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Abstract

Remote photoplethysmography has great potential in future telemedicine and affec-
tive computing, but contains sensitive biometric data, making privacy protection essential
for future applications. Privacy related research concerning rPPG is severely limited and
does not handle utility-preserving de-identification. In this paper we propose the first
learning based method for facial video de-identification that preserves the rPPG signal
and visual appearance, thus keeping the utility of the data for remote rPPG measure while
protecting users’ privacy. Our proposed semi-adversarial framework processes an input
video by adding unobtrusive perturbations that remove biometric privacy while keeping
the rPPG signal quality high. The framework is trained via learning-based constraints
that leverage pre-trained biometric recognition networks and rPPG predictors. Further-
more, we propose a novel loss term that improves biometric de-identification by lowering
downstream recognition confidence. We systematically evaluate our proposed method on
two public datasets and with varied face identification and rPPG extraction methods, and
provide a novel benchmark for future research in this direction. Our code is available at:
https://github.com/marukosan93/De-id_rPPG.

1 Introduction
The development of information and communication technology (ICT) has led to new re-
mote medical and interaction applications, especially during the COVID-19 pandemic, when
a high demand for telemedicine and teleconferences was observed [35]. Heart rate (HR),
heart rate variability (HRV), respiratory frequency (RF) and oxygen saturation (SpO2) are
widely utilised as important healthcare parameters and psychological indicators since they
change accordingly with our physical well-being and emotional states. Commonly, electro-
cardiography (ECG) or photoplethysmography (PPG) based contact devices are employed to
measure physiological signals. However, they can be uncomfortable in long term monitoring
scenarios, especially with neonates or patients with skin problems, and very inconvenient in
natural interactions. Remote photoplethysmography (rPPG) [36] is a non-contact method
that can lead to increased monitoring, and improve early detection rates for diseases such as
Atrial fibrillation (AF), or help emotional interactions [30]. Similar to PPG optical sensors,
common RGB cameras can capture subtle changes in skin colour that correspond to peri-
odical variations of optical absorption of tissue caused by the cardiac cycle. Compared to
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contact devices, in addition to the weak rPPG signal, cameras capture overwhelming envi-
ronmental noise caused by lighting changes, subject movement and camera sensor variations,
making accurate and robust rPPG a challenging task. An illustration of rPPG, Contact-PPG
and a simplified extraction method are shown in Fig. 1. A major concern in future applica-

Figure 1: A) rPPG: Cardiac activity causes periodical variations in the reflected light inten-
sity, noise is also captured (from e.g., lighting, motion and sensor). B) PPG: Uses simple
optical sensor to capture strong signal, due to short distance and lesser noise. C) rPPG ex-
traction: a coarse rPPG signal is obtained by selecting an ROI (e.g., cheeks or forehead) and
averaging the pixels from each frame to extract a temporal signal.

tions of rPPG is data privacy [29], as it involves both personal physiological data and facial
videos, that embed crucial pieces of private information such as identity, gender and race.
Handling big data in the health care field becomes increasingly important [27], therefore
data anonymisation is necessary to ensure fair treatment of subjects and compliance with
regulations such as the General Data Protection Regulation [11] and the EU AI Act [10].
According to the GDPR, facial images are regarded as biometric data and as such should
be subject to special restrictions. Recent advances in machine learning make it possible
to easily identify a subject and automatically extract sensitive information that could lead
to intentional or unintentional unethical practises. Therefore, digital de-identification that
preserves the physiological features, while removing biometric identity, is fundamental. De-
spite the importance of protecting privacy in rPPG, the current research is severely limited.
Several works deal with removing or modifying the underlying rPPG signal [4, 32], but
to our knowledge, only one work [3] distinctly focuses on biometric de-identification for
rPPG. However, it was evaluated with outdated methods and produces outputs that lose most
of the visual information in the facial area, making it unsuitable for tasks such as emotion
analysis and for comprehensive patient monitoring. In this work, we propose the first learn-
ing based facial video de-identification method that preserves the rPPG signal and visual
fidelity. Our method significantly deteriorates the performance of identity recognition on the
modified videos, making them unrecognizable to machines, therefore protecting privacy and
avoiding potential misuse in big data sharing and processing. Moreover, the data’s utility is
preserved as the underlying rPPG signals retain their quality, and the visual appearance is
kept, as the information contained in the facial area can be useful for e.g., emotion analysis
or can provide visual cues to authorised human users. We evaluate our method on two public
domain datasets and with different state-of-the-art biometric recognition networks and rPPG
predictors, providing a benchmark for future research on this new topic.

Here we summarize our contributions. Firstly, we propose the first learning based method
for rPPG preserving de-identification that maintains data utility. Secondly, we further im-
prove de-identification performance with a new output probability regularisation term, which
focuses on reducing the downstream recognition confidence. Thirdly, we systematically
evaluate our method and provide a new benchmark for future research.
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2 Related Work
Remote physiological signals. rPPG measurement was first established in [36], by extract-
ing a signal from a single channel via averaged facial video pixels. Several traditional non-
learning based methods were introduced that relied on optical/physiological considerations
expressed through mathematical models (CHROM [8], POS [37], PBV [9], LGI [25]) or on
blind source separation approaches (ICA [26] and PCA [17]). However, their assumptions
and mathematical models did not hold in less constrained environments and were surpassed
by deep learning methods. 2D-CNN models that extracted the HR from two adjacent frames
were proposed in HR-CNN [42] and DeepPhys [5], that only take spatial information into
account. End-to-end spatial-temporal 3D-CNN models such as PhysNet [39], rPPGNet [40]
have been used to exploit the temporal information. Another way to exploit temporal con-
text and suppress the information unrelated to HR signal is computing spatial-temporal maps
as input, like in RhythmNet [23], CVD [24], Dual-GAN [20] and BVPNet [7]. Recently,
transformer based networks such as EfficientPhys [19] and PhysFormer [41] have shown
promising improvements by leveraging self-attention for better temporal modeling.

Image de-identification. In traditional de-identification methods, pixelation, masking
and blurring were commonly applied [12]. These simple methods conceal the sensitive iden-
tity related information directly, but severely limit the utility of the images as they lead to loss
of information. Recent studies have exploited the generative capabilities of deep learning to
manipulate facial features for de-identification. L2M-GAN [38] manipulates the latent space
of a GAN network to edit facial attributes. Semi-adversarial approaches like PrivacyNet [22],
and CIAGAN [21] attempt to edit certain attributes while constraining the others. PrivacyNet
aims to obfuscate gender, age and race while retaining biometric recognition performance.
On the other hand, VGAN [2] and CIAGAN [21] retain facial expressions while altering
identities. Depth information has also been used to improve de-identification while preserv-
ing facial expressions, gender and ethnicity [6]. Nonetheless, none of the aforementioned
works considered de-identification that preserves underlying physiological signals, which
are in much finer level and require spatial-temporal consistency in de-identification.

Privacy in rPPG. Privacy is a significant hurdle for remote physiological signal mea-
surement, but the current research is limited, especially regarding de-identification. There
are a few works about rPPG signal related to face video manipulation. PulseEdit [4] modifies
the rPPG signal in facial videos by solving an optimisation problem to compute a perturba-
tion to apply to the video data, but was tested on simple data and proved less effective than
deep learning methods. PrivacyPhys [33] leverages a pre-trained 3D-CNN model to alter
rPPG signals in videos, which proved to be more effective than the previous baseline. How-
ever, both methods superimpose a target rPPG signal on a video but are unable to de-identify
a video while keeping the rPPG related information intact. In [3] the authors de-identify
facial videos while preserving rPPG via a spatial-frequency decomposition and face struc-
ture standardization. Their method blurs the facial area, preserving the overall average pixel
value. However, most of the information contained in the face is lost, making it unsuitable
for other applications such as emotion analysis and limiting its clinical utility. Furthermore,
it has only been evaluated with outdated methods, such as the traditional method POS [37]
for rPPG, and simple machine learning methods for biometrics (Gaussian mixture models
and support vector machines), therefore it could be ineffective with modern deep learning
techniques in both reliable de-identification and accurate rPPG measurement. Despite the
amount of recent works dealing with facial de-identification and rPPG measure, there are no
effective methods focusing on preserving physiological signals and visual utility.
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3 Methods
The overview of our method is shown in Fig. 2. The biometric recognition network and
rPPG predictor are pre-trained and their weights are fixed during the de-identification au-
toencoder’s training. The autoencoder is trained with the following objectives: perform a
faithful reconstruction of the input video, de-identify the video so that the recogniser cannot
identify the face correctly and have the same underlying rPPG signal as the original.

Figure 2: Framework for de-identification that preserves rPPG signal and visual appearance.
AE is trained to reconstruct the original video while being guided by the de-identification
(defined through Fid) and rPPG preservation (defined through Frppg) constraints.

3.1 Video reconstruction
Inspired by semi-adversarial approaches [2, 6, 21, 22], we employ an autoencoder with con-
straints to reconstruct videos. Unlike the previous works that deal with facial expressions
and soft biometrics (gender, ethnicity, etc.) that rely on pronounced spatial features, we aim
at preserving the underlying physiological signals that depend on subtle spatial-temporal
features. This introduces a new set of challenges as the underlying signal is temporally de-
pendant and delicate, meaning that the applied perturbations need to be temporally consistent
and not detrimental to the subtle visual cues that compose the rPPG signal. Therefore, inter-
frame dependencies need to be taken into account when introducing an rPPG preserving
constraint, this requires spatial-temporal modelling, which is why we choose a 3D-CNN for
our autoencoder as shown in Tab. 1. The features are only spatially upsampled and down-
sampled as to not degrade the delicate temporal information. The autoencoder AE takes a
video X (with T image frames {xt}T

t=1) as input, and returns the de-identified video X∗.

AE Encoder ↓ AE Decoder ↑
3x3x3x32 Conv, LReLU — skip connection –> 3x3x3x3 Conv, Tanh

2x2x1 AvgPool 2x2x1 Upsample
3x3x3x64 Conv, LReLU — skip connection –> 3x3x3x32 Conv, LReLU

2x2x1 AvgPool — x3x3x64 Conv, LReLU –> 2x2x1 Upsample

Table 1: Autoencoder Architecture

It is trained via several constraints: reconstruction, de-identification and rPPG. Firstly,
the reconstruction constraint is defined in Eq. 1, and ensures faithful reconstruction of the
input X . The loss function is composed of a L2 term that minimises the square pixel differ-
ence between the input and output videos, and a structural similarity index measure (SSIM)
calculated over W windows of the T frames to maximise perceived visual quality.

Lrec(X ,X∗) =|X −X∗|2 +
1
T

T

∑
t=1

1
W

W

∑
i=1

SSIM(wixt ,wix∗t ) (1)
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3.2 De-identification
We define a de-identification constraint that adds perturbations aimed at deceiving the face
recogniser, working at odds with the reconstruction. A pre-trained biometric recognition
network Fid is used to impose the de-identification constraint, and during evaluation to com-
pare the identification performance from the original and de-identified videos. The video
clips used for rPPG measure are usually quite short, e.g., less than 10 seconds, so identity
related features in the videos are temporally redundant, representing the same face in similar
conditions. Since the identity related features are not time dependant, we choose to use 2D
classification models for face recognition, as in previous studies [2, 6]. To make our method
more generalisable and to study differences in face recognition models, we consider some
widely used deep learning models such as GoogleNet [34], ResNet [15] and DenseNet [14].
Considering the relatively small size of rPPG datasets, for fast and robust convergence, we
make use of transfer learning via Imagenet pre-trained weights. We only adapt the last fully-
connected layer to fit our task, and then fine-tune the models on our data. We also include two
advanced and commonly used face recognition models, i.e., FaceNet with Inception-Resnet
backbone [28], and SE-ResNet-50 [13] (SENet). Both are pre-trained on VGGFace2 [1],
with only the last Linear layer re-trained on our data. For evaluation, we run the recogniser
on each frame of the original and de-identified videos. For training, we exploit the temporal
redundancy to lighten the implementation by selecting K = 8 random frames of the video
and pass to the recogniser, averaging the calculated per-frame losses for the de-identification
loss, as shown in Eq. 2. We define the per-frame loss in Eq. 3, in which the 1st term en-
courages incorrect predictions via negative cross entropy (NCE). Nonetheless, with only the
1st term the downstream face recogniser will still be confident about its inaccurate predic-
tions, thus misrecognize it to another person. To avoid this and make faces unrecognizable,
AE needs to be penalized for creating output videos that lead to confident identity recogni-
tion predictions. We introduce a new output probability regulariser (Regid), the 2nd term in
Eq. 3 that favours perturbations leading to Fid softmax outputs that are closer to a uniform
distribution, resulting in output videos with less recognisable identity features.

Lid(X
∗,Fid ,y) =

1
K ∑

x∗k∈X∗
K

lid(x
∗
k ,Fid ,y) where X∗

K = {X∗(i)}K
i=1 (2)

lid(x
∗
k ,Fid ,y) =

1
N

N

∑
i=1

yilog(Fid(x
∗
k))+λ

∥Fid(x∗k)− [(1/N)×N ]∥2

∥Fid(x∗k)∥2 +∥[(1/N)×N ]∥2
(3)

3.3 rPPG preservation
The rPPG signal is derived from subtle periodical variations in facial colour, meaning that
any perturbation, even if weak in magnitude, can deteriorate the underlying rPPG signal’s
quality. To mitigate the effect that de-identification has on the rPPG signal, we incorporate a
rPPG based constraint. For this, we use a rPPG predictor, that similar to the identity recog-
niser, imposes a constraint while training the de-identification framework and extracts rPPG
signals from original and de-identified facial videos during evaluation. With s and s∗ being
the rPPG signals extracted from the original video X and reconstructed video X∗, respec-
tively, we define a Pearson correlation based loss, as in Eq. 4. To study generalizability over
different FrPPG , we choose methods that are representative of the past and current state of
rPPG research as they include a long-established traditional method (CHROM [8]), a widely
used CNN method (PhysNet [39]) and recent best performing method (Physformer [41]).
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Lrppg =
∑i(si − s̄)(s∗i − s̄i

∗)√
∑i(si − s̄)2(s∗i − s̄i∗)2

i ∈ [0,T [ (4)

The final training loss is defined by the weighted sum of all losses, as shown in Eq. 5.

L = αLrec +βLid + γLrppg (5)

Figure 3: Loss functions physical meaning visualisation

In Fig. 3, we visualise the physical meaning of our reconstruction (1st column), de-
identification (2nd column) and rPPG (3rd column) losses. Reconstruction with the L2 loss
leads to unnatural appearing perturbations, with only SSIM global visual features are ig-
nored, but combined they provide subtler perturbations. De-identification with NCE causes
inaccurate recogniser predictions, but that are still confident. The Regid term flattens the out-
put probabilities, leading to less confident wrong predictions. Finally, Pearson correlation
(Lrppg) maximises trend similarity and produces accurately reconstructed temporal signals.

4 Experiments and Results
We evaluate our proposed method on the PURE [31] and OBF [18] public domain datasets.
Experimental results are provided regarding the effectiveness on different biometric recog-
nition networks and generalizability over different rPPG predictors.

4.1 Experimental Setup
Datasets: OBF [18] is a rPPG dataset captured in a controlled environment with stable light-
ing and minimal movement of the subjects. It contains 200 five-minute-long constant frame
rate RGB videos recorded from 100 subjects, with corresponding ground truth ECG and
BVP. It was selected due to its large number of diverse subjects and presence of both rest-
ing and elevated heart rates. PURE [31] is a rPPG dataset containing 60 one-minute-long
videos from 10 subjects. The subjects were recorded under different movement conditions
(steady, talking, slow translation, fast translation, slow rotation, medium rotation), with am-
bient lighting. It was chosen because it contains moderate subject movement and a more
complex background.

Evaluation protocol: As utility-preserving de-identification in rPPG is a novel research
direction we consider a closed set biometric recognition problem, meaning that each identity
is seen during training. Thus, we establish a subject inclusive protocol. For the PURE dataset
we utilise the ‘steady’ videos for the testing set and the other five videos, i.e., ‘talking’, ‘slow
translation’, ‘fast translation’, ‘slow rotation’, and ‘medium rotation’, for training. For the
OBF dataset, we divide each video into five equal size segments, out of which four are used
for training and the left one is for testing. In this way, the training and testing data have an
equal split for each subject, ensuring a fair biometric evaluation.

Citation
Citation
{Stricker, MÃ¼ller, and Gross} 2014

Citation
Citation
{Li etprotect unhbox voidb@x protect penalty @M  {}al.} 2018

Citation
Citation
{Li etprotect unhbox voidb@x protect penalty @M  {}al.} 2018

Citation
Citation
{Stricker, MÃ¼ller, and Gross} 2014



SAVIC, ZHAO: DE-IDENTIFICATION WITH RPPG PRESERVATION 7

Metrics: To measure the global HR information, we extract the mean HR for 30s seg-
ments and calculate mean absolute error (MAE) and root-mean-square error (RMSE) be-
tween the original and de-identified data. To evaluate the similarity between the rPPG sig-
nals, we compare 30s segments by using Pearson’s correlation coefficient (R) and Spectral
similarity (SS) [3]. For de-identification performance, we use accuracy and equal error rate
(EER). To validate the visual acceptance of the reconstructed video outputs, we provide
conventional reconstruction quality metrics PSNR in dB and SSIM.

Implementation details: All videos are sampled at 30 fps and each frame is cropped
and resized to 128x128 pixel images, including a tight crop of the facial area. Inputs are
T = 64 video segments, and no data augmentation is used. The rPPG predictor networks
PhysNet [39] and PhysFormer [41] are pre-trained on the OBF and PURE datasets by fol-
lowing the authors’ implementation and training parameters. For the traditional method
CHROM [8] we re-implement the original method so that it can be used for backpropaga-
tion, and landmarks are calculated via Dlib [16] and stabilised with a 5-point moving average
filter. For the identification networks GoogleNet [34], ResNet [15] and DenseNet [14], we
fine-tune the Imagenet pre-trained weights on our data. For FaceNet [28], and SENet [13] we
fine-tune only the last linear layer of the VGGFace2 [1] pre-trained weights. While training
the Autoencoder, AE all pre-trained network weights from Fid and FrPPG are frozen, and used
only to calculate the constraints. AE is trained for 20 epochs using the AdamW optimizer
with epsilon = 1e− 8, betas = (0.9,0.99), learning_rate = 3e− 4, weight_decay = 0.05,
batch_size = 8. Loss parameters are set empirically at α = 1.5, β = 0.3, γ = 0.1, λ = 0.1
and kept the same for all experiments.

4.2 Experimental Results
To the best of our knowledge, our work is the first learning based method preserving rPPG
signals and visual appearance in face de-identification, thus there are no similar methods
to compare with directly. Nonetheless, we also assess performance with traditional de-
identification methods, that do not preserve visual utility. We perform pixelation by down-
sampling the original image to 10x10 and then nearest-neighbor upsampling back to 128x128.
We also implement a recent method that has the objective of preserving the rPPG signal [3].
We use the strongest level of their spatial frequency decomposition, which corresponds to
Gaussian blurring. We will refer to if as "blur" and implement it by performing a Gaussian
low-pass filter with σ = 12 on the facial area.

Firstly, we assess the de-identification and rPPG preservation for diverse biometric recog-
nition networks. Tab. 2 shows experiments with the different biometric recognition networks
while keeping PhysFormer as the rPPG predictor. In col. 1 is the performance with the orig-
inal video, the HR and rPPG metrics are perfect as we compare the reference to itself, the
biometric performance for each network is high, meaning that they all perform strongly on
the data, making them suitable for evaluating de-identification. In col. 2 and 3, both pix-
elation and blur [3] are not sufficient for de-identification as the overall accuracy is well
above random guessing (10% for PURE and 1% for OBF). We notice that pixelation results
in both inaccurate mean HR values and signals, while blur has good performance. Blurring
preserves the overall average ROI pixel value, often used to extract coarse rPPG signals, thus
resulting in good rPPG preservation as it keeps useful low-spatial frequency components. In
col. 4 we show the results of de-identification without the rPPG constraint and regularisa-
tion term, the de-identification is successful as the accuracy is below 10% and the EER is
high, but the perturbations also affect the extracted physiological data negatively resulting in
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Dataset OBF
PURE PURE OBF

Method 1.
Orig.

2.
Pixel

3.
Blur [3]

4.
De-id
w/o reg

5.
De-id

6.
De-id
rPPG

7.
Pixel

8.
Blur [3]

9.
De-id
w/o reg

10.
De-id

11.
De-id
rPPG

GoogleNet

HR MAE ↓
(MSE) ↓

0.00
(0.00)

2.60
(10.3)

0.05
(0.07)

4.74
(15.2)

2.16
(7.78)

0.04
(0.05)

1.95
(6.78)

0.49
(2.67)

0.33
(1.70)

0.24
(1.37)

0.12
(1.04)

rPPG R ↑
(SS) ↑

1.00
(1.00)

0.72
(0.85)

0.95
(0.98)

0.75
(0.86)

0.80
(0.90)

0.98
(0.99)

0.57
(0.84)

0.75
(0.94)

0.92
(0.97)

0.95
(0.98)

0.99
(0.99)

ID% Acc ↓
(EER) ↑

100
(0.00)

30.1
(26.8)

21.2
(25.0)

0.00
(35.7)

0.39
(34.5)

8.79
(37.7)

19.9
(19.5)

22.0
(22.7)

1.05
(13.6)

1.35
(24.3)

0.08
(20.6)

Rec. PSNR[dB] ↑
(SSIM) ↑

∞

(1.00)
24.5

(0.63)
24.3

(0.68)
35.3

(0.97)
36.5

(0.97)
36.2

(0.96)
19.6

(0.52)
21.1

(0.57)
30.9

(0.97)
30.4

(0.97)
31.3
0.97

ResNet

HR MAE ↓
(MSE) ↓

0.00
(0.00)

2.60
(10.3)

0.05
(0.07)

1.39
(5.54)

2.46
(8.09)

0.03
(0.04)

1.95
(6.78)

0.49
(2.67)

0.62
(5.23)

0.28
(1.28)

0.10
(0.67)

rPPG R ↑
(SS) ↑

1.00
(1.00)

0.72
(0.85)

0.95
(0.98)

0.82
(0.92)

0.80
(0.89)

0.99
(1.00)

0.57
(0.84)

0.75
(0.94)

0.91
(0.97)

0.91
(0.97)

0.99
(1.00)

ID% Acc ↓
(EER) ↑

100
(0.00)

48.0
(29.1)

37.0
(25.9)

9.89
(28.7)

0.29
(45.7)

0.41
(38.7)

11.3
(27.8)

31.9
(18.7)

2.05
(15.7)

0.03
(22.6)

1.07
(25.4)

Rec. PSNR[dB] ↑
(SSIM) ↑

∞

(1.00)
24.5

(0.63)
24.3

(0.68)
38.7

(0.98)
38.3

(0.98)
38.8

(0.98)
19.6

(0.52)
21.1

(0.57)
31.5

(0.98)
32.4

(0.98)
32.7

(0.98)

DenseNet

HR MAE ↓
(MSE) ↓

0.00
(0.00)

2.60
(10.3)

0.05
(0.07)

10.4
(16.6)

12.9
(18.3)

0.04
(0.04)

1.95
(6.78)

0.49
(2.67)

0.25
(1.18)

0.27
(1.07)

0.11
(0.65)

rPPG R ↑
(SS) ↑

1.00
(1.00)

0.72
(0.85)

0.94
(0.98)

0.04
(0.64)

0.15
(0.56)

0.98
(0.99)

0.57
(0.84)

0.75
(0.94)

0.87
(0.96)

0.85
(0.95)

0.98
(0.99)

ID% Acc ↓
(EER) ↑

100
(0.00)

44.5
(29.1)

59.2
(24.3)

1.56
(30.9)

8.99
(47.8)

10.3
(39.9)

14.8
(21.8)

29.2
(21.0)

1.08
(8.16)

1.12
(11.8)

1.15
(11.2)

Rec. PSNR[dB] ↑
(SSIM) ↑

∞

(1.00)
24.5

(0.63)
24.3

(0.68)
36.3

(0.97)
35.7

(0.97)
35.3

(0.96)
19.6

(0.52)
21.1

(0.57)
30.9

(0.98)
30.9

(0.98)
30.9

(0.97)

FaceNet

HR MAE ↓
(MSE) ↓

0.00
(0.00)

2.60
(10.3)

0.05
(0.07)

0.06
(0.07)

0.06
(0.07)

0.03
(0.04)

1.95
(6.78)

0.49
(2.67)

0.11
(0.66)

0.09
(0.58)

0.07
(0.65)

rPPG R ↑
(SS) ↑

1.00
(1.00)

0.72
(0.85)

0.95
(0.98)

0.92
(0.96)

0.93
(0.97)

0.98
(0.99)

0.57
(0.84)

0.75
(0.94)

0.98
(0.99)

0.98
(0.99)

0.99
(1.00)

ID% Acc ↓
(EER) ↑

100
(0.00)

9.89
(48.0)

9.89
(49.7)

0.21
(51.7)

0.04
(79.3)

0.02
(72.6)

1.02
(48.2)

1.02
(48.7)

0.48
(29.5)

1.05
(28.7)

0.87
(29.3)

Rec. PSNR[dB] ↑
(SSIM) ↑

∞

(1.00)
24.5

(0.63)
24.3

(0.68)
38.0

(0.98)
38.3

(0.98)
37.4

(0.97)
19.6

(0.52)
21.1

(0.57)
38.1

(0.99)
38.3

(0.99)
38.2

(0.99)

SENet

HR MAE ↓
(MSE) ↓

0.00
(0.00)

2.60
(10.3)

0.05
(0.07)

4.91
(12.8)

2.94
(8.24)

0.02
(0.03)

1.95
(6.78)

0.49
(2.67)

0.23
(1.26)

0.19
(0.89)

0.11
(0.89)

rPPG R ↑
(SS) ↑

1.00
(1.00)

0.72
(0.85)

0.95
(0.98)

0.47
(0.79)

0.46
(0.84)

0.99
(0.99)

0.57
(0.84)

0.75
(0.94)

0.97
(0.99)

0.96
(0.99)

0.99
(1.00)

ID% Acc ↓
(EER) ↑

100
(0.00)

15.9
(42.0)

0.58
(49.1)

0.00
(42.8)

0.00
(49.8)

0.00
(48.7)

4.55
(40.3)

0.81
(51.6)

0.17
(29.4)

0.14
(32.3)

0.86
(27.9)

Rec. PSNR[dB] ↑
(SSIM) ↑

∞

(1.00)
24.5

(0.63)
24.3

(0.68)
37.0

(0.98)
35.2

(0.97)
37.2

(0.97)
19.6

(0.52)
21.1

(0.57)
34.9

(0.99)
34.5

(0.99)
34.5

(0.99)

Table 2: rPPG, biometric and reconstruction performance evaluation of our de-identification
method with different constraints, and comparison with traditional de-identification.

inaccurate rPPG signals. In col. 5 the output probability regularisation term is applied (com-
paring to col. 4), resulting overall in better EER, meaning that the term helps in lowering the
downstream recognition confidence and thus improves de-identification performance. In col.
6 we add the rPPG preservation constraint, which results in accurate HR measures and rPPG
signals while keeping comparable de-identification performance. For the OBF dataset, the
outcome is analogous and shown in columns 7 to 11. Blurring in OBF has less satisfactory
rPPG preservation, likely due to the more varied data in the much larger dataset. Regarding
visual acceptance, our method achieves PSNR > 30dB and SIM ≈ 0.97 indicating that it is
hard to tell the difference between the original and de-identified videos.

Secondly, we test whether the rPPG preserving features can generalise over different
predictors. In Tab. 3, we cross test rPPG predictors by using one for the training constraint
and another for the evaluation. We fix the biometric recognition network as DenseNet as
it creates the most disturbing noise for rPPG. The overall performance is satisfactory even
when evaluating with a different predictor with very low HR error and high R, meaning that
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the features learned can lead to accurate signals with any rPPG prediction method.

Evaluation
rPPG Method CHROM Physnet Physformer

Dataset Train De-id
rPPG Method

HR rPPG HR rPPG HR rPPG

MAE ↓
(MSE) ↓

R ↑
(SS) ↑

MAE ↓
(MSE) ↓

R ↑
(SS) ↑

MAE ↓
(MSE) ↓

R ↑
(SS) ↑

PURE

De-id rPPG
CHROM

0.016
(0.023)

0.989
(0.995)

0.032
(0.044)

0.980
(0.992)

0.067
(0.083)

0.931
(0.974)

De-id rPPG
PhysNet

0.028
(0.036)

0.956
(0.982)

0.021
(0.031)

0.989
(0.995)

0.057
(0.083)

0.950
(0.983)

De-id rPPG
PhysFormer

0.031
(0.042)

0.943
(0.978)

0.039
(0.059)

0.983
(0.993)

0.037
(0.050)

0.981
(0.993)

OBF

De-id rPPG
CHROM

0.499
(3.534)

0.984
(0.993)

0.226
(1.117)

0.937
(0.980)

0.267
(1.412)

0.930
0.982

De-id rPPG
PhysNet

1.186
(5.349)

0.888
(0.948)

0.178
(0.985)

0.974
(0.990)

0.088
(0.533)

0.959
(0.989)

De-id rPPG
PhysFormer

1.361
(6.684)

0.896
(0.953)

0.179
(0.947)

0.943
(0.985)

0.111
(0.648)

0.978
(0.991)

Table 3: Evaluation over different rPPG predictors

Figure 4: De-identification performance ROC, accuracy in parentheses

Furthermore, in Fig. 4 we show the de-identification results in further detail by plotting
receiver operating characteristic (ROC) curves. The addition of the output probability reg-
ularisation (red curve vs. pink curve) improves de-identification performance, consistently
with the results from Tab. 2, where overall the EER was higher after applying the term. In-
corporating the rPPG constraint in most cases results in only a slight drop in de-identification
performance.

4.3 Visualisation
We visualise the feature embeddings via PCA of all five biometric recognition networks with
the original and de-identifed videos from the PURE dataset, as shown in Fig. 5, and calculate
their intra-class and inter-class distance ratios. The ratios between Euclidean distances are
calculated from embeddings belonging to the same class and the other classes, and then
averaged. The original features are all clearly clustered according to each identity, but when
applying de-identification (with or without the rPPG constraint) the feature embeddings for
each identity come closer and are more difficult to distinguish, resulting in an increased intra-
class over inter-class distance ratio. There are noticeable differences based on the recognition
network, as with the same training parameters, DenseNet seems the most challenging to
deceive.
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Figure 5: PCA visualisation of recogniser feature embeddings

In Fig. 6 we show a pixel level visualisation of the de-identification and rPPG signals
extracted from a 64 frame segment. In contrast to the traditional de-identification methods,
our proposed de-identification maintains the overall visual appearance by slightly perturbing
the original video. As for the extracted rPPG signals we show that pixelation (i.e., ‘Pixel’ in
Fig. 6) and de-identification without the rPPG constraint (i.e., ‘De-id’) result in noisy and
inaccurate signals, while blurring (i.e., ‘Blur’) and de-identification with the rPPG constraint
(‘De-id rPPG’) preserve most of the signals’ shape.

Figure 6: Pixel level and rPPG signal visualisation

5 Conclusion
We propose the first learning based method for facial video de-identification that preserves
the physiological and visual fidelity, while protecting user’s privacy from machines. Exper-
imental results on two public datasets show that our framework is effective in significantly
deteriorating biometric identification while keeping a high quality of the rPPG signal. Ad-
ditionally, our new output probability regularisation term is shown to aid de-identification
by improving EER and ROC. Future work will include more challenging biometric attack
scenarios and removal of soft biometrics while preserving rPPG.
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