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Abstract

Anomaly detection is a critical and challenging task that aims to identify data points
deviating from normal patterns and distributions within a dataset. Various methods have
been proposed using a one-class-one-model approach, but these techniques often face
practical problems such as memory inefficiency and the requirement of sufficient data
for training. In particular, few-shot anomaly detection presents significant challenges in
industrial applications, where limited samples are available before mass production. In
this paper, we propose a few-shot anomaly detection method that integrates adversarial
training loss to obtain more robust and generalized feature representations. We utilize the
adversarial loss previously employed in domain adaptation to align feature distributions
between source and target domains, to enhance feature robustness and generalization in
few-shot anomaly detection tasks. We hypothesize that adversarial loss is effective when
applied to features that should have similar characteristics, such as those from the same
layer in a Siamese network’s parallel branches or input-output pairs of reconstruction-
based methods. Experimental results demonstrate that the proposed method generally
achieves better performance when utilizing the adversarial loss.

1 Introduction

Anomaly detection is a challenging task that involves identifying data points that deviate
from the normal patterns and distributions within a dataset. Due to the complexity and
diversity of data, various anomaly detection methods have been proposed using a one-class-
one-model approach, where only normal samples are used for training since abnormal data
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are infrequently observed. However, this approach poses practical problems as each class re-
quires its own dedicated model, which results in a memory-inefficient model. Furthermore,
few-shot anomaly detection (FSAD) is a practical and challenging problem, particularly in
the industrial sector during the product development process when there are insufficient sam-
ples available before mass production.

In the existing literature, anomaly detection methods are generally developed under the
assumption that sufficient data is available for training. These methods employ a one-class
learning paradigm, evolving into a one-class-one-model paradigm with various techniques
being proposed. Major branches of these techniques include reconstruction-based methods
[1, 11, 14, 19, 21, 27, 28] and embedding similarity-based methods [5, 6, 16, 17], which have
led to the development of distinct architectures. The reconstruction-based methods employ
generative models to learn the distribution of normal samples, reconstructing normal images
and comparing them with input samples during inference time to determine anomalies. On
the other hand, the embedding similarity-based methods use pre-trained encoders to extract
features and make a feature distribution for normal samples. During inference, the features
of input samples are compared with the normal feature distribution.

Recently, these techniques have expanded the scope of anomaly detection methods.
UniAD [26] has expanded the one-class-one-model paradigm to multi-class anomaly de-
tection. In the UniAD model, they extract features from the encoder and mask them for
reconstruction. Similar to the embedding similarity-based methods, UniAD extracts features
from encoders and reconstructs masked features like the reconstruction-based methods. Re-
gAD [12] adopts a Siamese network structure with an additional registration step and an
encoder-predictor architecture. RegAD has expanded the domain of FSAD, offering a more
versatile solution to the challenges faced in this field. These methods use a single loss func-
tion suitable for each method to cluster features in high-dimensional spaces, enabling fea-
tures from normal samples to form clusters. However, in FSAD, it is crucial to effectively
utilize the limited samples, especially during the initial product development stages before
mass production, when an abundance of samples is not accessible.

In this paper, we propose integrating a type of adversarial loss into FSAD tasks to fur-
ther optimize the use of limited samples and obtain more robust and generalized feature
representations, which could potentially improve anomaly detection performance. The ad-
versarial loss has been employed in domain adaptation to align feature distributions between
the source and target domains. By incorporating an additional discriminator and confusing
it from differentiating between the labels of the source and target, the primary model gener-
ates robust and generalized features, even for target domain data. In FSAD, we hypothesize
that the adversarial loss can enhance feature robustness and generalization when applied to
different features that should possess similar characteristics, such as features from the same
layer in a Siamese network’s parallel branches and input-output pairs of reconstruction-based
methods. Experiments with MVTec [2] and DAGM [25] datasets demonstrate that the pro-
posed method generally achieves better performance when utilizing the adversarial loss.

2 Related Work

2.1 Anomaly Detection

Previously, anomaly detection was mainly performed using traditional statistical methods
[7, 15, 23], but with the advancement of deep learning, various deep learning-based anomaly
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detection methods have been proposed. In this section, we summarize the reconstruction-
based methods, embedding similarity-based methods, and the existing few-shot methods,
which represent the main types of anomaly detection techniques.

The reconstruction-based methods use generative models such as variational auto-encoder
(VAE) [13], generative adversarial network (GAN) [10], and so on to learn the distribution of
normal samples. The reconstruction-based methods [1, 11, 14, 19, 21, 27, 28] detect anoma-
lies by assuming that the model trained on normal samples will reconstruct normal samples
well while reconstructing poor abnormal samples. Several methods have been proposed for
anomaly detection using an auto-encoder. Superpixel Masking And Inpainting (SMAI) [14]
is an unsupervised approach that employs superpixel segmentation and inpainting to identify
and localize abnormal regions in images by comparing the original and reconstructed mask
areas. DRÆM [27] treats surface anomaly detection as a discriminative problem, learning
a joint representation of anomalous images and their anomaly-free reconstructions. This
method allows for direct anomaly localization without complex post-processing and can be
trained with simple simulations. Divide-and-Assemble [11] adjusts the reconstruction ca-
pability for both normal and abnormal samples by varying the granularity of division on
feature maps. It incorporates a multi-scale block-wise memory module in an auto-encoder
network and introduces adversarial learning to enhance subtle anomaly detection. DSR [28]
proposes a dual subspace re-projection network for surface anomaly detection, utilizing an
auto-encoder-based approach to improve the discriminative capability between normal and
abnormal samples, ultimately boosting anomaly detection performance. Also, there are sev-
eral methods using GAN for anomaly detection. AnoGAN [19] trains a GAN on normal
data samples and measures the dissimilarity between input samples and generated samples
to identify anomalies. GANomaly [1] builds on this by utilizing a semi-supervised frame-
work with adversarial training, focusing on learning latent representations of normal data for
efficient anomaly detection. Anoseg [21] further advances GAN-based techniques by intro-
ducing a self-supervised anomaly segmentation network, highlighting the potential of GAN
for anomaly segmentation tasks.

The embedding similarity-based methods [5, 6, 16, 17] extract feature distribution from
normal samples using the pre- trained model trained on a large dataset. In inference time,
the input samples are classified into normal and abnormal by comparing the features of
the normal samples and the input sample. MahalanobisAD [16] extracts features from a
pre-trained model and computes the Mahalanobis distance between these features and the
mean of normal data features. SPADE [5] extracts features from multiple layers of a pre-
trained network and builds a pyramid of image patches for each layer. Then, it searches for
the most similar patches in the reference set using k-nearest neighbors (KNN). PaDiM [6]
obtains features from the last three layers of a pre-trained model and computes the mean and
covariance for each patch. PatchCore [17] constructs a set of prototypes from the features
extracted using a pre-trained network, and during inference, it measures the distance between
these prototypes and the features of input images to identify anomalies.

Recently, these methods are combined and the abilities of the methods are enlarged to
handle practical problems such as few-shot [12, 18, 20] and multi-class anomaly detection
[26]. Especially in FSAD, TDG [20] utilizes a hierarchical transformation-discriminating
generative model that learns multi-scale patch distributions and improves model representa-
tion through image transformations. DifferNet [18] employs CNNs and normalizing flows
for feature extraction and density estimation, enabling anomaly detection based on likeli-
hood in images. RegAD [12] introduces a category-agnostic feature registration method,
leveraging a feature registration network and Siamese network for effective anomaly detec-
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tion across diverse image categories with limited data. In this paper, RegAD [12] and UniAD
[26] are utilized as baselines to show the effectiveness of the proposed method in FSAD.

2.2 Adversarial Loss in Domain Adaptation
Domain adaptation aims to train a model that works equivalently well on the target domain
with limited access to data, labeled source domain, and unlabelled target domain. In do-
main adaptation, DANN [8, 9] aligns feature distributions of the source and target domain.
DANN introduces an adversarial training objective, where a domain discriminator is trained
to differentiate between the source and target domain features, while the main model is op-
timized to generate features that are indistinguishable from the discriminator. The gradient
of the adversarial training objective flows from the discriminator to the main model, making
features of the main model more robust and domain-invariant, thus improving the general-
ization on the target domain. The loss function (adversarial training objective) proposed by
DANN is utilized in various fields such as semantic segmentation [24], object detection [4],
facial expression recognition [3], pose estimation [29], and so on. These methods adopt the
loss function proposed by DANN for domain adaptation. In this paper, we integrate a type
of adversarial training objective to train the discriminator. In contrast to prior methods, we
utilize the adversarial loss between branches of a Siamese network or input-output pairs of
reconstruction-based methods with features that should have similar characteristics.

3 Proposed Method

3.1 Problem Formulation
For the problem of FSAD [12], a training set is composed solely of normal samples across
n categories, denoted as Dtrain =

⋃n
i=1 Di, where each subset Di includes normal samples

from categories ci (for i = 1,2, ...,n). Our goal is to develop a category-agnostic anomaly
detection model using this training data. During the testing phase, we use an image from a
target category ct , where ct does not belong to the set of known categories, i.e., t /∈ 1,2, ...,n.
Along with this image, K normal samples from the target category ct are provided. The task
for the trained anomaly detection model is to evaluate whether this image is anomalous or
normal.

3.2 Loss Function and Training Process
In the proposed method, we consider a main model M, which could be applicable for anomaly
detection such as RegAD, UniAD, or any suitable model. The existing loss function used
in these models is denoted by LM . Our approach introduces an auxiliary network, the dis-
criminator D, which is trained alongside M using an additional adversarial loss. Adversarial
learning in our method comprises two parts: 1) training the discriminator and 2) fooling the
discriminator. For adversarial loss, we choose f0 and f1 as a pair of features within M that
have similar characteristics and have the same dimensions. For training D, our objective is
to correctly classify f0 and f1 as belonging to distinct classes, labeled as 0 and 1 respec-
tively. As the first part, the corresponding total loss function LDT for the discriminator is
thus formulated as:

LDT = LD( f0,0)+LD( f1,1), (1)
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Figure 1: Architectures of RegAD and UniAD with features f0 and f1 used in the adversarial
training.

where LD represents the cross-entropy loss function with appropriate labels. Simultaneously,
through training M, we aim to enhance its discriminative capability between normal and
anomalous samples at the inference time. For this purpose, we define the total loss function
LMT as a combination of the original model loss function LM and the adversarial loss LD
applied to f0. We use the cross-entropy loss function but with the intention to misguide the
discriminator, which is originally assigned a label of 0 for this feature. As the second part,
the total loss function LMT for the main model is expressed as:

LMT = LM +LD( f0,1). (2)

Through this formulation, our proposed method strives to enhance the performance of anomaly
detection models by boosting the generalization power of the features they extract.

With these loss functions, the training process for the proposed method is divided into
two main steps: updating the parameters of the main model θM and updating the parameters
of the discriminator θD. In the process of updating θM , the weights of the main model are
updated using the gradient of the total loss function LMT with respect to θM . This can be
represented as:

θM = θM −η∇θMLMT , (3)

where η is the learning rate. After updating θM , in the process of training D, the model
weights of the discriminator θD are updated using the gradient of the discriminator loss
function LDT with respect to θD. It can be expressed as:

θD = θD −η∇θDLDT . (4)

3.3 Integration into Existing Methods
Figure 1 shows the architecture of both the RegAD and UniAD models with the features f0
and f1 used in the adversarial training. In the RegAD model, a Siamese network architecture
is employed, where each branch uses an image from a pair of images, denoted as I0 and I1.
These images are randomly selected from the same category within the training set. Each
branch is composed of three components: a spatial transformer network (STN), an encoder,
and a predictor. After processing through these components, the output features from the
predictor in each branch, represented as f0 and f1, should exhibit similar characteristics due
to the nature of the Siamese architecture. In the adversarial training, we use the outputs
of each branch as f0 and f1. The UniAD model consists of an encoder and a layer-wise
query decoder. The encoder’s output features are fed into the layer-wise query decoder in
conjunction with neighborhood masking. The function of the layer-wise query decoder is to
reconstruct the masked input features as non-masked features. Therefore, in the context of
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=

2

TDG 69.3 68.3 55.1 66.2 83.8 67.2 93.6 67.1 69.2 98.8 86.3 54.4 55.9 98.4 64.4 73.2
DifferNet 99.3 85.3 73.0 78.4 62.1 94.9 90.7 61.9 83.2 73.4 97.0 60.8 61.8 98.1 89.2 81.0

RegAD 99.4 65.1 67.5 96.5 84.0 96.0 99.4 91.4 81.3 52.5 94.3 86.6 86.0 99.2 86.3 85.7
+ Ours 99.8 65.9 70.2 96.9 77.0 96.3 100.0 94.9 80.7 66.0 99.4 83.2 82.6 99.7 86.6 86.6
UniAD 99.9 60.1 65.7 100.0 90.6 90.4 100.0 63.0 62.5 75.3 99.4 91.4 67.9 98.1 90.6 83.7
+ Ours 100.0 58.5 64.7 99.9 94.3 91.9 100.0 64.6 63.0 73.1 99.2 91.1 68.4 97.9 91.1 83.8

K
=

4

TDG 69.6 70.3 47.6 68.7 86.2 71.2 93.2 69.2 64.7 98.8 87.2 57.8 67.7 98.3 65.3 74.4
DifferNet 99.3 85.2 80.3 78.6 60.5 95.8 91.2 67.3 84.0 72.5 98.0 62.5 62.2 96.4 84.8 81.0

RegAD 99.4 76.1 72.4 97.9 91.2 95.8 100.0 94.6 80.8 56.6 95.5 90.9 85.2 98.6 88.5 88.2
+ Ours 99.6 77.0 77.5 98.5 83.4 96.6 100.0 94.3 85.9 60.2 99.2 91.2 85.0 99.6 91.5 89.3
UniAD 99.9 60.2 70.1 99.8 93.1 94.5 100.0 60.7 66.5 76.3 99.5 98.6 72.1 98.2 90.8 85.4
+ Ours 100.0 71.2 71.4 99.9 94.7 94.1 100.0 76.5 78.5 74.9 99.5 98.1 79.4 97.9 91.9 88.5

K
=

8

TDG 70.3 74.7 44.7 78.2 87.6 82.8 93.5 68.7 67.9 99.0 87.4 57.6 71.5 98.4 66.3 76.6
DifferNet 99.4 87.9 78.6 78.5 78.5 97.9 92.2 67.7 82.1 75.0 99.6 60.8 63.3 99.4 87.3 83.0

RegAD 99.8 80.6 76.3 98.5 91.5 96.5 100.0 98.3 80.6 63.4 97.4 98.5 93.4 99.4 94.0 91.2
+ Ours 99.9 85.1 80.6 96.7 87.3 96.8 100.0 94.5 84.4 70.1 99.9 98.7 90.9 99.2 94.7 91.9
UniAD 99.9 65.7 70.4 100.0 94.8 94.4 100.0 76.5 73.1 76.3 99.6 96.9 71.0 98.2 91.5 87.2
+ Ours 99.9 59.5 71.5 97.1 93.2 95.1 99.0 76.3 85.5 92.1 99.5 97.5 87.6 93.6 94.5 89.4

Table 1: Quantitative evaluation of image level AUC on MVTec dataset [2]. Following the
evaluation protocol of RegAD [12], the image-level AUC scores of 10 runs are averaged.

UniAD, the input-output pairs of the layer-wise query decoder should have similar charac-
teristics. Hence, the input and output of the layer-wise query decoder are chosen as f0 and
f1, respectively.

4 Experiments

4.1 Dataset
The MVTec Anomaly Detection (MVTec AD) dataset [2] serves as a benchmark for anomaly
detection, featuring a comprehensive and robust collection of 3629 high-resolution train-
ing images and 1725 testing images. The dataset includes normal and defective images,
designed to resemble practical industrial inspection scenarios. The dataset is categorized
into textures, which display globally repetitive patterns, and objects, which adhere to prede-
fined arrangements. With over 70 distinct defect types, the MVTec AD dataset challenges
anomaly detection algorithms by accurately replicating real-world situations. Additionally,
the dataset provides pixel-precise ground truth (GT) regions, allowing for effective evalua-
tion of detection techniques. Utilizing the MVTec AD dataset enables the assessment of our
proposed method’s performance in detecting and localizing various defect types across dif-
ferent categories, demonstrating its potential for real-world industrial applications. Besides
from MVTec AD dataset, we also experiment on the five classes of the DAGM2007 dataset
[25] to show the effectiveness of the proposed method.

4.2 Experiments Detail
In the experiments with both RegAD and UniAD, we extended the original models by incor-
porating a discriminator. The discriminator consists of a sequence of convolutional layers
for feature extraction, instance normalization layers for consistent scaling, and LeakyReLU
activation functions for non-linear processing. Based on the pipeline of RegAD and UniAD,
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RegAD 98.0 91.7 97.3 98.9 77.4 98.1 98.0 96.9 93.6 94.4 94.3 98.2 93.4 93.5 95.1 94.6
+ Ours 98.6 93.9 97.5 98.9 80.0 98.4 99.4 97.8 97.8 94.8 96.3 96.6 94.3 96.8 97.4 95.9
UniAD 95.4 83.9 95.4 99.6 92.8 95.0 99.0 72.4 82.7 91.4 90.6 96.0 81.7 93.3 94.3 90.9
+ Ours 95.9 85.0 95.5 98.6 93.3 94.1 99.1 73.2 84.5 91.7 90.2 96.8 79.6 93.0 94.0 91.0

K
=

4

RegAD 98.4 92.7 97.6 98.9 85.7 98.0 99.1 97.8 97.4 95.0 94.9 98.5 93.8 94.7 94.0 95.8
+ Ours 98.6 96.1 98.3 98.9 83.0 98.7 99.5 96.8 97.8 96.3 95.7 97.9 93.8 96.6 97.6 96.4
UniAD 97.4 91.3 71.4 98.7 93.7 95.3 99.1 81.5 88.7 92.0 91.1 97.9 91.5 93.7 93.7 91.8
+ Ours 97.4 90.7 71.8 98.6 93.7 95.3 99.1 82.8 90.8 91.8 90.9 98.1 92.7 96.9 94.6 92.3

K
=

8

RegAD 97.5 94.9 98.2 98.9 88.7 98.5 98.9 96.9 97.8 97.1 95.2 98.7 96.8 94.6 97.4 96.7
+ Ours 98.5 96.8 98.4 98.8 86.2 98.8 99.2 98.0 98.1 97.4 96.2 98.9 96.5 94.9 96.7 96.9
UniAD 96.6 88.4 96.8 98.5 93.2 95.1 99.0 76.3 85.5 92.1 90.9 97.5 87.6 93.6 94.5 92.4
+ Ours 96.5 88.1 96.8 96.9 92.7 95.3 99.1 77.8 87.1 96.4 96.8 97.4 88.3 96.9 93.8 93.3

Table 2: Quantitative evaluation of pixel level AUC on MVTec dataset [2]. Following the
evaluation protocol of RegAD [12], the pixel-level AUC scores of 10 runs are averaged.

Image-level Pixel-level
Shot Method Class1 Class2 Class3 Class4 Class5 Average Class1 Class2 Class3 Class4 Class5 Average

K
=

2

RegAD 56.1 67.6 76.8 93.5 73.7 73.5 73.0 89.7 90.0 97.7 82.1 86.5
+ Ours 64.8 60.6 83.4 96.8 76.6 75.2 78.6 79.5 89.5 97.3 78.3 84.7
UniAD 58.3 98.1 74.2 64.5 69.7 72.9 84.1 99.7 89.1 91.2 82.3 89.3
+ Ours 60.0 98.0 74.8 66.4 70.6 74.0 84.1 99.8 88.9 91.9 82.9 89.5

K
=

4

RegAD 89.8 73.1 76.0 80.5 64.8 76.9 88.5 90.2 88.9 95.5 76.6 87.9
+ Ours 90.0 78.6 81.3 97.8 78.1 85.1 88.0 95.1 89.4 96.4 82.8 90.3
UniAD 59.4 98.1 74.1 78.6 70.4 76.1 85.0 99.8 88.8 93.7 82.3 89.9
+ Ours 59.1 98.1 75.8 79.4 70.9 76.7 85.1 99.8 89.6 94.0 82.5 90.2

K
=

8

RegAD 71.5 77.8 84.6 90.0 69.0 78.6 71.0 93.4 91.0 97.8 80.4 86.7
+ Ours 73.1 96.9 84.8 97.7 73.9 85.3 87.1 99.2 89.1 98.2 82.5 91.2
UniAD 59.1 98.1 75.7 88.3 71.0 78.4 85.1 99.8 89.9 95.5 82.7 90.6
+ Ours 59.3 98.0 76.1 93.2 72.2 79.8 85.3 99.8 90.0 96.2 83.1 90.9

Table 3: Quantitative evaluation of image- and pixel-level AUC on DAGM2007 dataset [25].
Following the evaluation protocol of RegAD [12], the image- and pixel-level AUC scores of
10 runs are averaged.

the same discriminator is used for experiments of the proposed method. The image size is
resized to 224×224 for both models. The training settings for RegAD consist of 50 epochs,
a learning rate of 0.0001, and Stochastic Gradient Descent (SGD) with momentum, which
are the same as the RegAD setting. On the other hand, UniAD employs 1000 epochs, a
learning rate of 0.0001, an AdamW optimizer with betas of 0.9 and 0.999, and a weight de-
cay of 0.0001, which are the same as the UniAD setting. For both RegAD and UniAD, the
learning rate for the discriminator is set to the same as that for each model. Following the
few-shot setting of RegAD, each category of the few-shot target was trained using a leave-
one-out approach for both RegAD and UniAD. This entails that the few-shot target category
was exclusively used for testing, while the remaining categories were utilized for training.

4.3 Results and Discussions
Table 1 shows a quantitative evaluation of image-level anomaly detection on the MVTec
dataset. The results show the performance of various methods, including TDG [20], Differ-
Net [18], RegAD [12], UniAD [26], and their variants combined with the proposed method
(+ Ours). The performance is measured for different numbers of shots (K = 2, K = 4, and
K = 8) and across 15 different categories of objects in the MVTec AD dataset. The last
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Figure 2: Qualitative comparison of 2-shot experiments between RegAD and RegAD + Ours
on three categories: grid (1st and 2nd rows), metal_nut (3rd and 4th rows), and screw (5th and
6th rows). The input images and GTs are shown in the 1st and 2nd columns. The heat maps
and prediction results of RegAD are shown in the 3rd and 4th columns. The heat maps and
prediction results of RegAD + Ours are shown in the 5th and 6th columns.

column in each table shows the average performance across all categories. In general, the
proposed method, when combined with existing methods, tends to improve performance.

As shown in Table 1, when comparing RegAD and RegAD + Ours, the proposed method
demonstrates better anomaly detection performance with an improvement ranging from 0.4
to 1.4 percentage points. This improvement can be attributed to the proposed method’s abil-
ity to better capture the distinctive features that differentiate normal and anomalous samples.
Similar to RegAD, when combined with the proposed method, UniAD also shows improve-
ments ranging from 0.1 to 3.1 percentage points. This demonstrates the effectiveness of the
proposed method for enhancing UniAD’s performance.

Table 2 presents a quantitative evaluation of pixel-level anomaly detection on the MVTec
dataset, comparing the proposed method to RegAD and UniAD. Similar to the image-level
evaluation, the proposed method shows general performance improvement when combined
with existing methods for all K. This indicates the proposed method’s ability to effectively
enhance both image-level and pixel-level anomaly detection in various settings.

Table 3 shows the quantitative evaluation of RegAD, RegAD + Ours, UniAD, and UniAD
+ Ours on the DAGM2007 dataset. Similar to the results of MVTec AD, while there may
be a few classes where the proposed method performs lower than RegAD and UniAD, the
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RegAD RegAD + Ours

Figure 3: 2-shot experiments: t-SNE visualization [22] of features from normal samples
using RegAD (left) and RegAD + Ours (right).

UniAD Enlarged UniAD UniAD + Ours

Figure 4: 2-shot experiments: t-SNE visualization [22] of features from normal and abnor-
mal samples using UniAD (left), enlarged UniAD (middle), and UniAD + Ours (right).

overall experimental results with the proposed method show performance improvements in
quantitative evaluation.

The results of the quantitative evaluation show that the proposed method helps to improve
the performance of RegAD and UniAD, in general. However, the degree of improvement
varies across different categories, suggesting a need for further investigation into the factors
influencing the method’s effectiveness. Exploring the incorporation of complementary fea-
tures or developing more sophisticated models could lead to better overall performance in
anomaly detection, which we leave for future works.

Figure 2 shows a qualitative comparison between RegAD and RegAD + Ours on three
categories: grid, metal_nut, and screw. As observed in the quantitative evaluation, the over-
all performance of the proposed method improves. However, there are categories, such as
grid, where performance is lower than that of RegAD across 2, 4, and 8 shots. Although
a large number of samples appear visually better for RegAD, as shown in the first row of
Figure 2, there are some samples where the proposed method shows visually better perfor-
mance (the 2nd row). Conversely, in categories like metal_nut and screw, even though the
quantitative evaluation indicates better performance for the proposed method, some samples
exhibit visually better results for RegAD, as shown in the 3rd and 5th rows of Figure 2. In
supplementary material, qualitative evaluation of more samples is presented.

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2012

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2012



10 J. Y. LEE ET AL.: FEW-SHOT ANOMALY DETECTION WITH ADVERSARIAL LOSS

Figure 3 shows the t-SNE visualization of features extracted from normal samples us-
ing RegAD & RegAD + Ours and UniAD & UniAD + Ours, respectively. Ideally, normal
samples should form distinct category-wise clusters. However, the visualizations for both
RegAD and RegAD + Ours reveal that some samples have considerable distances from their
respective category clusters. These samples are incorrectly identified as abnormal samples.
Notably, the visualization demonstrates that the number of incorrectly predicted samples in
RegAD + Ours is smaller than that of RegAD (18 samples for RegAD + Ours and 24 samples
for RegAD). It indicates that the proposed method effectively contributes to clustering the
features of normal samples.

Similarly, Figure 4 shows t-SNE [22] visualization of features extracted from normal
and abnormal samples using UniAD [26] and UniAD + Ours on 2-shot experimental setting.
Each sub-figure from leftmost to rightmost figures in Figure 4 represents t-SNE visualization
of UniAD, enlarged version of UniAD, and UniAD + Ours, respectively. In UniAD, although
the features are clustered, the feature space appears to be narrow. However, in UniAD +
Ours, the scale of the feature space is enlarged while preserving the feature clusters. Despite
the enlargement of the feature space in UniAD, the normal and abnormal samples are not
well-distinguished. Compared to the visualization of UniAD, UniAD + Ours shows that the
abnormal samples are relatively well-distinguished from normal samples. These t-SNE vi-
sualizations show that the proposed method is effective in improving the distinction between
normal and abnormal samples.

5 Conclusion

In this paper, we propose a FSAD method by incorporating the adversarial loss, commonly
used in domain adaptation. The proposed method leverages the power of Siamese networks
and adversarial training to enhance the generalization capability of existing anomaly detec-
tion models. By incorporating adversarial loss into the training process, we encouraged the
model to generate more robust and generalized features that aid in better distinguishing nor-
mal and anomalous samples. We experimented using MVTec AD and DAGM datasets and
demonstrated the effectiveness of the proposed method in combination with existing FSAD
methods, such as RegAD and UniAD. The proposed method consistently improved the per-
formance of these models in both image-level and pixel-level evaluations. However, it is
noteworthy that further investigation to assess factors influencing detection performance is
necessary because the level of improvement varies across categories. For future work, we
will conduct a further study to explore how to achieve a stable performance enhancement by
developing more sophisticated models.
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