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Figure 1: Our method, READ Avatars allows for the creation of photo-realistic and lip-
synchronized video from audio and a reference video, with control over emotion. The same
audio can be used to generate videos with multiple emotions.

Abstract

We present READ Avatars, a 3D-based approach for generating 2D avatars that
are driven by audio input with direct and granular control over the emotion. Previous
methods are unable to achieve realistic animation due to the many-to-many nature of
audio-to-expression mappings. We alleviate this issue by introducing an adversarial loss
in the audio-to-expression generation process. This removes the smoothing effect of
regression-based models and helps to improve the realism and expressiveness of the gen-
erated avatars. We note furthermore, that audio should be directly utilized when gener-
ating mouth interiors and that other 3D-based methods do not attempt this. We address
this with audio-conditioned neural textures, which are resolution-independent. To evalu-
ate the performance of our method, we perform quantitative and qualitative experiments,
including a user study. We also propose a new metric for comparing how well an actor’s
emotion is reconstructed in the generated avatar. Our results show that our approach out-
performs state-of-the-art audio-driven avatar generation methods across several metrics.
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1 Introduction
Generating convincing talking head video is a highly desired capability in various applica-
tions, such as film and television dubbing, video games and photo-realistic video assistants.
While significant progress has been made in this area [4, 10, 15, 17, 18, 23, 27, 30, 32,
33, 36, 38, 41, 44], most existing methods produce either low-quality but accurate lip sync
using 2D models [3, 4, 7, 27, 32, 38] or high-quality but inconsistent lip sync using 3D
models [17, 18, 23, 33, 36, 41]. We hypothesize that two key factors have prevented the
development of models that are both high-quality and lip-synchronized. The first is that
audio-to-expression is a many-to-many mapping. A given audio can correspond to many lip
shapes, and the same lip shapes can produce different audio. The second factor is that while
3D models improve the visual quality by introducing strong priors, they struggle to represent
complex lip shapes and do not model the mouth interior (see Figure 3).

Furthermore, it is desirable to introduce additional signals, such as emotion to offer users
a greater level of control over the outputs. A few prior works attempt this [14, 15, 18, 26, 39].
These methods usually either consider emotion as discrete categories [18, 39], which gives
semantic control but lacks granularity, or learn latent encodings of emotion [14, 15, 26]
which allow for fine-grained control but is not semantic and requires selecting emotions
from other sources (video or audio).

In this paper, we introduce READ Avatars, a method for generating talking head videos
with direct and granular control over emotion, while achieving high levels of lip sync, emo-
tional clarity, and visual quality. We build upon 3D-based approaches, using a morphable
model [22] as an intermediate representation of the face and deferred neural rendering [36]
to achieve high visual quality. To address the above issues causing poor lip sync in 3D
models, we propose two novel components. First, we add an adversarial loss to the audio-to-
expression generator to alleviate the many-to-many mapping issue. Second, we overcome the
challenge of representing complex lip shapes and mouth interiors with a morphable model
by conditioning a neural texture on audio, encoding audio features on the surface of the mesh
using a resolution-independent neural texture based on a SIREN network [31].

In summary, our contributions are:

• A novel neural rendering algorithm that leverages neural textures, operates directly
on UV coordinates, and can be conditioned on audio, improving the mouth interior.

• The incorporation of a GAN loss into the audio-to-expression network to improve
the results by solving the many-to-many issue of audio-to-expression generation.

• A new metric for determining how well an actor’s emotions are captured and recon-
structed.

2 Related Works

2.1 Unconditional Audio-Driven Face Models

2D Models: Many approaches to synthesizing talking head videos from audio operate di-
rectly in the image or video domain [4, 27, 32]. These methods typically employ an encoder-
decoder architecture. ATVG [4] uses audio to control 2D landmarks, which are then used
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Figure 2: The READ Avatars pipeline. We train 3 separate networks: an audio-to-expression
network (Section 3.2), an audio-conditioned MLP-based network that converts the UV coor-
dinates to neural texture features (Section 3.3), and a final UNET decoder network.

to generate video with attention to highlight the parts that need editing. Wav2Lip [27] sig-
nificantly improves lip sync accuracy by minimizing the distance between the audio and
generated video according to a pre-trained lip sync detection network. While the lip sync is
excellent, the visual quality is poor. Recently, a context-aware transformer [32] was applied
to this problem, with an audio-injected refinement network that significantly improves the
visual quality. However, all 2D-based models to date suffer from limited visual quality. In
contrast, our 3D-based method produces much higher-quality videos.

3D Guided Face Models: Using explicit 3D supervision, ultra high-quality face models
driven by various signals have been created [17, 18, 20, 23, 34, 36, 41]. These methods
simplify facial synthesis by modeling the underlying 3D scene with a small set of parameters,
such as a 3DMM [2, 6], that can be directly controlled. Despite their high visual quality, these
models often lack expressiveness due to the many-to-many mapping problem and the limited
lip expressions of the underlying geometry. Puppetry methods [17, 18], and motion models
[15, 30] are able to somewhat solve the many-to-many issue by using a source actor to drive
the expressions. This provides a signal, the source actor’s expressions, which is much closer
to one-to-one with the target actor. However, it is often undesirable to require a source
actor to be filmed, and the resulting video processed every time the model is used. Actor-
free methods such as ours are significantly more scalable. Implicit models [9, 10, 25, 45]
augment geometry using MLP offsets, allowing for more expressive lip shapes but do not
solve the many-to-many problem. Concurrent work [33] addresses both the many-to-many
issue and the mouth interior using memory networks. However, they rely on reusing explicit
pixels from the mouth region, which leads to jitter in the final videos.

2.2 Audio-Driven Face Models with Emotional Control
Only a small number of works have attempted to develop models that allow for explicit
control of stylistic attributes, such as emotion, in generated talking head videos. MEAD
[39] introduces an audio-driven model with control over emotion. They trained a network
to map audio to landmarks and another to convert input images to the desired emotion and
then used a UNET-based network to combine the upper face with the desired emotion and
the generated landmarks to produce the final image. This method can control emotion and
intensity, but lacks temporal coherence due to its frame-by-frame nature and has suboptimal
lip sync. EVP [14] improves upon MEAD by adding an emotion disentanglement network to
separate content and emotion in the audio and using a face-synthesis network [40] to produce
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higher-quality videos with temporal consistency. However, the lip sync and emotional clarity
were not always satisfactory. MEAD and EVP are the most similar to our work. These
landmark-based models are unable to produce as high-quality results as 3D models, they
also suffer from unnatural motion without the strong priors of a 3DMM. Some methods are
able to overcome the many-to-many problem by using a source actors expressions [15, 18]
or a person-generic model [26]. These methods produce high-quality results but require
significant processing for each actor. Furthermore, the mismatch in expressions between the
source and target actor can create artefacts.

3 Method
Our method consists of three stages. In the first stage (Section 3.1), we fit a 3D Morphable
Model [2, 21, 22, 46] to the input videos using an extension of the Face2Face monocular
reconstruction algorithm [9, 34]. In the second stage (Section 3.2), we train a neural net-
work inspired by Pix2Pix [13] to generate morphable model parameters from audio using
adversarial training. This allows us to generate realistic animation sequences, even in areas
that are not well correlated with audio. At this stage, we introduce a fine-grained emotional
label. In the final stage (Section 3.3), we train an audio-conditioned deferred neural renderer
[35]. Our model uses a SIREN MLP [31] to directly map uv coordinates to texture features,
replacing the learned neural texture of previous work [35], and making the task of audio
conditioning much easier.

3.1 Monocular Reconstruction
In the first stage of our method, we aim to find a low-dimensional set of parameters that can
model a video sequence V = (V0, . . .Vn). For this purpose, we use the FLAME model [22].
The FLAME model can be represented as a function V that maps a set of parameters for
shape β , the expression ψ , and joint rotations θ onto 5023 3D vertices. A similar function
is used to map a set of texture parameters α onto UV-based 2D textures. We model the
rendering process using a full perspective camera that projects a mesh onto the image plane
with parameters R and t, the rotation and translation and K, the camera intrinsics. We model
lighting using spherical harmonics with parameters γ . If we define π as the set of all the
above parameters, then our objective is to find the optimal π̃ that best fits a given image. To
fit the FLAME model to our videos, we adopt the tracking model of Neural Head Avatars [9],
which is based on Face2Face [34]. This model uses differentiable rendering in Pytorch3D
[28] to minimize the L1 distance between real and rendered frames, with statistical regular-
ization over the parameters.

We assume that shape, texture, and lighting are fixed for a given actor, as our data is
captured under controlled conditions. Therefore, we can first estimate π f ix = (α,γ,K), the
parameters that are fixed across all videos for a given subject. These parameters are then fixed
for all frames in all videos of the same subject. We can then estimate πvar = (θ ,ψ,R, t) on a
per-frame basis. These parameters are then the target of the audio-to-parameter generator.

3.2 Audio-to-Parameter Generator
The goal of our method is to animate photo-realistic avatars using audio as the control sig-
nal. Previous approaches based on 3DMM’s [18, 20, 36, 41] use audio-to-parameter models
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which rely on neural networks with regression losses to generate a subset of the parame-
ters. Such methods, however, suffer from the many-to-many issue when mapping audio to
expressions. Regression-based losses mean that weakly correlated parameters such as those
involved in upper face motion are almost entirely averaged out, while even highly correlated
parameters such as the lip and jaw are over-smoothed. To address these issues, we propose
an audio-to-parameter generator based on a conditional GAN [8]. Our model is similar to
Pix2Pix [13], using a combination of L1 loss for low-frequency parts of the data and an
adversarial loss for increased realism.

The input of this network is a section of audio represented as MFCC coefficients, A,
together with an explicit emotion label. The window size of the MFCC is selected to be a
multiple of the video frame rate. We use an explicit emotion labelling system to introduce
emotion into the generated parameters. For N emotions, we use an N −1 dimensional label,
C, with neutral emotion represented as a zero vector (absence of emotion). Each other emo-
tion is assigned to a dimension and scaled by intensity, with the maximum intensity being
1. This continuous label allows for fine-grained control over the emotion. We distribute the
label over the time dimension to obtain C = (C0, . . . ,Cn). This label is concatenated with the
MFCC audio features and serves as the input to the audio to expression generator Ga, which
produces the target parameters for each frame (π0, . . .πn).

Figure 3: An example of a typical failure in
the monocular reconstruction method. (Left):
The input frame, (right): the reconstruction.
Note the failure to capture the "O" shape.

The discriminator is conditional, and
takes either the real or generated parame-
ters, together with the audio and emotional
label and predicts if the given parameters
are real or generated. Both the generator
and discriminator networks use an encoder-
temporal-decoder model, projecting the au-
dio features into a high-dimensional latent
space via a fully connected layer followed
by an LSTM [12] and a fully connected de-
coder to map from this latent space to the
parameters. More details can be found in
the supplementary material. We optimize
the objective:

L= L1 +λGANLGAN +λvelLvel (1)

where L1 is the ℓ1 distance between the real and predicted parameters, LGAN is the
adversarial loss and Lvel is an ℓ1 distance between the velocities of the output animation.
The velocity loss is known to improve the temporal consistency of speech-driven animation
[5]. Each λ is a relative weight, we use λGAN = 0.02 and λvel = 100.

3.3 Audio-Conditioned Neural Renderer

We next consider how to invert the parametric model fitting and produce photo-realistic video
given a set of parameters (πi). We build upon the idea of neural textures [35], jointly optimiz-
ing an image-to-image deferred neural renderer, and a neural texture defined in UV space.
However, we find that the FLAME model is not expressive enough to represent complex
lip motions (see Figure 3), and that neural textures alone are not sufficient to compensate for
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this. Furthermore, the FLAME mesh provides no information about the interior of the mouth
including the tongue and teeth.

To address this issue, we propose audio-conditioned neural textures. The aim is to encode
audio information on the surface of the mesh to allow for more complex lip shapes and mouth
interiors to be learned. We replace the static neural texture with a SIREN MLP [31] texture
network T , which maps a uv coordinate of the rasterized meshes directly to a feature vector.

This bypasses the need for texture lookup which is slow and limits the resolution of
the neural textures. The use of a network also allows us to easily condition on audio by
simply concatenating audio features to the UV coordinates. It is important that the audio
features used in the network do not contain emotion or identity information. To remove
such information, we use the output of a Wav2Vec2 network [1, 42] pretrained to predict
phoneme probabilities at a 50 fps. The 50 most common phonemes comprise over 99%
of the audio data, therefore we restrict the features to these only. Next, we resample these
probabilities to 60 fps, twice the frame rate of the video. We take a window of W frames
centred at the target video frame and use a neural network A : R2W×50 to encode the audio
over this window into a single vector aenc ∈ RNa , where Na is the dimension of the encoded
audio and is a hyperparameter. The encoded audio vector is then used to condition the neural
texture. The audio encoder makes use of 1D temporal convolutions. The now encoded audio
vector aenc is concatenated with the UV coordinates obtained during rasterization, which
serves as the input to our texture network. The output of the texture network is a multi-
channel image, which appears as a rasterization of the mesh with an audio-encoded neural
texture. Similar to [35], we use a 16-channel neural texture, enabling the representation
of higher-order lighting effects. This rasterized image is then passed through a UNET [29]
based deferred neural renderer R, which produces a photorealistic final frame, leveraging the
audio features encoded on the mesh. Details of the SIREN texture network and the UNET
can be found in the supplementary material.

To address the issue of jitter in the final video, we include additional renderings for the
frames in a window of length WR centred on the target frame. These additional renderings
are based on the rasterized UV coordinates of the parameters from the frames on either side
of the target frame. This results in an input with 16+2WR channels for the UNET decoder,
which is able to smooth out the jitter over a window of frames.

Figure 4: The input to the decoder network
consists of a rendered neural texture and a real
frame with a border of black pixels. Note that
the texture cannot represent the mouth inte-
rior, but it is generated by the decoder.

To produce realistic and temporally sta-
ble background in our videos, we blend the
output of our texture network V̂t with the
original video frames Vt . We use the alpha
channel from the rendered mesh as a mask
to separate the foreground and background.
The foreground mask, α is expanded by a
fixed number of pixels to obtain αexp. This
expanded mask is zeroed out of the real
frame and the foreground mask α is used to
fill in these pixels with the rendered mesh.
This is best shown in Figure 4.

V ∗
t = αV̂t +(1−αexp)Vt (2)

To train the audio encoder, texture network, and deferred neural renderer, we optimize
the following objective function end-to-end:
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Figure 5: We compare our results to those of MEAD [39] and EVP [14]. Our results are
of much higher visual quality than those of MEAD, the zoomed-in regions demonstrate that
our method produces more convincing and accurate emotions compared to EVP.

L(V ∗,V ) = λ1L1 +λVGGLVGG +λGANLGAN (3)

Here, L1 is the ℓ1 distance between the real and generated frames, LV GG is a VGG-based
style loss [16], and LGAN is an adversarial loss. The hyperparameters λ1, λVGG, and λGAN
are used to weight the importance of each loss. We use λ1 = λVGG = 1 and λGAN = 0.01.

3.4 Implementation Details
We first crop every frame to a square shape of 256 pixels. We do this by estimating a
bounding box for each frame with padding and then finding the smallest square that covers
the union of these boxes. We reshape this square to the desired resolution. We implement
our pipeline in Pytorch and Pytorch3D. All networks are optimized using Adam [19] with
a learning rate of 0.0001. The renderer is trained for 5 epochs with a batch size of 1, while
the audio-to-expression generator is trained for 10 epochs with a batch size of 32. We use
the LSGAN formulation for all adversarial training [24]. Further details may be found in the
supplementary material.

4 Results
We use the MEAD dataset [39] for our experiments, which includes 60 actors (both male
and female) speaking 30 sentences in 8 different emotions at 3 levels of intensity. We follow
the train-test split outlined in MEAD and train models for 4 of these subjects.

In order to evaluate the performance of our method, we consider three qualities: visual
quality, lip sync, and emotional clarity. For visual quality, we use the Fréchet Inception
Distance (FID) metric. To measure lip synchronization, we use the Lip Sync Error (LSE)
metrics introduced in wav2lip [27]. These metrics are calculated using a pre-trained syncnet
and include LSE-D, which measures the minimum distance between audio and video fea-
tures, and LSE-C, which measures the confidence that the audio and video are synchronized.
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Table 1: Results of the user study across 4 categories. Where ours is preferred strongly
(weakly) we denote the result ++ (+), where there is no preference, 0 and where the other
method is preferred strongly (weakly), −− (−).

Statement −− − 0 + ++ mean
Ours > MEAD (lip-sync ) 1 12 14 28 44 +1.02

Ours > MEAD (visual quality) 0 3 9 23 65 +1.49
Ours > MEAD (naturalness) 1 1 15 23 65 +1.39

Ours > MEAD (emotion) 1 3 21 36 38 +1.06
Ours > EVP (lip-sync ) 7 16 22 42 11 +0.50

Ours > EVP (visual quality) 2 22 23 42 11 +0.39
Ours > EVP (naturalness) 7 17 18 26 38 +0.49

Ours > EVP (emotion) 4 8 22 26 38 +0.87
Ours > Real (lip-sync ) 69 28 3 1 0 −1.64

Ours > Real (visual quality) 33 41 23 2 0 −1.05
Ours > Real (naturalness) 53 38 8 1 0 −1.43

Ours > Real (emotion) 40 38 19 3 1 −1.13

To measure emotional clarity, it is not enough to measure differences at the frame level, as the
intensity of emotion naturally varies over a video. We, therefore, introduce a new metric for
emotional clarity that measures the differences between distributions of emotion. This met-
ric is based on a pre-trained EmoNet model [37]. We predict the valence and arousal for each
frame and compare the distributions of these values between the generated and ground truth
videos. We approximate the distance between these distributions using the Earth Movers
Distance to obtain the valence Emotional Mean Distance (V-EMD) and arousal Emotional
Mean Distance (A-EMD) metrics.

4.1 Comparisons to State-of-the-Art

Figure 6: The addition of audio conditioning
in the neural texture improves the quality of
the resulting frame, particularly in the mouth
interior.

We compare our method to several state-
of-the-art audio-driven avatar models. Our
main comparisons are with Audio-Driven
Expressive Video Generation (EVP) [14]
and Multimodal Emotion-aware Dataset
(MEAD) [39]. MEAD uses an audio-to-
landmark LSTM, an emotion transformer
to alter the audio-driven landmarks to any
given emotion, and a final UNET-based
model to produce output frames from the
emotional landmarks. AudioDrivenEVP
improves on this approach by designing a

disentanglement model to separate audio into emotion and content, which is then used with
a landmark alignment method to control for pose and a video-to-video network that produces
high-quality and temporally stable video from landmarks. We also compare to ATVG [4], a
2D-based method that excels in lip synchronization but has poor visual quality, and is unable
to edit emotion.

Quantitative: The results of these comparisons are shown in Table 2. Our results out-
perform all competitors on visual quality (FID) and emotional reconstruction (A/V-EMD).
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Table 2: Quantitative comparisons to state-of-the-art. We compare visual quality using
FID, lip sync with LSE-D/C [27] and emotional reconstruction with our metrics A/V-EMD.
We compare our results with ATVG [4], MEAD [39] and Audio-driven Emotional Video
Portraits [14] (EVP)

Method LSE-C ↑ LSE-D ↓ FID ↓ A-EMD ↓ V-EMD ↓
ATVG [4] 5.705 8.731 120.040 0.160 0.239

MEAD [39] 4.080 10.569 38.015 0.974 0.113
EVP [14] 4.061 11.514 43.972 0.119 0.126

Ours 4.431 10.157 13.600 0.0686 0.093

Table 3: Ablation study. We compare visual quality using FID, lip sync with LSE-D/C [27]
and emotional reconstruction with our metrics A/V-EMD. We compare our full model to the
same model both without the GAN loss in the audio-to-expression generator and without the
audio-conditioned neural texture.

Method LSE-C ↑ LSE-D ↓ FID ↓ A-EMD ↓ V-EMD ↓
Ours 4.431 10.157 13.600 0.069 0.093

Ours w/o GAN loss 4.047 10.446 12.587 0.079 0.090
Ours w/o audio texture 4.175 10.398 15.96 0.069 0.96

While our method is not able to reach the lip-sync quality of the unconditional ATVG [4], it
has far better visual quality and emotional clarity. We outperform both methods capable of
controlling emotion: MEAD [39] and EVP [14] on lip sync. Qualitative: Figure 5 shows
our results in comparison to MEAD [39] and EVP [14]. Our results show clearly better vi-
sual quality than MEAD. Compared with EVP our method is capable of producing emotion
that is much clearer and more closely matches the real videos, the expanded regions highlight
this. In particular, it can be seen that the eyebrows convey the target emotion far better in
our method. Additional results can be found in the supplementary video that further demon-
strates the advantages of our method. User Study: To gauge the subjective quality of our
generated avatars, we conducted a user study. We selected four subjects and generated five
videos in each of the eight emotions for a total of 160 videos. We perform a two-alternative
forced choice study, pairing each of our videos with its counterpart from the alternatives. The
users are shown both of the videos in a random order, together with the target emotion. We
ask users to select which of the two videos is better in four categories: lip sync, visual qual-
ity, naturalness and emotional clarity. A total of 10 users completed the study. The results
are shown in Table 1. Our method strongly outperforms MEAD across all categories. Com-
pared with EVP, our method is also preferred across all categories. However, this preference
is weaker for lip sync and natural quality, but much stronger for emotional clarity.

4.2 Ablation Study

We also perform an ablation study for both the adversarial loss and the audio-conditioned
neural texture. The results of this comparison are shown in Table 3. The inclusion of the
adversarial loss improves the lip-sync at the cost of a small loss in visual quality. For the
audio-conditioned neural texture, we compare our work to a static neural texture [35]. Our
method improves the visual quality and lip-sync, with small improvements in the emotional
reconstruction. As expected, the improvements resulting from our audio conditioning are
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most notable in the mouth interior. This is because the audio allows the decoder to dis-
ambiguate the multiple mouth interiors that could be represented by the same underlying
geometry. Figure 6 shows this improvement. These results are further enforced by a further
user study. This time, we ask users only to select their preference between the full and ab-
lated methods. The results are shown in the supplementary material and show that our novel
components do indeed improve the results, as judged by users.

5 Conclusion

Figure 7: Failure cases of our method.
Left & middle: When the pose of the
target video is significantly different from
the training data, artefacts occur. Right:
When the tracking is inaccurate, our
model produces blurry results.

We present a new method for producing audio-
driven avatars with control over emotion. We
have used a 3D-based pipeline with the novel
additions of an adversarial loss in the audio-to-
expression generator and an audio-conditioned,
resolution-independent neural texture. Our
method alleviates the many-to-many problem in
conditioned, audio-driven video generation and
surpasses state-of-the-art for lip sync and visual
quality, as well as emotional reconstruction, as
highlighted by our novel metric. Our compre-
hensive solution can be used for diverse applica-
tions. Limitations: Our model sometimes suf-
fers when using extreme poses (Figure 7). Fur-
thermore, as we use reference videos to control for pose and background, the length of the
generated videos is limited. Future work will look to address arbitrary length video genera-
tion, potentially by considering pose generation. It is also worth investigating other models
that address many-to-many generation, such as diffusion models [11, 43]. Ethical Impli-
cations: The ability to create synthetic digital humans comes with a serious potential for
misuse. For this reason, we do not make our pipeline available to the general public. How-
ever, we are willing to share code with other researchers. As a person-specific model, we
will follow ethical guidelines to require permission from any user to create their model.
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