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Abstract

Unsupervised image retrieval aims to learn an efficient retrieval system without ex-
pensive data annotations. Typical methods rely on handcrafted feature descriptors or
pre-trained feature extractors. Recent advances propose deep fully unsupervised image
retrieval aiming at training a deep model from scratch to jointly optimize visual features
and quantization codes with minimal human supervision. Thus approach mainly focuses
on instance contrastive learning without using semantic information. However, a fun-
damental problem of contrastive learning is mitigating the effects of false negatives. To
this end, we exploit sub-quantized representations to extract fine-grained semantics for
self-supervised learning. To further regularize the instance contrastive learning for quan-
tization, we also leverage consistency regularization to reflect the similarities between
the query sample and negative samples. Specifically, we propose a novel hierarchical
consistent quantization approach to deep fully unsupervised image retrieval, which con-
sists of part consistent quantization and global consistent quantization. With a unified
learning objective, our approach exploits richer self-supervision cues to facilitate model
learning. Extensive experiments on three benchmark datasets show the superiority of our
approach over the state-of-the-art methods.

1 Introduction

Image retrieval is a fundamental task in computer vision, aiming to find images that are vi-
sually similar to a given query image from a large database. To reduce computational cost
and improve storage efficiency, approximate nearest neighbor search [16] has been widely
used, where hashing [4, 32, 39, 42] and product quantization [17, 18, 19, 34] are two most
representative directions. Hashing methods map real-value embeddings to binary codes for
efficient retrieval, while product quantization divides real-value data space into disjoint par-
titions to quantize embeddings for efficient retrieval. In the past decade, the unprecedented
success of deep learning in computer vision has brought a great breakthrough to deep super-
vised hashing [3, 23, 42] and deep supervised quantization [2, 19, 41] based image retrieval.
Although deep supervised image retrieval methods have shown outstanding performance, the

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Indyk and Motwani} 1998

Citation
Citation
{Charikar} 2002

Citation
Citation
{Shen, Qin, Chen, Yu, Liu, Zhu, Shen, and Shao} 2020

Citation
Citation
{Yang, Liu, Deng, Liu, and Tao} 2019{}

Citation
Citation
{Yuan, Wang, Zhang, Tay, Jie, Liu, and Feng} 2020

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Jegou, Douze, and Schmid} 2010

Citation
Citation
{Klein and Wolf} 2019

Citation
Citation
{Wang, Zeng, Chen, Dai, and Xia} 2022

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Yuan, Wang, Zhang, Tay, Jie, Liu, and Feng} 2020

Citation
Citation
{Cao, Long, Wang, Zhu, and Wen} 2016

Citation
Citation
{Klein and Wolf} 2019

Citation
Citation
{Yu, Meng, Fang, Jin, and Yuan} 2020


2 WU ET AL.: HIERARCHICAL QUANTIZATION UNSUPERVISED IMAGE RETRIEVAL

1
Input x H Xp | @ fo Zy Embedding f B l El
ﬁ | Random |= [ = Feature | = | Projection | = = | Quantization | = I I Quantization
. ntizati
& laugmentation ,:3,‘,:9 extractor | = head .:;>I I = head = l I le@
X _I fq Zq | Dashed lines denote part/sub-quantized
q B B R
Y- - representation
Part consistent quantization Global consistent quantization
sub-quantized space Posit Negative ﬁ h ]
ositive gativ
. R n
= =

= ———

e [ ] ]

Y=t R N ! £g e

w1 T || e oo |25 BB B
1 m [> N : § pull push ¢(f, z) Fused represemanon
= z l > «I «— EL;CZ
Part neighbour Codeword diversity
consistency L, regularization L 4 Instance contrastive learning || Consistent contrasnve regulanzatlon

Figure 1: An overview of the proposed Self-Supervised Consistent Quantization (SSCQ)
approach to deep fully unsupervised image retrieval. Part consistent quantization discovers
part neighbor affinity as self-supervision, while global consistent quantization learns instance
affinity as self-supervision, which together are formulated into a unified learning objective
for model optimization.

reliance of expensive label annotations of training data hinders their applications in label-
limited scenarios.

On the other hand, unsupervised image retrieval is capable of learning an efficient re-
trieval system without using labeled training data. Traditional unsupervised image retrieval
methods [1, 12, 25] utilize handcrafted descriptors to extract embeddings of input images
and adopt unsupervised hashing or quantization approaches to efficient retrieval. Recent
deep unsupervised image retrieval methods [24, 34, 39] resort to ImageNet [30] pre-trained
deep neural networks for feature extraction and incorporate deep hashing or deep quanti-
zation into a deep model for optimization. However, these methods either rely on human
supervision for devising effective handcrafted feature descriptors or supervised pre-trained
ImageNet backbone networks. To minimize human supervision, deep fully unsupervised
image retrieval is recently proposed in [17], which aims to train a deep model from scratch
to jointly optimize visual features and codes for efficient image retrieval. Despite the self-
supervised product quantization approach introduced in [17] which has shown promising
performance, it only applies instance contrastive loss and makes the assumption that dif-
ferent images are “negative" samples. However, false negatives will result in sub-optimal
performance due to discarding common semantic content [15].

To reduce the effect of false negatives, we introduce a novel Self-Supervised Consistent
Quantization (SSCQ) approach to deep fully unsupervised image retrieval. An overview of
the proposed approach is depicted in Fig. 1. Our motivation for global consistent quantiza-
tion is simple: the query sample and its positive sample should have consistent similarities
to negative samples. Unlike [35], we explore this idea to tackle unsupervised image re-
trieval task by fusing the embedding and quantized representations. Meanwhile, since it is
inevitable that the quantization process will lose useful information of embedding represen-
tations, we present a simple but effective solution to simultaneously optimize visual features
and codes so as to make up for the loss. We term this process global consistent quantization.

It has been shown that neighbors in embedding space usually share semantic informa-
tion [13, 37]. Since the quantization process in product quantization is akin to clustering,
our hypothesis is that neighbors in sub-quantized space also share similar semantic informa-
tion. This has a natural link to sub-quantized representations which share codewords from
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a specific codebook. Therefore, we explicitly enforce sub-quantized representations to be
semantically consistent. We term this process part consistent quantization.

We formulate both global and part consistent quantization into a unified learning ob-
jective to explore richer self-supervision for deep fully unsupervised image retrieval. To
evaluate the effectiveness of the proposed approach, we conduct extensive experiments on
three benchmark datasets, namely CIFAR-10 [21], NUS-WIDE [6] and FLICKR25K [14].
In summary, our contributions are:

1. We propose a novel hierarchical consistent quantization approach and achieve the
state-of-the-art performance for deep fully unsupervised image retrieval.

2. At global level, we improve retrieval performance by exploiting contrastive consis-
tency from “negative" instances using fused embedding and quantized representations.

3. At part level, we employ neighbor semantic consistency learning in a self-supervised
way. This helps reduce the adverse effect of false negatives in contrastive learning and
learn more discriminative representations for image retrieval.

2 Related Work

Self-Supervised Representation Learning. In recent years, self-supervised/unsupervised
representation learning has made great progress. The common practice is devising differ-
ent pretext tasks, such as predicting image rotation [20] and solving jigsaw puzzles [27], to
generate self-supervision information to facilitate unsupervised representation learning. Re-
cently, contrastive learning [5, 11, 35, 38] has become one of the most popular and powerful
paradigms for unsupervised representation learning. It usually applies strong random aug-
mentation to each input image to generate positive counterparts and employs a contrastive
loss to pull the positives closer and push the negatives apart, where different instances are
considered as negatives. In deep fully unsupervised image retrieval, [17] introduces a con-
trastive quantization framework which shows promising performance compared with con-
ventional unsupervised image retrieval methods even without supervised pre-training. Our
approach introduces self-supervised consistent quantization to discover underlying neighbor
semantic structure information from sub-quantized representations and to learn affinity be-
tween instance so as to facilitate model learning in deep fully unsupervised image retrieval.

Unsupervised Image Retrieval. Most traditional image retrieval methods are originally
designed for unsupervised learning scenarios where no labeled training data are used for
model learning. The common practice usually consists of two disjoint steps. The first step
is to use handcrafted descriptors, such as GIST [28] and SIFT [26], to extract features of
input images, while the second step is to employ binary hashing [4, 31, 36] or product
quantization [1, 9, 18] to transform embedding space into Hamming space or a Cartesian
product of subspaces for efficient image retrieval.

In the past decade, deep learning based methods have dominated the field of image re-
trieval. Supervised deep hashing [23, 42] or deep product quantization [19, 41] based image
retrieval methods have shown notably better performance than the traditional counterparts.
However, these supervised methods are limited by the availability of labeled data for model
training. To resolve this problem, researchers have resorted to deep unsupervised learning
for image retrieval. One of the most popular direction is deep unsupervised hashing [24, 39].
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An ImageNet [30] pre-trained deep neural network is usually used as the feature encoder
and then hashing layers are inserted into the model to learn discriminative binary codes us-
ing unlabeled data.

Despite outstanding performance has been achieved, deep unsupervised hashing relies
heavily on the pre-trained feature encoder and can only learn restricted binary codes, limit-
ing its ability for distinguishing visually similar but semantic dissimilar data. Since product
quantization is capable of learning continuous representations for efficient image retrieval,
deep unsupervised product quantization [17, 34] is recently introduced for unsupervised im-
age retrieval. In [34], soft quantization [41] is combined with contrastive learning [5] and
code memory to learn a retrieval system in an unsupervised manner. However, [34] still re-
quires using a pre-trained model as the feature extractor and most layers are not optimized
during model training. To minimize human supervision, deep fully unsupervised image re-
trieval is introduced in [17], which aims to train a deep model from scratch for efficient
image retrieval. In [17], a cross-quantized contrastive learning framework is proposed to
jointly optimize visual features and codes for unsupervised image retrieval.

Our work belongs to deep unsupervised product quantization and focuses on deep fully
unsupervised image retrieval without data label annotation nor supervised pre-trained back-
bone models. We propose a novel self-supervised consistent quantization approach to dis-
cover richer self-supervision to facilitate model optimization. We devise part consistent
quantization to discover underlying neighbor semantic structure information and global con-
sistent quantization to learn affinity between instances. This differs from [17] that only uses
contrastive learning to optimize cross-quantized representations or [34] that requires a pre-
trained model as the feature encoder as well as an additional code memory.

3 Methodology

Problem Statement. In this work, we target deep fully unsupervised image retrieval [17],
where neither labeled training data nor pre-trained models are available. Given an unlabeled
training set X'={x' }fvz 1 with N samples, our task is to learn a model to encode x' into a L-bit
code Bi:{b; 5‘:1 , where bj»e{O, 1}, for efficient image retrieval. During inference, the simi-
larity between query and database samples are measured based on the learned representations
and codes so as to realize efficient retrieval.

3.1 Approach Overview

An overview of the proposed Self-Supervised Consistent Quantization (SSCQ) approach is
depicted in Fig. 1. In each training mini-batch {x’ g\i’l , we apply strong random data augmen-
tation [5] on each input sample to generate two augmented views x), and x;, so we have 2N,
augmented samples in each mini-batch. Then, we extract D-dimensional embedding repre-
sentations f7, and f} of augmented inputs x/, and x}, and further quantize the embeddings into
D-dimensional quantized representation zi, and z;.

To construct the model training objective, we design hierarchical quantization to explic-
itly consider the self-supervised information at global and part level. Note, the meaning of
consistent refers to two levels: at part level, the semantic consistency of sub-quantized repre-
sentation is used to alleviate the adverse effect of potential false negatives; at instance level,
the affinity similarity consistency to negative samples is employed to learn stable embed-
dings under random augmentations.


Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Wang, Zeng, Chen, Dai, and Xia} 2022

Citation
Citation
{Wang, Zeng, Chen, Dai, and Xia} 2022

Citation
Citation
{Yu, Meng, Fang, Jin, and Yuan} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Wang, Zeng, Chen, Dai, and Xia} 2022

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Wang, Zeng, Chen, Dai, and Xia} 2022

Citation
Citation
{Jang and Cho} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020


WU ET AL.: HIERARCHICAL QUANTIZATION UNSUPERVISED IMAGE RETRIEVAL 5

3.2 Hierarchical Self-Supervised Consistent Quantization

A Baseline with Contrastive Quantization. We build our method on a contrastive quan-
tization baseline model introduced in [17] for fully unsupervised image retrieval. As shown
in Fig. 1, with each augmented input sample x, a feature extractor is used to extract feature
of x and a projection head is employed to map the learned feature into a D-dimensional em-
bedding representation f. Then, a quantization head is used to reconstruct f into a quantized
representation z € RP.

Suppose there are M codebooks {Cj, }%:1 in the quantization head and each codebook
is composed of K codewords C,={c,x}K_,, where ¢, x€RP/M. Following product quan-
tization [18, 41], f is divided into M disjoint sub-embedding representation f,,c R/ and
the codewords in the m-th codebook are used to reconstruct the sub-embedding representa-
tion f,,. Therefore, the embedding space is divided into a Cartesian product of M subspaces
{C1 xCy%x...xCy}, and codewords in the m-th codebook are considered as distinct cluster
centroids of the m-th sub-embedding representations of all samples. This allows to assign
visually similar sub-embedding representations to the same codeword for efficient similarity
measurement. To train the feature extractor, the projection head and the quantization head in
an end-to-end manner, soft quantization [41] is employed for training, so the sub-quantized
representation z,,, of m-th codebook is defined as:

(1)

_ X exp(d(fmacm,k)/rsq)
o kgl 25'(:1 exp(d(fm7 Cm7j)/qu) e

where d(fiu,cmi) = — || fm — cmill3 is the squared Euclidean distance, and 7, is a tempera-
ture parameter, z is the concatenation of z,.

To optimize the model, an instance contrastive learning loss L;., [5] is minimized to pull
z closer to its positive and push away from its negatives, as:

exp(s(z,2")/Tic)
L 1 e exp(s(z,2))/ Tie)

Lic; = —log )

where z and z" are the query and positive sample, s(z;,z;) =z z;/(||z]|||z;]|) is cosine sim-
ilarity between representations z and z;, l[Zj;éz] denotes an indicator function, and 7. is a
temperature parameter.

With the baseline model, SPQ [17] proposed a cross quantized contrastive learning loss
to jointly learn embedding representation f and the quantized representation z. This could
effectively reduce the discrepancy caused by quantization and improve the performance.
However, one major limitation of this work is that only instance (global) level representation
is considered in the loss function. This could lead to sub-optimal performance for product
quantization based method, since the potential false negatives could discard common se-
mantic information. To overcome this limitation, we propose part consistent loss to promote
semantic consistency for sub-quantized representations. Furthermore, we leverage consis-
tency regularization using fused global representation for stable feature learning. These two
novel changes enable us to explore richer self-supervision signals for unsupervised image
retrieval.

Part Semantic Consistent Quantization. The quantization process in the quantization
head is akin to clustering. It learns distinct codewords as cluster centroids with learnable
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(a) Instance contrastive loss makes mistakes for false negative (b) Part semantic loss reduces false negative error

Figure 2: Given two views of the query instance of a horse, we illustrate the benefit of using
part semantic loss with a true negative (plane) and a false negative (another horse). In (a),
the instance contrastive loss with false negatives leads to sub-optimal feature representation.
In (b), part embeddings of the anchor instance could be pulled closer to those from the other
horse, thereby fixing the error caused by false negative in (a).

parameters for end-to-end model training. As such, each sub-quantized representation z,, in-
herently encodes semantic information, which can be exploited as auxiliary self-supervision
cues to facilitate model learning. We use part and sub-quantized representation interchange-
ably. The idea is to enhance the discriminativeness of part representation, and at the same
time to produce compact semantic distributions for each part representation. We achieve
this by mining the K-nearest neighbors from the mini-batch. This process is illustrated in
Fig.2. Specifically, we use a part neighbor semantic consistency loss £, to pull each part
representation z,, closer to its similar neighbors and push z,, away from dissimilar ones, as:

- Z lCXp( (Zm,Z;, n)/Tpn)

3

I exp(sim 2y ) *
where {z,;’n };Vi | are the top Nj subspace neighbors of z,, which are obtained by computing
the similarity between z,, and its negative quantized representations z,, i The positive in-
stance normaly is highly similar to the query and is skipped to not overwhelm other terms.
Different from reducing the number of codewords, this loss promotes the compactness of
semantic structure in a soft way. Thus, it does not suffer from reduced diversity of retrieval
results or reduced performance.

Global Affinity Consistent Quantization. At instance level, the contrastive learning loss
is effective to capture semantic information by treating two augmented views as a positive
pair. Recent advances in unsupervised representation learning [22, 35] explore the affinity
between query (positive) and negative instances in contrastive learning for better generaliza-
tion. We introduce an affinity consistent contrastive loss L. to the global quantization. This
loss could be applied on either quantized representations or embedding representations. We
experimentally found that using the fused representations gives the best results. Concretely,
we first combine f and z to learn the fused representation ®( f,z) where ®(-,-) is the fusion
operation (e.g., concatenation or sum fusion). Then, we compute the similarity Q(i) between
d(f,z) and its negatives {®(f ",z );}. Similarly, the similarity P(i) between ®(f*,z") and
the same negatives, as:

(i) = ZNEXP(S( (f,2),®(f7,27)i)/ Tee)

O

L2 exp(s(@(f,2), ®(f,27) )/ Tee)
O(f-
),

Pl (@ 2, )0/ @

2 exp(s(@(f+ 2t o))
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Thus, contrastive consistency loss L. is defined using the symmetric Kullback-Leibler Di-
vergence Dgr, as:

Lee = 5 (Dxe(PIQ) + Die(Q]P)). ®

Summary. In training, a unified learning objective is formulated as:
L= Acicz + »Cicf + A,pnﬁp,, + )Vcdﬁcd + zfccﬁcc» (6)

where lpn, Aca and A are weighting parameters. Among these losses, our main contribu-
tions are £, for part semantic consistency and L. for global affinity consistency. Here, £,
differs from existing unsupervised neighbor discovery methods [13, 37, 40] in that £, mines
neighbor affinity in the sub-quantized representations z,,, instead of progressively exploring
anchored neighbors [13] or maintaining a patch/tracklet memory bank [37, 40]. Unlike [35],
our L. uses fused representation and is more flexible. Note, L;.s is similar to £;., except
that z is replaced with f, and L., is a plug-and-play term for codeword diversity. We re-
fer to the supp. mat. for the details of inference stage and the summary of the proposed
implementation.

4 Experiments

4.1 Dataset and Evaluation Protocol

Datasets. To evaluate the proposed self-supervised consistent quantization approach for
fully unsupervised image retrieval, we conduct extensive experiments on three datasets,
namely CIFAR-10 [21], NUS-WIDE [6] and FLICKR25K [14].

CIFAR-10 consists of 60,000 images of 10 classes, where each class has 5,000 images
for training and 1,000 images for testing. We use 1,000 images per class as the query set,
while the remaining images are used as the training set and the retrieval database.

NUS-WIDE is a multi-label large-scale dataset with around 270,000 images of 81 cate-
gories. We select images of the 21 most frequent categories for evaluation, where 100 images
per categories are selected to form 21,000 images as the query set while the remaining im-
ages form the training set and the retrieval database.

FLICKR25K is a relatively small dataset with 25,000 images of 24 categories. We
randomly select 2,000 images as the query set while the remaining images are used as the
training set and the retrieval database. On the multi-label NUS-WIDE and FLICKR25K, if
a query image and a database image share at least one label, then they are defined as the true
match [17, 24].

Evaluation Metrics. Following [17, 24, 32, 34], we mainly employ mean Average Precision
(mAP, %) as the evaluation metric. We use mAP@ 1000 for CIFAR-10 and mAP@5000
for NUS-WIDE and FLICKR25K, and report image retrieval results with {16,32,64} bits
codes. Besides, we also report Precision-Recall curves (PR) and Precision curves with top-
1000 returned samples (P@1000) at 32 bits codes. For implementation details and hyper-
parameters, please refer to the supp. mat.
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Dataset ‘ Method ‘ 16 bits 32 bits 64 bits

SGH [7] 43.5 43.7 43.3
HashGAN [8] 44.7 46.3 48.1
CIFAR-10 BinGAN [43] 47.6 51.2 52.0

SPQ [17] 76.8 79.3 81.2
SSCQ (ours) 78.3 81.3 82.9

SGH [7] 59.3 59.0 60.7
HashGAN [8] 68.4 70.6 71.7
NUS-WIDE | BinGAN [43] 65.4 70.9 71.3

SPQT [17] 75.7 79.4 80.2
SSCQ (ours) | 787 799 808
SPQ [17] 71.8 74.0 74.5
SSCQ (ours) 73.8 75.9 76.7

FLICKR25K

Table 1: Comparison with SOTA deep fully unsupervised methods on CIFAR-10, NUS-
WIDE and FLICKR25K in terms of mAP (%). Some results are cited from [17, 34].

4.2 Comparison with the State of the Art

We denote two variants of our method as SSCQ (fully unsupervised) and SSCQ-p (pre-
trained unsupervised), and compare with state-of-the-art unsupervised image retrieval meth-
ods, including (i) shallow methods with input features extracted from an ImageNet pre-
trained VGG16 model [33], such as SpectralH [36] and ITQ [10]; (ii) deep pre-trained un-
supervised methods which use an ImageNet pre-trained VGG16 model [33] as the backbone
and optimize certain layers to generate codes in an unsupervised learning manner, such as Bi-
half [24] and MeCoQ [34]; (iii) deep fully unsupervised methods which train a model from
scratch and jointly optimize visual features and codes in an unsupervised learning manner,
such as SPQ [17]. Due to the space limit, we highlight the comparison to deep fully unsu-
pervised methods in Table 1 and refer to Supp. Mat. for the full results.

On CIFAR-10, SSCQ achieves the best performance on all bits. It improves the second-
best SPQ by a margin between 1.5% to 2.0%. On the large-scale multi-label NUS-WIDE
dataset, SSCQ outperforms SPQ by 0.5% to 3.0%. On the relatively small-scale FLICKR25K
dataset, as shown in our SSCQ improves SPQ approximately by 2% on all bits.

In Fig. 3, we report PR curves and P@ 1000 curves. It can be observed that our SSCQ
(blue curve) consistently outperforms SPQ (green curve) under the fully unsupervised set-
ting, while our SSCQ-p (orange curve) performs competitively against the state-of-the-art
pre-trained methods. This further demonstrate that our approach is capable of learning effec-
tive embeddings and codes for image retrieval at different required recall rates and numbers
of top returned samples.

4.3 Coupling part loss with global losses

Our part neighbour loss £, is not limited to a specific choice of global loss and we hypothe-
size it is compatible with any instance-level global loss. Now, we conduct experiments to val-
idate the assumption. We consider four types of global loss in this experiment, and they are
quantized loss (L;.;), embedding loss (L;.r), combined loss (L;c; + Licr) and cross quantized
loss in SPQ [17]. Models are trained up to 800 epochs on CIFAR-10, with A.; = A, = 0.
In Table 2, we make two observations: (i) For all types of global loss, the retrieval perfor-
mance could be improved when our proposed L, is added. Note that, using £;.r alone gives
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Figure 3: PR curves (Top) and P@1000 curves (Bottom) on CIFAR-10, NUS-WIDE and
FLICKR25K (32 bits).

Global Loss ‘ Lpn ‘ mAP(%)1 H SimPost ‘ SimNeg] ‘ Margint

c - 7448 0.68 0.09 0.59
icz v 7725 0.72 0.10 0.62

. - 10.59 0.29 -0.01 0.30

icf v 76.11 0.29 -0.03 0.32

- 76.28 0.30 -0.03 0.33

LictLies |, 78.64 0.30 -0.03 0.33
- 7473 0.32 -0.03 0.35

SPQLI7] v 74.96 0.32 -0.04 0.36

Table 2: Different global contrastive losses benefit from the proposed part neighbour seman-
tic loss £,, on CIFAR-10 (16 bits). We also show the average similarity for positive and
negative pairs of the validation set (4, is set to 0.1 when L, is enabled).

very low mAP, while the mAP could be boosted from 10.59% to 76.11% when the part loss
is used. (ii) We compute the similarity score between each query and its positive samples and
negative samples for the validation set. The margin could be increased after applying £,
and this verifies that the design of £, is successful to learn more discriminative quantized
representations.

4.4 Ablation Study

In Table 3, we present component effectiveness evaluation of the proposed SSCQ on CIFAR-
10. We make several observations below: (i) the part consistent quantization (Lic;+L pn+Lcq)
improves the baseline (top row) by a large margin. (ii) The global consistent quantization
(Licz+Licy+Lec) also significantly improves the baseline. (iii) SSCQ with the unified learning
objective (bottom row) of hierarchical consistent quantization yields the best performance,
which improves the baseline by 4.0% on average across all bits.
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Loss Term mAP (%)

Lic; \ Lpn \ Lea \ Licr \ L | 16 bits 32 bits 64 bits
- - - - 74.2 77.6 78.5
v - - - 77.3 79.2 80.8
- - 77.9 80.6 81.9

v - 76.5 80.0 80.8
- - v v 76.8 80.2 814
v v v v 78.3 81.3 82.9
Table 3: Component effectiveness evaluation on CIFAR-10
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Figure 4: Retrieval results of our approach and SPQ on CIFAR-10, NUS-WIDE and
FLICKR25K (32 bits). False retrieval results are denoted in red bounding boxes.

4.5 Qualitative Visualizations

We also visualize some retrieval results of our SSCQ and SPQ [17] in Fig. 4. We can see that
both SSCQ and SPQ can retrieve visually similar images from the database, but SSCQ is
capable of exploring more discriminative information and results in more relevant retrieval
results with higher accuracy.

5 Conclusions

We propose a hierarchical Self-Supervised Consistent Quantization (SSCQ) approach to
deep fully unsupervised image retrieval. To exploit self-supervised learning for unsuper-
vised image retrieval at different levels, we devise part consistent quantization using part
neighbor semantic consistency learning and global consistent quantization with consistency
regularization. Extensive experiments demonstrate the superior performance of our approach
over the state-of-the-art methods. In future work, we aim to explore multi-level hierarchical
self-supervision information to facilitate unsupervised cross-modal retrieval, e.g. text to im-
age. It is also promising to incorporate large pre-trained language-aligned visual encoders
such as CLIP [29] into our method for both uni-modal or multi-modal applications.
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