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Abstract

Anatomical landmarks are very important for the structural and functional analysis
of the heart. Cardiac magnetic resonance (CMR) images have advanced to become a
powerful non-invasive diagnostic tool in clinical practice. The first step in many medical
imaging applications is to detect anatomical landmarks accurately. The manual identifi-
cation of these landmarks is difficult due to their shape and appearance variations across
populations and also in the presence of anomalies making it time-consuming and oper-
ator dependent. We present a GAN-based landmark detection network that can detect
smaller objects including landmarks with greater accuracy across varied sample sizes us-
ing a proposed modified loss function. The proposed method outperforms other methods
reported in literature when trained and tested on the STACOM LV landmark detection
challenge dataset. This improved performance is achieved by leveraging the power of
the GAN architecture to learn more complex features of the objects being detected. The
robustness of the proposed approach is demonstrated by obtaining reduced mean error
when blind tested on ACDC dataset.

1 Introduction
In cardiology, precise information on both the dimensions and functions of the heart cham-
bers is essential in clinical applications for diagnosis, prognosis, and therapeutic decisions.
Cardiac MR is considered the gold standard for the non-invasive characterization of cardiac
function, primarily due to its high spatial resolution and 3D capabilities. It has proven to
be an invaluable tool for the diagnosis of complex cardiomyopathies. Although cardiac MR
imaging technologies have rapidly advanced, image analysis and interpretation of cardiac
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images are time-consuming and error-prone due to the involvement of human operators. Re-
liable anatomical landmark detection is an important first step for many medical imaging
algorithms. A landmark or local feature is a specific image location that serves as a fixed
reference. Local features can be corners, edges, or image regions. Particularly in medi-
cal imaging, these landmark points act as individual anchor points that help in interpreting
the image and understanding the location of one anatomical structure in relation to another.
These landmarks can be used in registration, motion tracking, segmentation, building 3D
models, and other applications. These landmarks facilitate robust and precise functional and
structural analysis of the heart and also helps in accurate surgical pre-planning. However,
accurate automatic detection of landmarks in medical images is challenging due to anatom-
ical variation among patients and also differences in image acquisition. In clinical practice,
manual delineation by cardiologists remains the main approach to quantifying cardiac func-
tion. A recent study showed a detailed manual analysis and annotation by an expert can take
9 to 19 minutes [6].

Learning-based object detection approaches have been demonstrated successfully in many
applications. However, they still encounter challenges in a cluttered environment, such as
landmark detection in cardiac MR long-axis slices, due to large anatomy shape and ap-
pearance variations across populations along with different acquisition parameters. Several
organs in the body in addition to the heart appear in the same slice. For the same patient,
time sampling across the entire heartbeat cycle, with end-systole and end-diastole as two
ends, also leads to significantly different myocardium contour shape changes. These vari-
ations and ambiguities result in challenges for each landmark detector to identify correct
landmarks. The need for accurately detecting the landmarks is very crucial for medical ap-
plications as a few pixel error maps to very high millimeters which can alter the outcome
of surgical procedures. Aparna et al. [2] have shown the effectiveness of GAN in accurate
small object segmentation from cardiac CMRI images. GAN is a robust algorithm with 2
complex networks working against each other to ensure better convergence. The need for a
robust, reliable, and accurate system motivated us to explore GAN for landmark detection
on both long and short-axes imaging views with great consistency. The major contributions
of our work are summarized as follows.

• Creation of a Generative Adversarial network (GAN) based framework for accurate
and reliable cardiac landmark detection.

• Creation of a new loss function (Foreground pixel loss) in the discriminator to strengthen
the real and fake detection which in turn creates a better generator predicting reliable
landmarks.

• Obtaining good accuracy when blind tested on a new dataset has proven the robustness
of our proposed GAN network.

2 RELATED WORK
Landmark detection using deep learning has not been extensively tried for CMR images but
has been investigated for computer vision applications, such as facial key point detection [8]
or human pose estimation [15]. There are some works of literature on GAN being used
to synthesize faces using facial landmarks [3, 10]. Payer et al. [7] proposed Appearance-
Spatial-Combination Network to incorporate local and global information while regressing

Citation
Citation
{Bhuva, Bai, Lau, and etprotect unhbox voidb@x protect penalty @M  {}al} 2019

Citation
Citation
{Aparna, Divya, and Avik} 2022

Citation
Citation
{Colaco and Han} 2020

Citation
Citation
{Tompson, Goroshin, Jain, LeCun, and Bregler} 2015

Citation
Citation
{Bazrafkan, Javidnia, and Corcoran} 2018

Citation
Citation
{Hongzhe, Weicheng, Cheng, Teng, and Min} 2020

Citation
Citation
{Christian, Darko, Horst, and Martin} 2016



KANAKATTE, BHATIA, REDDY, GUBBI, GHOSE: CARDIAC LANDMARK DETECTION 3

landmark coordinates. Pavan et al. [13] have combined local and global features in a deep
learning framework and demonstrated their approach results in detecting landmarks from
skull, spine, and hand X-ray images. A handful of researchers have tried to automate land-
mark detection from cardiac MR images. Mahapatra [12] has proposed a 2-stage process
for landmark detection by first segmenting the left ventricle (LV) or right ventricle (RV) and
then examining the regions for landmark points using random forest classifiers. Lu et al. [11]
used a discriminative joint context for landmark detection. The above two works used the
same STACOM dataset [9] as the one we have used. Both of these have reported high pixel
errors. Xue [17] and Wang [16] have used CNN for detecting landmarks on their private
cardiac MRI dataset.

In spite of the latest developments, the results are not accurate enough for building clin-
ically usable applications. Considering the need for higher accuracy and reliability in bio-
medical applications and also the increased complexity in identifying pixel-level anatomical
landmarks in abnormal or pathological conditions have motivated us to implement a GAN-
based framework. We have designed the unique encoder-decoder architecture along with the
generative mechanism of image translation by incorporating the newly designed Foreground
pixel loss function that can be extended to any small object detection problem. Most reported
work trains each landmark as a separate image in case of multiple landmarks detection for
better accuracy [5, 13]. However, our proposed GAN-based network takes multiple land-
marks in a single image during training thus reducing computation complexity in terms of
time and space requirements without compromising on the accuracy.

3 PROPOSED GAN ARCHITECTURE
GAN comprises two competing neural networks called the generator which generates new
synthetic data and a discriminator which assess whether the generated data is close to the
real data. This network is predominantly used in data creation. However, GANs are being
explored for other applications due to their robustness once trained [2]. In this work, we
propose a GAN with modified loss functions to predict cardiac landmarks with increased
accuracy and precision. The input to the network is the original image and the output is the
heatmap of the landmark.

Heatmaps are continuous pixel spreads representing the spatial probability of each land-
mark point when it is convolved with a Gaussian kernel of some standard deviation [13].
As our network handles multiple heatmaps in a single image during training, we ensured no
two landmark heatmap distributions are overlapped, which was one of our challenges when
generating the heatmap image. It is prone to localization errors and overfitting when the
variance is too small and also there is no global or spatial context. Due to this, depending on
the number of landmarks in an image, we choose different values of variance to maintain the
trade-off between maintaining the proper spacing between landmarks and also in making the
distribution large enough for proper detection. Therefore, by experimenting, we have set the
variance of 7 for a single landmark and 5 for multiple landmarks while generating heatmaps.
These heatmaps are normalized in the range 0−1.

The proposed Unet-based GAN generator consists of an encoder and decoder with skip
connections along with a feature-filter enhancing block as shown in Fig. 1. The encoder
consists of 2D convolutional layers and represents key features from the input image as
vectors in latent space. Skip connection concatenates the up-sampled vector in the decoder
path with the symmetrically opposite output vector in the encoder path along the channel
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Figure 1: Flow chart of the proposed Unet based GAN Generator

axis. We observed low bias and high variance when modeling the data. This occurs when
the data has a variety of features, and the model takes into account all estimated coefficients
and attempts to overestimate the actual value. However, only a few features are important and
affect the prediction. To select these relevant feature sets, we designed the three-block feature
filter enhancing block. This along with skip connections confine the features, decreases
parameters, simplifies the model, minimizes the probability of overfitting during training,
and regularizes the network. The proposed modified generator loss GL is given in eq 1.

GL = AL +β ×LL (1)

where AL is adversarial loss defined in eq 2, β is the intensity parameter and LL is learning
loss given in eq 3.

AL = MSE(I, GPh) (2)

LL = Huber(GTh, GPh, δ = 0.4) (3)

where I is the input image, GPh is the generator predicted heatmap, GTh is the ground-truth
heatmap and MSE is the mean squared error. In this study, we use the Huber loss function,
which combines both MAE and MSE properties. Like the MAE, it is robust to outliers, as it
is not heavily influenced by extreme values in the data, and like the MSE, it penalizes large
errors heavily. Consequently, the Huber metric optimizes using both the combination of the
median (MAE) and the mean (MSE) according to the δ (which is set to 0.4) value and also
the size of the errors.

The proposed GAN discriminator has 2D convolution layers with parameters similar to
the encoder of the generator as shown in Fig. 2. It has two sets of inputs, the original image
and the predicted landmark heatmap from the generator along with the original image and
the ground-truth heatmap. This discriminator is built on patch GAN architecture style. It
splits the raw input image into small local patches of size 4×4, then runs a general discrim-
inator convolutionally on every patch declaring whether the patch is real or fake. The final
prediction is the average of all the patch responses.
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Figure 2: Flow chart of the proposed Discriminator of our GAN

In GAN networks, the generator and discriminator work in tandem to provide better ac-
curacy. Discriminator helps in making the generator efficient by identifying the real and fake
data. The standard discriminator loss (SDL) is given by eq 6 which includes a discriminator
real loss (DRL) and discriminator fake loss (DFL) as given in Eqs. 4 and 5.

DRL = MSE(I, GTh) (4)

DFL = MSE(I, GPh) (5)

SDL = 0.5× (DRL+DFL) (6)

However, it has to be noted that the majority of pixels will be background when it comes
to small object detection. Foreground pixels that contribute to deciding will be very few. This
makes the discriminator pass the image or patch as true even if the foreground/key pixels are
missing or in the wrong location if we use the standard discriminator loss function as given in
Eq 6. This is shown in the second instance in Fig. 3 thereby affecting the landmark detection
accuracies.

Standard approaches fail to generate accurate results because they do not incorporate
local information about pixels and their positions. So to overcome this we have introduced
a new Foreground Pixel Loss (FPL) function in the discriminator which identifies the fore-
ground region or pixels of landmark heatmap in GT data and creates a square bounding box
(X1,Y1 and X2,Y2) patch as shown in Fig 4. To identify this foreground region we create
the peak distribution of the entire heatmap image and select the patches that have maximum
coverage of foreground pixels. The size of the patch is decided on the run time. The same
square coordinates patches will be taken in the predicted heatmap from the generator for
comparison towards penalization of the network for better convergence and discriminator
gradient updation during training. Three instances of prediction comparison with GT image
are shown in Fig 4 wherein the discriminator has passed only the closest one to GT and elim-
inated the other two as fake. It has to be noted that without the proposed FPL loss second
instance in Fig 4 would have passed as true even though the pixel distribution is not similar
to the GT image.
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Figure 3: Failure of discriminator in small object detection. Standard discriminator loss has
passed instance (2) as true even though the location of the heatmap is in the wrong place.

Figure 4: Proposed discriminator FPL loss overcoming the small object detection problem
shown in Fig 3. FPL loss has flagged instance (2) as false which would have passed as true
if using SDL loss.

The calculation of the proposed FPL is given in Eq. 7

FPL = α ×MSE(P1,P2)+MAE(P1,P2) (7)

where P1 is the ground-truth patch and P2 is the predicted patch. α is a crucial scalar coef-
ficient hyperparameter that controls overfitting and works as a regularizer between the two
losses. The MAE gives sparse solutions, performs regularization, removes redundant fea-
tures, and is robust to outliers. MSE learns complex data patterns, has analytical solutions,
and penalizes large errors more heavily. The weighted normalized mean loss function of
both MAE and MSE allows us to maintain the tradeoff between handling outliers and penal-
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izing big error terms. The modified discriminator loss (MDL) is a combination of SDL and
FPL as shown in Eq. 8.

MDL = SDL+FPL (8)

Thus, by taking the local information using the foreground patch, introducing the FPL loss
function, and modifying generator loss using Huber we are collaborating on both the lo-
cal and global information without any complex network. Dynamic hyperparameters are
included by modifying the dropout and learning rate for both generator and discriminator
networks based on the loss value during training for better generalization towards increasing
precise landmark detection accuracy.

4 Results and Discussions
We have trained and tested the proposed method on the STACOM LV landmark detection
challenge dataset [9]. The training data consists of 100 patient images acquired in both the
long and short-axis views. The initial split in data is 70 : 30 for training and testing, then
from the 70% we divide to 80 : 20 for training and validation part. We have performed
cross-validation to ensure every patient data is part of training and testing. The dataset had
6 distinct landmark annotations; 2 from Mitral valve, 2 from RV insert points and one each
from base and apex central axis points. These landmark points are necessary to build a 3D
left ventricle model. All the points were annotated by an experienced analyst. The details
about these landmark points are provided below.

Mitral valve (MV) points: MV separates the left atrium (LA) and the left ventricle (LV).
This is clearly visible in the MRI long-axis view, as this shows both LA and LV. Two end-
points of this valve define the MV points. A line connecting the MV points (base plane) is
crucial for LV volume measurement.

RV insert (RVI) points: Two intersections between LV and RV in the short-axis view defin-
ing the septum are usually marked as RVI points. The RVI points are important for 3D
cardiac modeling, particularly for biventricular models.

Base-to-apex central axis points (BCA and ACA): Base and apex central axis points are
essential to define the LV central axis for 3D LV models. For each patient study, one central
point at a basal slice and one central point at an apical slice are needed. Both are defined at
the middle of the LV cavity on short-axis MRI.

4.1 Preprocessing and Implementation Details
The input image size is normalized to 256× 256 as per the network requirement. Images
are zero-padded by the boundaries that are less than this size and boundaries cropped if
the size is more ensuring that our region of interest is not affected. The pixel values are
normalized between [0,1]. To increase the training samples and reduce storage dependency,
on-the-go elastic, luminance, rotation, and flip data augmentations are applied. The proposed
approach is implemented using Tensorflow [1] and OpenCV. In the generator, the encoder
has a kernel size of 3×3 with a depth of 4 and stride of 2. We are using a He-Normal kernel
initializer with leaky-relu activation and batch normalization. The decoder has a stride of
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1. As the proposed architecture generates a single image with N heatmaps for N landmarks,
the last layer is modified to have a single filter and stride of 1 with no activation function.
The discriminator uses 2D convolution with a depth of 6 and provides an output of patch
size 4× 4. Both networks use the Adam optimizer with a starting learning rate of 2e− 4
and a starting dropout value of 0.4 for the generator and 0.6 for the discriminator. This
gets dynamically adjusted during training [2]. The discriminator is made more dynamic by
giving a higher dropout to avoid mode collapse, a common problem while training GAN.
Also, a low dropout to the generator helps in convergence and avoids the vanishing gradient
problem.

4.2 Performance Analysis
The proposed network is trained using varied sample numbers. ACA and BCA have 80
samples, RVI has 542 and MV has 5142 samples. The number of epochs used for training
also varied with 1500 epochs for ACA and BCA, 1000 for RVI, and 500 epochs for MV. Our
proposed network provides a single image with N heatmaps for N landmarks. It can be seen
that the proposed predicts landmarks very close to GT with an error of around 1 pixel as
shown in Fig. 5. The zoomed image of the squared green region next to the image is shown
for better visualization of landmarks.

(a) ACA (Error is 1 pixel) (b) BCA (Error is 0 pixel)

(c) MV (Error is 1 pixel) (d) RVI (Error is 1 pixel)

Figure 5: Results of landmark detection. Red is the ground-truth while yellow is the pre-
dicted point. The zoomed region are displayed next to the image for better visualization of
landmarks.

It was observed that selecting the brightest pixel coordinate points as landmarks did not
give appropriate results. To obtain accurate and reliable landmark points we are finding
circular contours around the heatmaps. Then, by considering the radius or center of the
contour, we are able to localize landmark coordinates and generalize them to any number of
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landmarks. Euclidean distance between the predicted landmark and the actual landmark is
used to calculate the error measures. All the results obtained were visually validated by a
clinical expert cardiologist who is part of our team.

Table 1: Average error measures (in pixels) for landmark detection on training datasets.
Figures indicate mean and standard deviation.

ACA BCA MV RVI
Mahapatra [12] 2.2±1.2 3.0±1.6 9.3±2.5 7.4±2.6

Lu [11] - 6.2±4.0 3.5±5.6 7.9±11.5
Proposed 1.8±1.2 1.6±1.5 3.0±1.4 2.8±1.5

The quantitative performance of our proposed method is given in Table 1 and Table 2.
Our method is compared by using average error measures in pixels with the top 2 reported
results in the landmark detection challenge [9] in Table 1 . The proposed provides an average
mean error of about 1.8 pixels for ACA, 1.6 pixels for BCA, 2.8 pixels for RVI, and 3.0 pix-
els for MV performing better across all landmarks with significant improvements compared
to the other reported results on this challenge dataset. It can be seen that our results are con-
sistent even across varied sample sizes for each trained landmarks. We have also computed
successful detection rate (SDR) for less than 2, 3 and 5 pixels in Table 2 which shows that
the proposed method provides above 80% for all landmarks within 3 pixel error and above
90% for less than 5 pixel error.

Table 2: Average successful detection rate in % for each landmark.
ACA BCA MV RVI

≤ 2 pixel error 70 75 62 72
≤ 3 pixel error 85 85 88 86
≤ 5 pixel error 95 90 98 96

As there were only limited work reported on this data for comparison we have also per-
formed blind testing using another opensource dataset to test the robustness of our proposed
algorithm.

4.3 Blind-testing on ACDC Dataset

We have blind-tested our model on ACDC data [4], which consists of short-axis CMR images
from 100 patients with normal anatomy and pathological cases. The RVI landmarks were
manually added as circular regions of 5 pixels by Sven et al. [14]. It can be seen in Fig. 6 that
our method predicts the landmark points within this circular region consistently for all tested
images. To compute the error we are considering the center point of the circular region as
the ground-truth (GT) landmark. By comparing the predicted point with this GT landmark
we obtained an average mean error of 2.3 pixels with a standard deviation of 1.8 pixels when
tested on 1000 images with varied pathologies. It has to be noted that we have not used any
of the images from this dataset for training our algorithm thus showing the robustness of our
method.
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Figure 6: Results of RVI blind-testing with ground-truth (red) and predicted point (yellow).
(a) and (c) are input images while (b) and (d) are the zoomed regions for better visualization
of landmarks. Both have a 1-pixel error

5 CONCLUSIONS AND FUTURE WORK
By incorporating the newly designed Foreground pixel loss function, we have developed a
unique encoder-decoder architecture and a generative mechanism for image translation that
can be applied to any small object detection problem. Some related works use higher model
parameters that are complex and time-consuming. In contrast our proposed uses Detection-
GAN and FPL loss to integrate relevant information about landmark localization and global
context with less data and fewer trainable parameters. Since our design is minimalist and
simple, our network generates a single heatmap image containing N heatmaps if multiple
landmarks are present in the image instead of generating separate heatmap image for every
landmark in that image. We have achieved state-of-the-art landmark localization accuracy,
and the results are consistent with a limited amount of training data. The method’s robustness
is shown by achieving the reduced mean error when blind-tested on the ACDC dataset. Our
future work includes extending this to detect 3D landmarks.
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