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Abstract

Vision transformers (ViTs) that model an image as a sequence of partitioned patches
have shown notable performance in diverse vision tasks. Because partitioning patches
eliminates the image structure, to reflect the order of patches, ViTs utilize an explicit
component called positional embedding. However, we claim that the use of positional
embedding does not simply guarantee the order-awareness of ViT. To support this claim,
we analyze the actual behavior of ViTs using an effective receptive field. We demonstrate
that during training, ViT acquires an understanding of patch order from the positional
embedding that is trained to be a specific pattern. Based on this observation, we propose
explicitly adding a Gaussian attention bias that guides the positional embedding to have
the corresponding pattern from the beginning of training. We evaluated the influence of
Gaussian attention bias on the performance of ViTs in several image classification, object
detection, and semantic segmentation experiments. The results showed that proposed
method not only facilitates ViTs to understand images but also boosts their performance
on various datasets, including ImageNet, COCO 2017, and ADE20K.

1 Introduction
Vision transformers (ViTs) [10] have achieved remarkable performances in various vision
tasks that are often superior to those of convolutional neural networks (CNNs) [6, 36, 39].
Unlike CNNs, ViTs partition an image into a sequence of patches and subsequently combine
patch features based on the self-attention (SA) mechanism, enabling the aggregation of rich
global information within the image [8, 17, 38].

Despite its effectiveness, SA poses inherent limitations in understanding the order of
input patches. However, because 2D images are structured data, understanding the order
of patches is important for ViT [5]. To overcome this problem, ViTs employ an explicit

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, and Zhang} 2021

Citation
Citation
{Cordonnier, Loukas, and Jaggi} 2020

Citation
Citation
{Kossen, Band, Lyle, Gomez, Rainforth, and Gal} 2021

Citation
Citation
{Zhao, Jia, and Koltun} 2020

Citation
Citation
{Bello} 2021



2 KIM ET AL.: GAUSSIAN ATTENTION BIAS

component called positional embedding that enables the identification of the order and the
corresponding geometric positions of patches.

However, we claim that simply using positional embeddings does not ensure order-
awareness. To validate our claim, we utilize the effective receptive field (ERF) [2, 23] that
highlights the pixels actually used in perception, illustrating how ViTs understand images.
Using ERF, we demonstrate that ViTs with untrained positional embeddings do not dis-
criminate between near and far patches and that order-awareness is acquired after positional
embedding is trained to obtain specific patterns.

Motivated by this observation, to construct a ViT born with the spatial understanding of
images, we propose injecting Gaussian attention bias into positional embedding. The innate
spatial understanding of images helps ViT capture the nearness and farness of pixels, thereby
enhancing the performance of ViT in vision tasks. We observed that using Gaussian attention
bias improved the performance of ViTs on several datasets, tasks, and models.

2 Background
Forward propagation of standard ViT Let x ∈ RH×W×C be the input image to the ViT,
where H ×W is the resolution, and C is the number of channels of the image. Using a pre-
defined resolution of patch P×P, ViT spatially partitions the image into N nonoverlapping
patches, where N =HW/P2. Each patch is linearly projected, yielding PatchEmbedding(x).1
Subsequently, an absolute positional embedding Epos is added, resulting in z0, the input to
the first transformer block. Now, transformer blocks containing SAs and multilayer per-
ceptrons (MLPs) are applied in a row to produce zL, where L is the number of transformer
blocks. Finally, LayerNorm [3] is applied to produce the last feature map y from which the
head produces a classification score. Here, PatchEmbedding(x), Epos, zl , and y have the
same size of RN×D, where D is the dimension of the patch features.
Trick to obtain the ERF of ViT Because the ERF of ViT has been rarely discussed and our
study is the first to provide a concrete and detailed analysis on this topic, we first formulate
the ERF of ViT. The ERF depicts the actual usage of each pixel for determining the target
feature in a neural network, representing a generic connection between them. We follow the
common tricks to obtain ERFs of CNNs [16]. However, unlike CNNs, to obtain the ERF
of ViT, we should focus on the patch unit. To investigate the properties of the entire ViT,
the last feature map y is chosen as the target feature map. First, we target the nth patch
corresponding to the central patch. Because our goal is to analyze the spatial relationship
between the target patch and pixel units, we ignore other units such as the image channel
and the dimension of the patch feature. Thus, the features of the central patch are averaged
over its dimensions: Y = 1

D ∑
D
d=1 yn,d . Now, we examine the contribution of each pixel to Y

that can be obtained by a gradient ∂Y
∂x ∈RH×W×C. The gradient is averaged over channels to

obtain G = 1
C ∑

C
c=1 [

∂Y
∂x ]c. At this point, G ∈RH×W contains the spatial relationship between

the targeted patch feature and pixels. However, because G arises from the forward and
backward operations of a single image, G is strongly dependent on the input image rather
than on the ViT’s properties. To capture the general behavior of the ViT, G is averaged over
a sufficiently large number of images. At this time, because negative values in G cancel out
the positive values, we ignore the negative importance using ReLU [7, 16, 28]. Thus, we
obtain R = 1

|S| ∑x∈S ReLU(G), where S denotes an image dataset. Because it is averaged

1The concatenation of the class token is ignored in this study for notational simplicity.
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(a) ViT-B/32, 2242 (b) ViT-B/16, 2242 (c) ViT-B/8, 2242 (d) ViT-B/16, 3842

Figure 1: ERFs of ViT with different patch sizes. Because printed figures can be seen im-
properly, we highly encourage viewing all images electronically with zoom.

(a) ViT-S/16 (b) ViT-L/16 (c) ViT-S/16 (U) (d) ViT-L/16 (U)

Figure 2: ERFs of ViT with different model sizes. (U) indicates an untrained model.

over numerous images, R ∈ RH×W represents the general relationship between the pixels
and the targeted patch feature of the ViT corresponding to ERF.

3 Effective Receptive Fields of Vision Transformers

3.1 Qualitative Analysis
In this section, we qualitatively analyze the ERFs of ViTs. Although the ERFs of ResNets
[13, 37] resemble a 2D Gaussian, the ERFs of ViTs exhibit a different shape owing to
nonoverlapping patch partitioning [27]. Figure 1 shows the ERFs of ViT-B with different
patch sizes of {32,16,8}. First, the ERF of ViT mainly highlights the targeted central patch
and slightly uses information from other patches. This behavior indicates that each patch
feature is responsible for representing information in the corresponding patch, while it is
combined with certain global information from other patches via SA.

For ViT, a large-sized model was observed to yield a widespread ERF (Figure 1 (b) and
Figure 2 (a, b)). This observation is expected because a larger ViT further stacks wider
layers. However, for untrained ViTs, the ERFs exhibited no difference (Figure 2 (c, d)). This
observation shows that the wider ERF of the ViT-L/16 arises from not only architectural
largeness but also pretrained weights.

In addition, we obtained ERFs of other ViT variants (Figure 3). Among them, the DeiT
[31], DeiT III [33], and BEiT [4] have nearly identical architectures to the ViT with dif-
ferent pretrained weights, yielding similar but slightly different ERFs. CaiT [32] exhibits
architectural modifications, such as class attention, but yielded a similar ERF to that of ViT.
Compared with others, XCiT [1] and Swin [21] exhibit wider ERFs. These include explicit
modules that allow communication with the neighboring patches, such as the local patch
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(a) DeiT-B/16 [31] (b) DeiT III-B/16 [33] (c) BEiT-B/16 [4] (d) CaiT-S-24 [32]

(e) XCiT-M24/16 [1] (f) Swin-B [21] (g) ResNet-50 [13] (h) X-101 [37]

Figure 3: ERFs of ViTs and CNNs. “X” indicates ResNeXt with 32 cardinality.

interaction module, patch merging layer, and shifted window partitioning. In summary, we
observed that the ERFs of ViTs were represented as highlights of the targeted patch area with
other patches being partially utilized (See the Appendix for further analysis of the ERF of
ViT).

3.2 Spatial Understanding of Images by ViTs
The interesting aspect of ERF is that it illustrates how ViTs understand spatial images. Al-
though the ERF of ViT shows that the majority of the activated pixels are in the target patch,
adjacent patches are more activated than distant patches, yielding a roughly ✚-shape. This
behavior implies that the ViTs have order-awareness in the sequence of patches, enabling
them to use more information from nearby patches and less from far patches, which we refer
to as the spatial understanding of images. The spatial understanding of images is one of the
critical components for obtaining high-performance ViT. Wu et al. [35] and Liu et al. [21]
observed that ViTs without any positional embedding yielded decreased performance.

Positional embeddings in ViTs exist in diverse forms. The absolute positional embedding
(APE) can be either a predefined sinusoidal sequence [34] or learnable parameter [10] and is
added to the patch embedding. The relative positional embedding (RPE) [14, 29], also called
attention bias [12], is added to the attention matrix for each lth layer as

Attentionl(Ql ,Kl ,Vl) = softmax

(
QlK⊤

l√
D

+Brel,l

)
Vl , (1)

where Ql ,Kl ,Vl ∈ RN×D are the query, key, and value in SA, respectively, and Brel,l ∈
RN×N is the RPE as attention bias. To obtain Brel,l , the original Swin transformer [21]
used a learnable table called RelPosBias that provided Brel,l for each relative coordinate.
SwinV2 [22] employed a learnable MLP to obtain Brel,l from each relative coordinate; this
term is also called RelPosMlp. Although the original ViT used APE [10], recent ablation
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(a) ViT-S/16 (b) ViT-B/16 (c) ViT-M/16 (R) (d) ViT-B/16 (R)

Figure 4: ERFs of ViTs, where (R) indicates the model with RPE. The second row illustrates
ERFs when the APE or RPE is re-initialized to random parameters. Note that the ✚-shape is
lost in the second row.

studies [4, 21, 30, 35] have reported that using RPE yielded improved performance. Bello
[5] claims that although APE has provided successful results in natural language processing
tasks, relative information from RPE is crucial for vision tasks.

We examined the role of positional embeddings. We obtained ERFs before and after
the APE or RPE of pretrained ViTs was re-initialized to random parameters (Figure 4). We
observed that re-initializing APE or RPE altered ERFs, causing adjacent patches to lose their
contribution to the target patch feature and exhibit the same contribution as far patches. This
observation clearly demonstrates that SA itself cannot understand the location of patches,
and positional embedding plays a significant role in the spatial understanding of images.

To investigate the underlying mechanism, we extracted the learned and untrained RPEs.
From Brel,l ∈RN×N , the RPE of the nth patch Brel,l,n ∈RN was obtained for n∈{0,1, · · · ,N−
1} and was reshaped into B′

rel,l,n ∈ RH/P×W/P. For visualization, B′
rel,l,n was averaged over

multi-head. The RPE in the first attention layer is visualized in Figure 5. Note that the
learned RPE appeared as a sliced 2D Gaussian, distinguishing between near and distant
patches. Because softmax computes an exponential ratio, the bias term Brel,l in Eq. 1 be-
comes an exponential coefficient that amplifies each element of the attention matrix. Thus,
a higher RPE value means a larger amplification of the corresponding patch. Importantly,
we observed that untrained RPEs showed distance-independent values. In other words, re-
initializing RelPosMlp provides a random RPE that does not discriminate between near and
far patches.

We also examined whether RPEs appear as 2D Gaussians across all layers (Figure 6).
We fitted the ERF of ViTs to a 2D Gaussian using the LMfit [25] library (Table 1). The
coefficient of determination R2 indicates how exactly ERF fits a 2D Gaussian, ideally 1. The
standard deviations σ̂X and σ̂Y represent the wideness of the 2D Gaussian. We discovered
that, for the majority of layers, RPE fitted to the 2D Gaussian with R2 > 0.7. The exceptions,
whose RPE showed no pattern, were found in the last two layers of l ∈ {11,12} that were
close to the classifier head.

We interpret these observations as follows: Initially, an untrained RPE exhibits a ran-
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(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 195

(e) n = 0 (f) n = 1 (g) n = 2 (h) n = 195

Figure 5: RPE of ViT-B/16 (R) for each patch index. The first row is obtained from the
pretrained model, whereas the second row is obtained from the untrained model.

(a) l = 1 (b) l = 10 (c) l = 11 (d) l = 12

Figure 6: RPE corresponding to the center was extracted for each layer of ViT-B/16 (R).

ViT-S/16, 2242 (R) ViT-M/16, 2242 (R) ViT-B/16, 2242 (R)
l R2 σ̂X σ̂Y R2 σ̂X σ̂Y R2 σ̂X σ̂Y

1 0.731 6.837 7.063 0.893 4.219 4.113 0.914 4.553 4.394
2 0.798 4.704 4.538 0.728 6.257 5.679 0.573 6.672 6.719
3 0.831 6.185 6.392 0.824 4.715 5.039 0.870 4.649 4.849
4 0.867 4.757 5.020 0.838 5.250 5.355 0.813 4.901 5.404
5 0.753 6.798 5.310 0.795 5.597 4.920 0.853 5.055 4.807
6 0.730 5.624 4.631 0.694 8.054 5.540 0.817 5.421 4.276
7 0.796 5.872 4.848 0.844 5.509 4.660 0.877 6.895 5.020
8 0.805 4.865 5.473 0.798 5.715 5.010 0.825 5.640 4.006
9 0.771 5.668 5.681 0.729 5.472 6.538 0.873 5.328 4.914
10 0.786 5.111 6.125 0.878 4.430 5.348 0.896 5.342 6.132
11 0.231 8.709 272.743 0.359 5.824 298.676 0.012 21.137 702.646
12 0.019 690.530 181.928 0.002 396.639 415.174 0.004 579.639 332.651

Table 1: Results of fitting RPEs to a 2D Gaussian.
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Figure 7: Illustration on how we obtain Gaussian attention bias.

dom pattern and cannot distinguish between near and far patches. However, because RPE is
learnable, ViTs can choose to acquire an understanding of the different positions of patches.
After training, the RPE becomes a pattern close to a 2D Gaussian, discriminating the differ-
ent positions of patches. The learned RPE allows ViTs to understand near and far patches.
These observations motivate us to design a new RPE method.

4 Proposed Method
Our objective is to design an RPE that easily recognizes close and distant patches to facilitate
ViTs to acquire spatial understanding of images. In light of the observation that learned RPE
fits suitably with a 2D Gaussian, we propose injecting Gaussian attention bias into RPE:

Attentionl(Ql ,Kl ,Vl) = softmax

(
QlK⊤

l√
D

+Brel,l +BGaussian,l

)
Vl . (2)

Here, we aim to build BGaussian,l so that the bias terms Brel,l +BGaussian,l readily appear as a
2D Gaussian, even in the initial state. By reversing the process of extracting RPE in Figure 5,
we build BGaussian,l by stacking sliced 2D Gaussians.

First, for the lth layer, we generate a 2D Gaussian table using Al ,σl ∈ R:

f (x, y) = A2
l exp

(
−
(
(x− xc)

2

2σ2
l

+
(y− yc)

2

2σ2
l

))
, (3)

where x = 1,2, · · · ,2W/P−1, y = 1,2, · · · ,2H/P−1, and (xc, yc) correspond to the central
coordinate. Note that the amplitude is set to A2

l to ensure a non-negative amplitude for any Al .
The variance σ2

l is shared for the horizontal and vertical directions. Thus, we parameterize
the 2D Gaussian with only two parameters, Al and σl .

Second, sliced Gaussians are obtained. As shown in Figure 7, the first sliced Gaussian
should have the center coordinate of the 2D Gaussian (*) at the top-left (red box), whereas
the last sliced Gaussian should exhibit the center coordinate (*) at the bottom-right (blue
box). This slicing ensures that it resembles the learned RPE in Figure 5. Finally, each sliced
Gaussian is reshaped and stacked to build BGaussian,l , whose size is the same as Brel,l .

Our design of Gaussian attention bias has several advantages. First, because we designed
Gaussian attention bias as an additional bias BGaussian,l , it can be seamlessly plugged into
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Dataset Model RPE w/o GAB RPE w/ GAB Difference

ImageNet-1K
ViT-S/16 (R) 80.567 80.724 +0.157
ViT-M/16 (R) 81.224 81.249 +0.025
ViT-B/16 (R) 81.381 81.484 +0.103

Table 2: Top-1 accuracy on the ImageNet-1K dataset. All the accuracies in this paper are
expressed in percentage units. “GAB” indicates Gaussian attention bias.

any type of RPE, including RelPosBias and RelPosMlp. In other words, if we attempt to
implement a redesign of RelPosMlp to resemble a 2D Gaussian, it cannot be applied to other
RPEs, such as RelPosBias.

Second, our Gaussian attention bias is hyperparameter-free. Note that BGaussian,l is pa-
rameterized by Al and σl with a differentiable function (Eq. 3). Thus, Al and σl can be set
as learnable parameters in gradient descent optimization. We do not need the trial-and-error-
based hyperparameter tuning on Al and σl . Because σl determines the wideness of the 2D
Gaussian, the flexibility of σl is beneficial when using ViTs for other datasets or tasks that
require different sizes of ERF. Furthermore, different Al and σl values are allowed for each
layer. As we observed in Table 1, as the last two layers did not learn to be a 2D Gaussian,
it is preferable to allow different behaviors in the last two layers. For example, the last two
layers can naturally choose Al to be zero.

Finally, we benefit from the learnability of the original RPE, such as RelPosBias or
RelPosMlp. Indeed, RPEs such as RelPosBias or RelPosMlp have a significant number
of parameters that enable enriched expression in SA. Considering this behavior, we allow
the degree of freedom of the original RPE.

However, we remove unnecessary degrees of freedom from our Gaussian attention bias.
We do not generate multiple Gaussian tables; rather, we use a single Gaussian table to en-
sure that sliced Gaussians are shifted versions of each other, inspired by the use of relative
coordinates in RPE. We do not use a constant term in our Gaussian function at Eq. 3 because
softmax is invariant to constant translation [19, 24]: softmax(x+C) = softmax(x). Finally,
we choose to share the Gaussian attention bias across multiple heads of SA within the same
layer (See the Appendix for the ablation study).

5 Experiments
Now, we investigate the influence of Gaussian attention bias on the performance of ViTs.

ImageNet-1K First, we trained the ViTs on the image classification task using the ImageNet-
1K dataset [9] from scratch. ViT-{S, M, L}/16 (R) using RelPosMlp without APE were used.
See the Appendix for experimental details, such as the hyperparameters. For each model with
and without Gaussian attention bias, the top-1 accuracy was measured (Table 2). The top-1
accuracy of the three models improved after incorporating Gaussian attention bias.

Other Datasets To further examine the performance difference, we targeted image classi-
fication on other datasets: Oxford-IIIT Pet [26], Caltech-101 [11], Stanford Cars [18], and
Stanford Dogs [15]. Test accuracy was measured for each ViT that used RelPosMlp with and
without Gaussian attention bias. We observed that the use of Gaussian attention bias consis-
tently improved the test accuracies of the three ViTs on the four datasets (Table 3). For these
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Dataset Model RPE w/o GAB RPE w/ GAB Difference

Oxford-IIIT Pet
ViT-S/16 (R) 91.486 92.780 +1.294
ViT-M/16 (R) 92.810 92.960 +0.150
ViT-B/16 (R) 93.381 93.743 +0.362

Caltech-101
ViT-S/16 (R) 88.403 90.202 +1.799
ViT-M/16 (R) 89.132 89.983 +0.851
ViT-B/16 (R) 89.254 89.570 +0.316

Stanford Cars
ViT-S/16 (R) 80.126 83.079 +2.953
ViT-M/16 (R) 80.731 83.890 +3.159
ViT-B/16 (R) 80.154 82.612 +2.458

Stanford Dogs
ViT-S/16 (R) 81.535 82.507 +0.972
ViT-M/16 (R) 85.088 85.714 +0.626
ViT-B/16 (R) 89.256 90.185 +0.929

Table 3: Test accuracy with and without Gaussian attention bias on other datasets.

Backbone RPE Method COCO ADE20K
APbox APmask mIoU aAcc

Swin-S
RelPosBias w/o GAB 48.12 43.03 46.16 81.82
RelPosBias w/ GAB 48.23 43.13 46.41 82.09
Difference +0.11 +0.10 +0.25 +0.27

Table 4: Experimental results in terms of object detection and semantic segmentation.

experiments, each dataset contained objects of various sizes, whose classification requires
different sizes of ERF or σl . Because we designed σl as learnable, the model with Gaussian
attention bias can flexibly cope with different ERFs. Indeed, the learned σl achieved similar
but slightly different values for each dataset (See the Appendix).

Object Detection and Semantic Segmentation Finally, we targeted two downstream tasks:
object detection on the COCO 2017 dataset [20] and semantic segmentation on the ADE20K
dataset [40]. To further investigate our proposed method with a different setup, we targeted
Swin-S with RelPosBias as the backbone. Using the COCO dataset, we measured bounding
box mAP (APbox) on object detection and segmentation mAP (APmask) on instance seg-
mentation. Using the ADE20K dataset, the mean intersection over union (mIoU) and mean
accuracy over all pixels (aAcc) were measured. We observed that the Swin transformers with
Gaussian attention bias exhibited improvements across all four indices (Table 4).

6 Conclusion

In this study, we analyzed how ViTs understand spatial images. From detailed analyses of
the ERF of ViTs, we discovered that ViTs acquired spatial understanding of images during
training and that this phenomenon was caused by the underlying transition from randomized
positional embedding to a learned one. To guide the understanding of the spatial nearness
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and farness of patches, we proposed injecting Gaussian attention bias into ViTs. In sev-
eral experiments on image classification, object detection, and semantic segmentation, ViTs
integrated with Gaussian attention bias achieved superior results.
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