fagg
to Global Transformer, which outputs action tokens. Here, we utilize an action classification
head φA to recognize action label ai for i = {1,2, . . . ,Na} from action tokens. For supervi-
sion, we formulate the following cross-entropy loss to train the action classification head φA:

Lact =−Ea,wa∼D

[
∑

r∈Na

wa[r] logφA(a)[r]

]
(4)

where wa denotes one hot-encoded action labels and D represents (input) data distribution.
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4.5 Training
Our entire network is trained end-to-end by minimizing the following loss Ltotal:

Ltotal = λactLact +
1
K ∑

V̄∈segk(V )
∑
I∈V̄

(λposeLpose +λobjLobj +λtypeLtype) (5)

where λact, λpose, λobj and λtype are the hyperparameters of respective loss terms.

5 Experiments

Table 1: Comparison of our novel hand action recognition framework and the state-of-the-
art models on the FPHA [15] and H2O [24] dataset. We report the classification accuracy of
methods based on RGB videos. Note that the H2O dataset provides additional testing split
videos, unlike the FPHA dataset, which provides only training and validation split.

Joule-color [17] Two Stream [9] H+O [44] Collaborative [52] HTT [49] Trear [25] Ours

Accuracy (↑) 66.78 75.30 82.43 85.22 94.09 94.96 95.13

(a) Action recognition accuracy (%) on FPHA.

C2D [48] I3D [45] SlowFast [10] H+O [44] ST-GCN [51] TA-GCN [24] HTT [49] Ours

Val Accuracy (↑) 76.10 85.15 86.00 80.49 83.47 86.78 90.16 91.80

Test Accuracy (↑) 70.66 75.21 77.69 68.88 73.86 79.25 86.36 89.67

(b) Action recognition accuracy (%) on H2O.

5.1 Experimental Setups

Dataset We train and evaluate overall performance on two landmark datasets for action
recognition from egocentric views: FPHA [15] and H2O [24]. These two datasets are col-
lected in various indoor settings and have a frame rate of 30 frames per second. Both datasets
provide the ground truth labels for hand pose, action, and object category, and we utilize
them for supervision and evaluation. In this work, we annotate the hand type of all frames
in these two datasets based on the newly defined taxonomy and use them for training. Note
that detailed descriptions of each dataset are provided in the supplemental material.
Evaluation metrics To evaluate hand action recognition, we follow the official evaluation
protocol of the hand action recognition task. We report classification accuracy over the vali-
dation and test split by comparing each video’s predicted and ground truth action categories.
Also, we evaluate the 3D pose estimation performance in the camera space and the root-
aligned (RA) space, which aligns the estimated wrist position with the ground truth for each
frame. We report the Percentage of Correct Keypoints (PCK) for joints [54] against differ-
ent error thresholds and the corresponding Area Under the Curve (AUC). We also utilize
Mean End-Point Error (MEPE) metrics for hands [54] in the camera and root-aligned space
following HTT [49]. We provide all implementation details in the supplemental material.

5.2 Comparison with the State-of-the-Arts
Hand Action Recognition We compare our proposed method with existing state-of-the-
art methods including Joule-color [17], Two Stream [9], H+O [44], Collaborative [52],

Citation
Citation
{Garcia-Hernando, Yuan, Baek, and Kim} 2018

Citation
Citation
{Kwon, Tekin, St{ü}hmer, Bogo, and Pollefeys} 2021

Citation
Citation
{Hu, Zheng, Lai, and Zhang} 2015

Citation
Citation
{Feichtenhofer, Pinz, and Zisserman} 2016

Citation
Citation
{Tekin, Bogo, and Pollefeys} 2019

Citation
Citation
{Yang, Liu, Lu, Er, and Kot} 2020

Citation
Citation
{Wen, Pan, Yang, Pan, Komura, and Wang} 2023

Citation
Citation
{Li, Hou, Wang, Gao, Xu, and Li} 2021

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018{}

Citation
Citation
{Vadis, Carreira, and Zisserman} 

Citation
Citation
{Feichtenhofer, Fan, Malik, and He} 2019

Citation
Citation
{Tekin, Bogo, and Pollefeys} 2019

Citation
Citation
{Yan, Xiong, and Lin} 2018

Citation
Citation
{Kwon, Tekin, St{ü}hmer, Bogo, and Pollefeys} 2021

Citation
Citation
{Wen, Pan, Yang, Pan, Komura, and Wang} 2023

Citation
Citation
{Garcia-Hernando, Yuan, Baek, and Kim} 2018

Citation
Citation
{Kwon, Tekin, St{ü}hmer, Bogo, and Pollefeys} 2021

Citation
Citation
{Zimmermann and Brox} 2017

Citation
Citation
{Zimmermann and Brox} 2017

Citation
Citation
{Wen, Pan, Yang, Pan, Komura, and Wang} 2023

Citation
Citation
{Hu, Zheng, Lai, and Zhang} 2015

Citation
Citation
{Feichtenhofer, Pinz, and Zisserman} 2016

Citation
Citation
{Tekin, Bogo, and Pollefeys} 2019

Citation
Citation
{Yang, Liu, Lu, Er, and Kot} 2020



W.ROH ET AL.: FUNCTIONAL HAND TYPE PRIOR 9

Table 2: 3D pose estimation performance in Root-Aligned space on the FPHA [15] and
H2O [24]. We report AUC-RA for 3D PCK-RA at error thresholds ranging from 0 to 50 mm
and the MEPE-RA in the unit of mm.

Model AUC-RA(0-50) (↑) MEPE-RA (↓)

HTT [49] 0.763 12.13

Ours 0.769 11.79

(a) FPHA Dataset

Model AUC-RA(0-50) (↑) MEPE-RA (↓)

Left Right Left Right

HTT [49] 0.674 0.648 16.59 17.91

Ours 0.686 0.662 15.96 17.08

(b) H2O Dataset

Table 3: Ablative study of input features for Egocentric Action Module (EAM) on Hand
Action Recognition Accuracy (%). We investigate the usage of the hand type feature in (a).
Also, we analyze the effectiveness of each cue on the action recognition task in (b).

Hand Type EAM Input Text Embedding Accuracy (↑)

FPHA [15] H2O [24]

✓ - - 93.74 85.95
✓ ✓ - 94.26 87.60
✓ ✓ ✓ 95.13 89.67

(a) Effect of Text-based Hand Type Feature

Input Feature for Egocentric Action Module Accuracy (↑)

Image Feature Hand Pose Object Label Hand Type FPHA [15] H2O [24]

✓ ✓ ✓ - 94.09 86.36
✓ ✓ - ✓ 93.74 87.19
✓ - ✓ ✓ 94.61 86.78
✓ ✓ ✓ ✓ 95.13 89.67

(b) Effect of Hand Type Cue

HTT [49], and Trear [25] on the FPHA [15] dataset (see Table 1 (a)). On the H2O dataset,
we compare ours with C2D [48], I3D [45], SlowFast [10], H+O [44], ST-GCN [51], TA-
GCN [24] and HTT [49] (see Table 1 (b)). As reported in Table 1 (a) and (b), our method
generally outperforms other methods with state-of-the-art accuracy (FPHA [15]: 95.13%,
H2O [24]: 89.67%). These results emphasize the effectiveness of our method in understand-
ing the interaction between hands and objects.

Hand Pose Estimation We also demonstrate considerable performance on 3D hand pose
estimation, scoring AUC for 3D PCK at error thresholds ranging from 0 to 50 mm and
the MEPE measured in mm within the Root-Aligned (RA) space. Our method estimates
hand pose more precisely than the current state-of-the-art method [49] (see Table 2). These
experimental results verify that the semantic knowledge of the hand type benefits not only
the action recognition network but also the entire network, resulting in high precision in 3D
hand pose estimation.

5.3 Ablation Study
Effect of Text-based Hand Type Feature In this section, we evaluate the variants of our
method across hand type features. As shown in Table 3 (a), we investigate the usage of the
hand type feature. The Egocentric Action Module (EAM) performs better when the predicted
probability distribution feature vector from the hand type estimation network is used as input
than when the hand type is simply predicted as the auxiliary network. Further, utilizing text
embedding of hand type improves accuracy over using the predicted feature vector.

Effect of Hand Type Cue With four types of cues (image feature, hand pose, object, and
hand type), we analyze the effect of each cue on action recognition with and without each cue
as input of the egocentric action module. Specifically, on the FPHA [15] and the H2O [24]
datasets, hand type cue effectively enhances accuracy, as shown in Table 3 (b). We finally
observe that employing hand type as a semantic prior plays a key role in action recognition.
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Figure 4: Qualitative result of our experiments. In (a), the green and blue line represents
ground truth and estimated 3D hand pose, respectively. (b) shows the 3D PCK of hand
pose estimation results on H2O [24] in Root-Aligned space. The blue line indicates the
performance of our model, whereas the red line represents the HTT [49].

5.4 Qualitative Analysis
In this section, we qualitatively verify the usefulness of our novel framework. Fig. 4 shows
the visualized results of our experiments. In Fig. 4 (a), the ground truth hand pose (see
green lines) and our estimated hand pose (see blue lines) are projected in both 3D space
and images. Ours show comparable results compared to ground truth. We also provide
3D PCK-RA graphs of left and right hand pose estimation results on the H2O test split
of ours (see blue lines) vs. HTT [49] (see red lines) in Fig. 4 (b). This graph validates
that our method generates reasonable results in both hands. Overall, our model is robust
for estimating hand pose in 3D space. We provide more qualitative results and analysis in
supplementary materials.

6 Conclusion
In this paper, we present a novel method applying the knowledge of hand type for hand action
recognition based on the temporal transformer. This is the first attempt to regard the semantic
details of the hand type as a critical indicator for enhancing the perception of egocentric view
hand actions. To utilize the knowledge of hand type, we newly define the taxonomy based
on hand functionality and annotate hand types for existing large-scale benchmarks. The
experiments demonstrate the outstanding performance of our proposed approach.
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