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Abstract

Our research goal is to build a novel scene synthesis framework enabling the flex-
ible generation of individualized indoor virtual environments. Current deep methods
only learn the layout patterns from training scene samples, affording only partial co-
occurrence possibilities while ignoring any user intent. In contrast, this paper devises a
novel framework by flexibly combining and generating function-oriented semantic ob-
ject groups while accommodating strong user intent. Conforming to this group-centric
design paradigm, we consider different strategies for proposing group-level locations
and completing semantic clusters with intra-group relationships. The entire framework
hinges upon two technical innovations. First, we design a conditional normalizing flow-
based ProposeNet to learn the exact distribution of semantic groups, by which we sample
potentially plausible group-level locations constrained by user-desirable room function-
alities. Second, we design a conditional graph variational auto-encoder, CompleteNet,
to instantiate each semantic group with the user-specific complexity (e.g., graph size).
With the complete groups readily available, we then recursively select the most plausi-
ble proposals and optimize the final layout subject to a collision-free, accessible room
space and an arbitrary floor plan. Comprehensive experiments have confirmed that our
new framework can produce personalized and versatile unseen 3D scenes from a more
expansive design space than conventional domains delimited by training data.
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1 Introduction

Figure 1: We present a novel scene synthesis framework combining compact semantic object
groups based on user intent. The ProposeNet proposes plausible group-level locations, and
the CompleteNet generates the intra-group detailed arrangement. Our propose-and-complete
strategy flexibly explores a more expanded design space than training data (e.g., bedroom,
living room) and produces versatile scenes given a personalized setting.

Problem Statement and Background. As a human-built environment, indoor space is
created to support versatile desired functions to facilitate our daily activities. This demand
requires generative methods to produce realistic, plausible, and functional indoor scenes that
must be flexible and personalized. Recent deep-learning methods have achieved impressive
results in scene synthesis. Most previous works learn the scene-level layouts consistently and
memorize frequent room patterns from the trained samples. Nonetheless, after training with
typical domestic scenes (e.g., bedroom, living room), the deep models can hardly produce a
creative combination with personalized settings. The CNN-based methods [24, 29, 37] adopt
a top-down heatmap or 2.5D image to guide the 3D layout creation. Another line of research
uses GNN-based [4, 30, 38] or transformer-based [23, 31] architectures to learn scene-level
prior and generate scene graphs or object sequences. Although there are human-centric
approaches [2, 7, 10, 11, 14, 25, 36] that enhance the flexibility by sampling various active
agents, the human-involved data preparation is quite time-consuming. In short, the main
challenge is to design a powerful model with high versatility that also supports custom-made
functional indoor scenes, possibly beyond the design space delimited by the training data.

Method Motivation and Overview. We propose a novel method that generates and
combines user-specific functional semantic groups to tackle the aforementioned challenge.
In particular, our method needs to answer two questions: (1) how the semantic groups sup-
port an expansive indoor design space, and (2) how to ensure the user intent controls the
generative process. For the first question, we observe that the semantic function is a natural
clustering that compactly fills the space delicately [6, 32, 33]. Conversely, we can enrich an
empty room by adding various semantic groups with flexible complexities. Thus, we adopt
a propose-and-complete strategy. The ProposeNet aims to learn the group-level location
distributions, where we sample new group position and rotation proposals. Regardless of
room type (e.g., bedroom, living room), we can obtain the candidates of any arbitrary com-
bination of the semantic groups. The CompleteNet generates the instances inside the groups
respecting the intra-group relationships and respective complexities (i.e., object numbers).
This strategy enables exploring a more expansive indoor design space beyond training data
by supporting theoretically infinite combinations of room functionalities, continuous group
locations, and semantic group complexities. For the second question, ProposeNet takes the
user-specific semantic group categories as the condition to learn the group-level location dis-
tributions by a conditional normalizing flow model. Similarly, CompleteNet also takes the
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user-desired object number to guide a conditional graph variational auto-encoder to generate
the exact instances of the group. Once the group location proposals and the semantic groups
are generated, we recursively selected the most proper proposal for each group by scoring
them with potential collision, object accessibility, area of the free zone, and compatibility
with the floor shape. Since the selected proposals may still be unqualified, we adopt an extra
optimization process with the same scoring criteria to produce the final room layout.

Key Contributions. The primary contributions of this paper comprise: (1) We propose
a novel flexible propose-and-complete scene generation framework that supports personal-
ized semantic function settings; (2) We design a normalizing flow-based ProposeNet for
learning the group-level position and rotation distributions, where we sample the plausible
semantic group locations conditioning on user-specific functionalities; (3) We devise a con-
ditional graph variational auto-encoder, CompleteNet, to generate entire semantic groups
with user-desired group complexities. Our novel generation strategy and networks success-
fully produce plausible indoor designs respecting personalized settings beyond the training
set. Moreover, our model can also achieve comparable performance with the SOTA method
while generating typical domestic indoor rooms. From the application perspective, our ex-
tensive experiments and thorough evaluations validate all the claimed advantages of our
novel approach toward the effective production of custom-made 3D indoor scenes with high
versatility and personalized functionality.

2 Related Work
Image-guided Scene Generation. Deep learning in the image process has achieved impres-
sive performance, which is also widely used in scene synthesis. Wang et al. proposed a
method to add a new instance based recursively on 2D convolutional prior from informative
top-down masks [29]. Similarly, Ritchie et al. introduced a fast and flexible scene synthe-
sis method (FastSynth) using four convolutional sub-modules predicting the object category,
location, orientation, and scales [24]. Luo et al. designed a scene instantiation model based
on an abstract scene graph and a 2.5D sketch guidance [21]. Zhang et al. combined hand-
crafted and learned descriptors as a hybrid representation [37] to generate realistic layouts
with a generative adversarial network using the top-down image [1, 12]. Yang et al. learned
scene volume from a collection of 2.5D partial observations [34]. Since the 2D image guid-
ance has difficulty representing specific 3D configurations, our method directly regresses 3D
bounding boxes to produce satisfactory scene layouts.

Graph and Sequence based Scene Generation. Scene graph [17, 26, 28], tree, and
sequence structures expedite the representation and learning of the relationships among in-
stances. Li et al. proposed a recursive auto-encoder (GRAINS) [19]. It encodes various
relations as intellectual nodes and generates the following hierarchy by trained variational
auto-encoders (VAE) [5]. Wang et al. adopted a graph auto-regressive model that uses spa-
tial edges to constrain the scene graphs [30]. Zhou et al. proposed a graph-based scene
augmentation model (SceneGraphNet) [38], which predicts the most plausible properties of
the newly-added instance. Dhamo et al. devised a detailed scene edition method by manipu-
lating latent graph features [4]. Recently, researchers adopted transformer [3] architecture to
generate a scene as a sequence. Wang et al. proposed the SceneFormer to auto-regressively
produce an ordered sequence based on the layout image features [31]. Similarly, Paschalidou
et al. introduced an auto-regressive transformer (ATISS) that generates rooms as unordered
sets of objects, supporting scene completion and failure case detection [23]. Our method
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adopts a graph-based generative model to learn the intra-group relationships and sample
newly semantic groups.

Semantic group-based Scene Analysis. There are also semantic group-based approaches
analyzing highly-related instance clusters as the primary element to construct the scene
space. Fisher et al. executed a very early approach that clustered the interchangeable objects
in a dataset based on their neighborhood similarity [6]. Xu et al. proposed the "structural
group" concept as a functional object set with reliable relationships, which enabled sketch-
based object co-retrieval and co-placement [33]. Xu et al. introduced an extraction method of
representative substructure, named "focal point", which is used for characterizing and com-
paring scene collections [32]. Unlike previous works that extract and analyze the functional
substructure of scenes, our novel method directly takes the annotated groups as known prior
and learns the distribution of intra-group patterns to organize personalized indoor space.

Figure 2: The overall framework. In this example, we take three semantic groups and top-
down 2D representation for better illustration, while the real outputs are in 3D space. The
ProposeNet takes the group category as condition and learns the group-level locations dis-
tributions by a C-MAF model. We can sample possible group locations conditioning on
user-specific room functionalities. The CompleteNet is a variational graph auto-encoder,
which conditions on both group category and complexity (i.e., node number). Given the
possible group locations and the instantiated groups, we recursively select the best proposal
by fitting the group to all proposed locations and ranking them with plausibility criteria. We
adopt the same criteria for the final optimization process.

3 Novel Approach
The overall framework structure is illustrated in Figure 2. Given the user-defined seman-
tic groups with desired complexity, we first sample group location proposals from the Pro-
poseNet (Sec 3.1), and instaintiate the specific intra-group objects by the CompleteNet (Sec
3.2). Finally, we choose the most proper group locations and optimize them with our pro-
posed selection and optimization algorithm (Sec 3.3) given the outputs of the networks.

ProposeNet. We decompose a room space into a compact set of semantic groups, which
are defined as the set of objects for executing certain daily activities. Each group location
has a descriptive vector x = (xg,yg,zg,θg) of position and orientation around its vertical axis
with all values normalized in [-1, 1]. The group position is the average of the object centers,
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and the orientation coincides with the most dominant object. We assume that the group lo-
cation of category cg follows a conditional density p(x|cg). In order to learn this density and
sample new group proposals, we design a conditional normalizing flow model, ProposeNet,
based on the masked auto-regressive flow (MAF) [22]. As preliminary, the normalizing flow
models [16, 18] infer a density p(x) as an invertible differentiable transformation f of a
basic density pu(u) (e.g., u ∼ N (0,I)), which is x = f (u) where u ∼ pu(u). Based on the
invertibility of the transformation f , the desity p(x) can be represented as:

p(x) = pu( f−1(x))
∣∣∣∣det

(
∂ f−1

∂x

)∣∣∣∣. (1)

In order to maintain tractability, the MAF adopts an auto-regressive framework with
Gaussian conditions. The i-th latent channel is conditional by previous variables. For more
discussion and proofs, we refer readers to the work of MAF model [22]. We extend the
original MAF model towards a conditional version based on our conditional density p(x|cg)
assumption. Thus, we modify the auto-regressive model by considering the extra conditions
as p(xi|x1:i−1,cg) =N (xi|µi,(expαi)

2). The calculations of the mean and the log standard
in each recursion are:

µi = φµi(x1:i−1,cg), αi = φαi(x1:i−1,cg). (2)

We train the ProposeNet with the same loss function design as in MAF [22]. In the sam-
pling process, given the user-specified category list Cg, we sample Np group location pro-
posals for each semantic group category. The ProposeNet outputs all the location candidates
as P = {{xi

cg}
Np
i=1}cg∈Cg . Since the user selects the room functionalities as the condition-

ing feature, our ProposeNet supports sampling the arbitrary combination of group location
proposals regardless of the semantic co-occurrence of the training rooms.

CompleteNet. We build the CompleteNet with a variational graph auto-encoder structure
to generate the group objects, conditioning the group semantics and its target complexity.
The semantic group is modeled as a directed, fully-connected graph G = (V,E) considering
the intra-group relationships. The vertex set V includes all the bounding boxes of the group
objects. Each bounding box has a descriptor of position (x,y,z), orientation θ around its
vertical axis, scale (l,w,h), and object category c. We define the group complexity as the
graph node number. All the objects are normalized and aligned in the group coordinate
system, where the original point coincides with the group’s center. The encoder is a three-
layer graph neural network. The initial node feature is the encoded bounding box descriptor
through a two-layer MLP. We aggregate the node features by using the message passing
algorithm [13, 20] with the attention mechanism [27]. The message mv received by the node
nv is computed as:

mv =
1

Nv
∑
u

wuvLeakyRelu(nu−nv), (3)

where Nv is the number of edges where nv is the target node. The wuv is the attentive weight
computed by a three-layer MLP fw following by sigmoid function. The node features are
updated by the gated recurrent unit (GRU). We use the sum pooling for the node and the
graph-wise features. We decode the graph structure in an auto-regressive style. We first sam-
ple a new code from a Gaussian distribution and reparameterize it with predicted mean and
variance as a latent code z. The input latent code of the decoder is the concatenation of z, the
one-hot-encoded group category cg, and the node number ng. At step t, the newly added node
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feature is initialed by the last node feature and the latent code as nt = φ(cat(nt−1,z,cg,ng)),
where φ is a two-layer MLP. The nt is then updated through a graph neural network with the
same architecture as the encoder. At step t = 0, we replace the last node feature with the input
latent code. For the final bounding box output, we discretize the continuous position (x,y,z)
and the scale (l,w,h) into 64 units and the orientation angle θ into 8 units, respectively. We
employ a group of MLPs to estimate seven channels of the bounding box descriptor and the
object category. The frequency of the object semantic category in the training set orders the
node generation process. The cross-entropy loss optimizes the discretized layout and ob-
ject class outputs. In the sampling process, given the user-defined category list Cg and the
complexity list Ng, the CompleteNet outputs the semantic groups as graphs G = {Gcg}cg∈Cg .

Proposal Selection and Optimization. We recursively select the most proper location
for each group category by scoring the candidates with several common-sense criteria [35].
Our scoring is based on four criteria: inter-group collision, group accessibility, free zone
area, and compatibility of the floor shape. Additionally, we employ a discretized strategy to
efficiently quantify the constraints mentioned above. Considering a group category cg ∈Cg,
we generate a set of 2D grid checkpoints Pcg at the floor plane for the output semantic group
Gcg , with spacing d (d = 0.125 in our evaluation). The floor equips with checkpoints Pfloor
covering only the supportive area.

(1) Inter-group Collision: Various functional regions should not overlap in a versatile
room space. The inter-group collision can be measured by the intersection of two individual
functional elements. We first define fn(PI ,PJ) the count of intersected points of two check-
points sets PI and PJ . The two points are considered as intersected if the spacing distance
less then d. Supposing Psel is the checkpoint set of the previously selected semantic groups.
The normalized inter-group collided point count, Ni

col,cg
, for the i-th proposal of the category

cg as fn(Pi
cg ,Psel)/|Pi

cg |.
(2) Accessibility: The semantic group should be accessible by the human or the other

agents to execute its functionality. Especially for the highly-oriented semantic groups (e.g.,
storages), the interactive surface might be blocked by other groups located in its functional
area, and even all semantic groups involve no inter-group collision. We tackle this problem
by extending the checkpoints in the pre-defined interactive area of each group. Thus, the
potential accessibility problem can be solved along with the inter-group collision.

(3) Free Zone Area: In practice, the user usually places the furniture near the walls to
obtain a broader activity zone and aesthetic room space. In order to effectively quantify the
free zone area, we inversely count and minimize the checkpoints on the floor behind the
semantic group back surface, denoted as Pi

back,cg
⊂ Pfloor. The normalized checkpoint count,

Ni
free,cg

, for quantifying the area of the free zone is |Pi
back,cg

|/|Pi
cg |.

(4) Compatibility with Floor: Our proposal selection strategy is suitable for various floor
shapes because the coverage of Pfloor varies along with the specific room shape. To measure
the compatibility with the floor, we conversely count the group checkpoints out of the floor,
Ni

out,cg , as 1− fn(Pi
cg ,Pfloor)/|Pi

cg |.
The final score for the i-th proposal of category cg is:

si
cg = 1−Ni

col,cg
−Ni

free,cg
−Ni

out,cg . (4)

We recursively choose the proposal with the largest score as the best selection from the
most occupying groups. This algorithmic heuristic order choice is a valid technique proven
by our experiment, but might not be theoretical guaranteed. Empirically, it might happen
that all proposals are not ideal. Thus we additionally optimize the group positions following
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the selection process. Specifically, we sample a delta translation (δxg,δ zg) on the floor plan
from a Gaussian distribution αoptN (0,σopt), where αopt = 0.25 and σopt = 0.1 based on
our empirical research. The group position is updated when the optimized group achieves a
larger score defined in Eq. 4.

4 Experiments and Evaluations
Dataset Preparation and Implementation Details. We train our networks on the cur-
rently popular 3D-FRONT indoor scene dataset [8], composed with 3D-FUTURE furniture
dataset [9]. We first pre-process the dataset, filtrate the rooms with reasonable size, and
manually refine the objects with collisions. Additionally, to cooperate with the group-based
training procedures, we re-annotate 4989 rooms by dividing the scenes into compact seman-
tic groups. In total, we obtain 16763 semantic groups of 12 daily functionality categories.
The split of training and testing the ProposeNet is 80% and 20%, respectively. The semantic
groups of the training rooms are used to optimize the CompleteNet. The pre-process, the
re-annotation, and the exemplars of semantic groups are detailly introduced in the supple-
mentary material.

Implementation Details. We train our models on a personal computer platform with
an Nvidia GTX 1080Ti GPU on the Pytorch framework. We train the ProposeNet and the
CompleteNet for 1000 epochs with the Adam optimizer with 0.0001 as weight decay. The
initial learning rate is 0.002, and the rate decays by 0.9 for every 50 epochs for both modules.
During training the CompleteNet, empirically, the reconstruction loss weight is 1 while the
KL divergence loss weight is 0.3. In our evaluation, the ProposeNet generates Np = 50 for
each semantic group category, and the maximum optimization iteration is 500.

Baselines. We compare our method to FastSynth [24] and ATISS [23] with their pub-
lished implementations1. FastSynth is an image-guided approach that recursively generates
scene by predicting the subsequent object arrangement based on the top-down image scene
representation. The ATISS is a sequence-based SOTA method with a transformer backbone.
We re-train both methods with the same dataset settings for a fair comparison.

Figure 3: Qualitative evaluation of our method with various personalized group settings,
which are beyond the patterns of the training data.

Qualitative Evaluation on Scene Synthesis. We execute two qualitative evaluations to
validate our method’s effectiveness and generative ability. In the first evaluation, we adopt
personalized input settings to generate new scene layouts beyond the scene types of the

1We reproduce the FastSynth and ATISS methods based on their released code (https://github.com/
brownvc/fast-synth and https://https://github.com/nv-tlabs/ATISS), respectively.
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Figure 4: Qualitative evaluation of our method and the ablated version without the optimiza-
tion process, comparing with the results of ATISS and FastSynth.

trained data. As shown in Figure 3, our method generates the selected semantic groups and
arranges them in a collision-free and visually convincing fashion while supporting different
layout sizes. Furthermore, this illustration also shows that our method can produce semantic
groups of various complexity, guaranteeing the variety of the instantiation process, which
recalls our main contributions. In the second evaluation, we exhibit the generated scene lay-
outs by FastSynth, ATISS, and our method in Figure 4. The visualization includes the four
scene types in the dataset. To generate the classic rooms, since our method requires addi-
tional user intent, we randomly adopt the group categories and object numbers from the test
set to evaluate our model’s generalization ability given unseen semantics and complexities.
As we can see from this illustration, our method generates the most plausible and reasonable
3D layouts compared with other methods.

Quantitative Evaluation on Scene Synthesis. In order to measure the quality of the
generated scenes, we calculate the Fréchet Inception Distance (FID) [15] between the ortho-
graphic projections of the synthetic rooms and the test set rooms as in [23]. We also compute
the KL divergence of the instance categories between the test set and the synthesized scenes.
It is shown in Table 1 that our method achieves a comparable score with the ATISS for bed-
rooms and the minor scores compared with other generative models for the other room types.
Additionally, our method provides the closest semantic distributions except for the bedroom
types compared with other methods. Besides, we also provide the FIDs and KL divergence
between the test and the training samples to show the intrinsic bias due to the data split. The
quantitative experiment does not emphasize the performance gain since we do not focus on
improving the existing works. The intent is to validate our framework’s property that can
achieve SOTA performance with a different group-based approach.

Perceptual Study. We conduct a perceptual study with 60 two-alternative forced-choice
questions and 40 realistic ranking questions, similar to GRAINS [19]. Twenty-seven anony-
mous voluntary participants with different technical backgrounds were involved in this per-
ceptual study: sixteen graphics/vision researchers and eleven non-technical subjects. The
comparison results are shown in Fig. 5 (a). The layouts sampled from our method are 61.12%
more plausible than the FastSynth and 16.30% more realistic than the ATISS. Our method
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FID (↓) KL (↓)
Bedroom Dining Library Living Bedroom Dining Library Living

Training Set 56.147 67.318 64.755 49.546 0.0095 0.0086 0.0259 0.0066
FastSynth 68.871 80.956 76.469 76.629 0.0968 0.0679 0.0784 0.0732

ATISS 60.304 75.838 69.074 57.580 0.0052 0.0083 0.0249 0.0087
Ours (w/o opt.) 61.769 75.683 69.022 57.025 - - - -
Ours (Np = 50) 60.810 74.408 68.340 55.344 0.0145 0.0078 0.0201 0.0075
Ours (Np = 30) 63.890 74.643 72.270 56.135 - - - -
Ours (Np = 10) 65.424 74.821 73.741 57.157 - - - -

Table 1: The FID scores between the real data and the synthesized results on 2562 pixels. KL
divergences between the real and the predicted groups. We provide the score of the training
set as baseline. Lower is better.

can synthesize the layouts most similar to the ground truth among the three evaluated meth-
ods. Furthermore, we show the scene’s realistic scoring results in the box-whisker chart in
Fig. 5 (b). Our method averages the best realistic score among the three evaluated methods.
Our new approach is collectively validated as an effective scene-generation method.

Figure 5: Perceptual study results.

Model Complexity and Time Consumption. Our method is the most lightweight one
among all the evaluated methods. Our deep model has only 1.727 million trainable pa-
rameters with a relatively small latent dimension and avoids computationally expensive
convolution and multi-head attention operations. Furthermore, our networks are also the
most efficient. We randomly sampled 100 scenes of bedroom type with the tested methods.
Our networks reduce 32.16% of inference time compared with ATISS. However, the post-
optimization phase dramatically costs a large part of the time, limiting our efficiency. The
detailed network parameters and inference time comparison are reported in Table 2. We also
report the time consumption with 100 and 500 as the maximum optimization iteration.

Methods FastSynth ATISS Ours w/o opt Ours (opt ×100) Ours (opt ×500)
Params 38.180 (0.00%) 36.053 (5.57%↓) 1.727 (95.48%↓) - -
Time 1.309 (0.00%) 0.171 (86.94%↓) 0.116 (91.14%↓) 0.889 (32.09%↓) 4.013 (206.56%↑)

Table 2: Network parameters (in millions) and time consumption (in seconds). The percent-
ages are the relative improvement comparing with the baseline method FastSynth.

Ablation Study. We evaluate the ablated versions of our novel framework for a better
understanding. In the first experiment, we remove each criterion in the proposal selection
and optimization phase. Fig. 6 illustrates the final scene layouts ignoring collision, free zone
area, and floor compatibility scores, respectively. It illustrates that the criteria can explicitly
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reduce the inter-group collision, maximize the free zone, and guarantee the scene objects
placed inside the floor plan. In the second experiment, we conduct scene generation under
various proposal numbers (i.e., Np). Table 1 shows that our model requires a relatively large
proposal number to provide enough samples for the selection and optimization phase.

Figure 6: Ablation study on propose selection and optimization criteria.

Limitation. Our novel method has several limitations. Firstly, our model has a minor
performance boost compared with the ATISS model. Nonetheless, our main contribution
to the community focuses on realizing a flexible and individualized scene synthesis process
instead of only improving the typical room synthesis. Another potential limitation is that
the output scene layouts could be overloaded since we do not limit the number of semantic
groups. The users could set a large number of the desired groups, which might cause colli-
sions. As a result, the final results would be out of control. Additionally, a post-optimization
process could be a time-cost operation that needs improvement with our future efforts.

5 Conclusion, Discussion, and Future Work
This paper has articulated a novel propose-and-complete framework supporting custom-
made scene layout generation with high versatility. The key innovation is founded upon
a flexible combination of indoor functional semantic groups, with which we propose poten-
tial group-level locations by the ProposeNet and complete the detailed intra-group objects
by the CompleteNet in a divide-and-conquer fashion. Given sampled potential group loca-
tions and generated group objects, we selected the best group location proposal using four
plausibility criteria. We then optimized the chosen locations toward a realistic and reason-
able indoor room. Extensive experiments validate all the perceived advantages of our new
approach. Our near-term research efforts are geared towards immediate improvement with
better spatial solutions, optimization efficiency, and a user-friendly graphical interface. Fur-
thermore, our work assumes an equivalence relation between the functionality and semantic
group with user intent bridging the above two entities. Although proven valid in practice, our
assumption might cause information loss without further room functionality analysis, which
is still an open question.
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