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Abstract

This paper presents a novel approach, TeFS (Temporal-controlled Frame Swap), to
generate synthetic stereo driving data for visual simultaneous localization and mapping
(vSLAM) tasks. TeFS is designed to overcome the lack of native stereo vision sup-
port in commercial driving simulators, and we demonstrate its effectiveness using Grand
Theft Auto V (GTA V), a high-budget open-world video game engine. We introduce
GTAV-TeFS, the first large-scale GTA V stereo-driving dataset, containing over 88,000
high-resolution stereo RGB image pairs, along with temporal information, GPS coordi-
nates, camera poses, and full-resolution dense depth maps. GTAV-TeFS offers several
advantages over other synthetic stereo datasets and enables the evaluation and enhance-
ment of state-of-the-art stereo vSLAM models under GTA V’s environment. We validate
the quality of the stereo data collected using TeFS by conducting a comparative analysis
with the conventional dual-viewport data using an open-source simulator. We also bench-
mark various vSLAM models using the challenging-case comparison groups included in
GTAV-TeFS, revealing the distinct advantages and limitations inherent to each model.
The goal of our work is to bring more high-fidelity stereo data from commercial-grade
game simulators into the research domain and push the boundary of vSLAM models 1.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1The simulated datasets and our code is available at https://github.com/ostadabbas/Temporal-controlled-Frame-
Swap-GTAV-TeFS-. Video at: https://www.youtube.com/watch?v=mIfOBIx3HwA&ab_channel=SarahOstadabbas.
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Figure 1: A few snapshots showcasing our GTAV-TeFS dataset, which includes synthetic
stereo driving image pairs obtained from GTA V along with various ground truth data such
as depth maps, camera poses, GPS coordinates, temporal information, etc.

1 Introduction
Stereo vision in motion is crucial for autonomous-vehicle navigation research, enabling crit-
ical visual simultaneous localization and mapping (vSLAM) tasks such as stereo odometry
and up-to-scaled map creation. To enhance the robustness and performance of algorithms
solving these tasks, large amounts of high-quality stereo driving data are required. Com-
pared with expensive and hard-to-obtain real-world data, synthetic data has been increas-
ingly used as a cost-effective and scalable solution. Popular open-source simulators, such
as CARLA [6], SYNTHIA [16], and AirSim [18], provide comprehensive application pro-
gramming interfaces (APIs) for stereo data collection, significantly mitigating the scarcity of
stereo driving data. However, due to their nonprofit nature, their environmental complexity
and texture quality are not on par with today’s commercial video games. A prime example is
Grand Theft Auto V (GTA V) [11], a 265-million-dollar-budget [17] open-world game with
superior realism and remarkable diversity that surpasses the capabilities of most open-source
simulators.

As a result, many research teams have constructed high-quality datasets from GTA V
[1, 8, 9, 19], but, to date, no one has been able to provide a viable large-scale synthetic
stereo-driving dataset collected from GTA V. As a commercial video game, GTA V has short-
comings in ease of data collection. Unlike open-source platforms with built-in dual-viewport
stereo collection API, closed-source video games like GTA V not only have no native stereo
vision support but also pose a strict single viewport limitation to prohibit rendering different
camera views simultaneously.

To address this limitation and enable dynamic stereo data collection in all video games
with similar restrictions, we introduce a novel method called Temporal-controlled Frame
Swap (TeFS). To concretely illustrate the implementation details and effectiveness of our
TeFS method, we use GTA V as our demonstration platform, and create the first large-
scale GTA V-based stereo-driving dataset, GTAV-TeFS. Our dataset includes over 88,000
1920×1080 high-resolution stereo RGB image pairs along with temporal information, GPS
coordinates, camera poses, and full-resolution dense depth maps. Compared to the existing
GTA V-based datasets, our dataset enables the evaluation and enhancement of stereo vSLAM
tasks within the GTA V environment. Compared to other synthetic stereo datasets, GTAV-
TeFS also offers several advantages, including closer-to-realism environmental complexity,
scenarios in both city and off-road environments, and comparison groups that feature con-
trolled road segments under various challenging cases. A few snapshots of our GTAV-TeFS
dataset is shown in Fig. 1.

Considering TeFS collection process is different from the conventional dual-viewport
stereo, we also prove that stereo data collected using TeFS is of similar quality to dual-
viewport data. Ideally, we would require a directly comparable dual-viewport stereo dataset
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from GTA V. However, no such dataset is currently available. Fortunately, TeFS is univer-
sally applicable, so we implemented TeFS in the open-source simulator CARLA [6] to com-
pare TeFS stereo data with native stereo data. Finally, we conduct an extensive evaluation of
various vSLAM models, including both feature-based and learning-based approaches, uti-
lizing the challenging-case comparison groups provided by our ’GTAV-TeFS’ dataset. Our
objective was to push the boundaries of state-of-the-art vSLAM models, effectively show-
casing their distinct strengths and limitations. To summarize, the main contributions of our
work are as follows:

• Introducing a novel method, Temporal-controlled Frame Swap (TeFS), to collect stereo-
driving data from commercial video games with single viewport limitations.

• Creating the first large-scale stereo driving dataset, GTAV-TeFS, based on the high-
fidelity video game, GTA V, which includes stereo RGB image pairs, temporal infor-
mation, GPS coordinates, camera poses, and full-resolution dense depth maps, facili-
tating up-to-scale stereo odometry tasks in a realistic commercial game environment.

• Validating the quality of stereo data collected using TeFS by demonstrating compara-
ble results in stereo odometry evaluations to that of traditional dual-viewport data.

• Evaluating various vSLAM models using the challenging-case comparison groups of-
fered by our GTAV-TeFS dataset, revealing the distinct advantages and limitations
inherent to each model

2 Related Work
Numerous synthetic datasets have been created from the commercial game GTA V due to its
high-quality graphics and complex environment. Authors in "Play For Data" offered 25,000
video frames for training semantic segmentation systems [14], while in "Play For Bench-
mark", they provided over 250,000 high-resolution video frames annotated with ground-truth
data for benchmarking multi-level vision tasks, such as tracking and perception. [15]. An-
other example is the PreSIL dataset [9], which includes 50,000 MonoRGB image frames and
corresponding LiDAR point cloud data, has also proven valuable in improving the accuracy
of 3D Object Detection Benchmarks. However, these GTA V datasets have a shared limita-
tion: the lack of stereo image pairs, which impedes their use in vSLAM tasks. With only the
monocular data, the scaling issue of estimated trajectories is almost inevitable. Additionally,
multi-view GTA datasets like GTA SfM [22] and MVS-Synth [8] also suffer from their own
shared limitations from a different perspective. While both provide multiple-angle RGB im-
ages of static scenes along with ground truth depth maps for 3D scene reconstruction, neither
offers dynamic stereo image pairs in motion, rendering them unsuitable for stereo odometry
tasks as well.

Apart from commercial games, open-source simulators are widely used for computer
vision and autonomous driving research. One notable example is Microsoft’s AirSim [18],
a high-fidelity simulator that has been used to create the TartanAir dataset [23], offering
rich data modalities such as stereo RGB images, depth maps, semantic segmentation masks,
and camera poses across diverse environments. Similarly, CARLA [6] simulator provides
realistic urban environments with numerous ground truth labels and the ability to configure
stereo camera setups for autonomous driving research. One significant advantage of these
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simulators is their comprehensive data collection API, as they were specifically designed for
research purposes. Nonetheless, even though their data collection tools are more accessible,
their geometry complexity and scene diversity do not match the level of realism provided by
commercial-grade video games due to their significant budget gaps.

In conclusion, due to the limitations present in commercial games like GTA V and the
reduced environmental quality of open-source simulators, there is a definite need for a uni-
versal approach that overcomes the single viewport restriction and allows for the acquisition
of synthetic stereo driving data in commercial video games and driving simulators.

3 Synthetic Stereo Driving Data
This section provides a comprehensive overview of the implementation of our TeFS method
in GTA V. We describe the interaction with the game environment, the stereo camera setup,
the TeFS workflow, the process of obtaining depth maps, and the limitations of our approach.

3.1 Modding and Camera Setup in GTA V
Our ability to interact with GTA V largely relies on the highly developed modding commu-
nity, with the most important plugin being ScriptHook V [2]. It enables us to directly interact
with GTA V through API libraries such as ScriptHookVDotNet [5] and GTA V native. Infor-
mation such as camera poses, GPS locations, and in-game time value are accessed through
these libraries. For our camera setup, we attached a pair of parallel cameras to the front hood
of our ego vehicle ’Blista’, with a stereo baseline of 0.54m. We set the vertical field of view
to 59◦ and the horizontal field of view to 90◦. GTA V uses a distortion shader to make the
game more realistic for players [4]. However, this shader poses potential issues for research,
as the camera’s distortion parameters are not publicly disclosed. Therefore, we remove the
distortion shader to ensure undistorted stereo data output.

3.2 TeFS: Temporal-controlled Frame Swap
A potential solution for capturing stereo data in motion from GTA V is a simple frame
swap method, where the left camera is captured in the first frame and the right camera in
the second. However, this method does not account for temporal disparity between the two
cameras, which can be up to 16.7ms for simulators running at 60 fps, and can easily double
considering the rendering engine’s one frame response time. While this issue is negligible for
indoor or static scenes, it can cause significant position offsets (56-112cm for a car driving
at 120km/h) when collecting stereo data from a moving vehicle. As a result, the captured
image pairs are unsuitable for stereo odometry algorithms.

The primary challenge is the lack of per-frame temporal control over the camera-swapping
process, similar to the issue noted in Hurl’s PreSIL dataset [9]. This limitation is due to the
client-server architecture utilized by various GTA V-based data collection frameworks, in-
cluding PreSIL, which prioritizes real-time analysis and scalability over low communication
latency. To address this limitation, our proposed Temporal-controlled Frame Swap algo-
rithm adopts a single-thread architecture that provides precise temporal control during the
camera-swapping process, as shown in the flow chart in Fig. 2.

We introduce several important parameters and internal functions for our TeFS method.
We use the parameter "cycleTick" to track in-game status changes during the stereo-collection
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Figure 2: This flow chart outlines the Temporal-controlled Frame Swap (TeFS) algorithm
for capturing synthetic stereo data from GTA V. It incorporates a single-thread architecture
to precisely control the passage of time during the camera-swapping process.

cycle, which we denote as T throughout the rest of the paper. The "onTick" function is auto-
matically called by the game engine when the script is loaded, providing a fixed time step, or
"uniTick," for tracking the global progress of the game engine, regardless of the frame rate.
The "timeScale" parameter controls the passage of time in the game world, ranging from 0 to
1 and beyond, with 1 representing normal game speed and 0 representing a pseudo-pause, in
which the entire scene remains stationary while the rendering engine still listens to function
calls. The concept of pseudo-pause is crucial to our TeFS method since we cannot swap
cameras while the game is natively paused. To avoid temporal disparity, pseudo-pause is our
best replacement. However, pseudo-pause is not perfect, as many animations in GTA V are
hard-coded, causing scenes to appear slowed down instead of completely halted. Therefore,
to get the best results, we occasionally use the native pause function as well.

According to the process outlined in Fig. 2, we aim to collect one stereo image pair every
10 uniTicks once the data collection process commences. The ego vehicle drives normally
for 7 uniTicks until T + 7, at which point we set the timeScale parameter to 0 to achieve
a pseudo-pause at the subsequent uniTick. At T + 8, we pause the game and capture the
RGB image for the left camera. Using the GTAVisionExport [21] repository, we access the
DirectX depth buffer for the corresponding RGB frame to obtain depth information. We
have modified GTAVisionExport to work seamlessly with our TeFS method. This ensures
that we can store depth information with true scale units rather than normalized depth shader.
Afterward, we resume the game and prepare for the camera swap.

After resuming the game, GTA V remains in the pseudo-pause state since we set the
timeScale to 0 before the initial pause. This allows the rendering engine to execute our
camera swap function while the scene remains relatively still. At T + 9, we wait for the
rendering engine to complete the camera-swapping process. When T + 10 is reached, we
can natively pause the game again and repeat the process for the right camera. At the end
of T +10, we reset the timeScale to its normal speed, allowing the ego car to move forward
and start the next data collection cycle.

3.3 Temporal Information Conversion
Capturing stereo data using the TeFS method involves a significant amount of temporal ma-
nipulation, so we cannot use real-world time to track the traversal timespan. Instead, we
use GTA V’s in-game time system to log each image pair’s timestamp, as the in-game clock
remains consistent even during significant slowdowns or native pauses throughout the data
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collection process. Based on our default stereo data capture setup, there is a 2.5 second
in-game time difference between consecutive stereo image pairs, which translates to approx-
imately 0.0825 seconds in real-world time. Therefore, we can further calculate our default
camera frequency, CamFreq, to be approximately 12 fps using CamFreq = 1

Tg×( Dr
86400 )

, where

Tg is the in-game time passed between frames and Dr is the real-world duration of one in-
game day (default value is 48 minutes or 2880 seconds).

3.4 Depth Ground Truth
Depth information retrieved using GTAVisionExport [21] cannot be used directly because the
stored information is in normalized device coordinates (NDC) format [13]. It is a coordinate
system used in computer graphics to represent positions on the viewport after the perspec-
tive projection and transformation have been applied. Followed by the work of Racinsky [13]
and PreSIL [9], we convert the given NDC value to each pixel’s actual depth value by using
Depth = Mapuv

NDC+Mapuv× ncz
2× f cz

, where Depth represents the actual depth value of one pixel, and

NDC denotes the depth value in normalized device coordinates for the same pixel. ncz and
f cz refer to the near and far clip distances of the camera, respectively. Mapuv corresponds
to the shape of the generated images and is a 2D array of values, with each element indicat-
ing the distance to a point on the near-clipping plane for a specific pixel (u,v) in the image.
Furthermore, we also vectorized PreSIL’s sequential generation approach, significantly en-
hancing the depth conversion process.

4 Experiments and Evaluation
Our experiments are conducted for two primary reasons. First, to demonstrate that the stereo
data collected using our TeFS method is of similar quality to traditional dual-viewport meth-
ods, allowing state-of-the-art vSLAM algorithms to accurately estimate stereo trajectories.
Second, to illustrate the value of the challenging-case comparison groups in our GTAV-TeFS
dataset by pushing the state-of-the-art vSLAM models to their limits, effectively highlight-
ing their unique strengths and limitations. Across the experiment section, we mainly use
three metrics to evaluate the performance of various algorithms: Absolute Pose Error (APE,
in both meters and percentages) and Relative Pose Error (RPE). APE(m) measures the global
deviation from the ground truth for each pose in the trajectory, while APE(%) helps eliminate
the effect of trajectory length. RPE measures local motion accuracy, also known as drift. All
metrics favor lower values.

4.1 TeFS Validation with CARLA Implementation
To validate the quality of our TeFS approach in stereo data collection and its universal appli-
cability across various engines and games, we use the state-of-the-art open-source simulator,
CARLA [6], as our data comparison platform. Mirroring the steps taken with GTA V, we
implemented the TeFS method in CARLA and established a temporal disparity of 0.5ms be-
tween the left and right camera, which is the lowest temporal disparity CARLA can support.
Although it’s not the same as the 0.2-0.3ms temporal disparity found in GTA V, they remain
comparable to each other. Afterwards, we proceeded to collect two sets of stereo data: one
using TeFS, and the other using the native stereo API. For each method we captured three
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subsets in separate maps, each consisting of 3600 images and yielding roughly 1km in tra-
jectory length. With data ready, we performed stereo odometry evaluation on both datasets
using ORB-SLAM3[3]. Both TeFS and native datasets illustrate excellent APE scores in
all three predicted trajectory results(see Table 1). The maximum difference between two
datasets’ evaluation results is only 0.2%, confirming that stereo data collected via TeFS are
indeed on par with those derived from native stereo API.

Table 1: Stereo odometry evaluation results of datasets collected from CARLA [6] via TeFS
method and the official stereo API, using ORB-SLAM3 [3]. In all experiments, we only
aligned origin with ground truth. Results of our approach are marked in bold typeface,
denoting performances that rival or sometimes surpass CARLA’s native method.

Map
Trajectory

Distance (m) Method Evaluate Metrics
APE(m) ↓ APE(%) ↓ RPE(m) ↓

Town 03 954.41 Native 1.67±0.59 0.17%±0.06% 0.39±0.14
TeFS 1.82±0.65 0.19%±0.06% 0.39±0.14

Town 06 957.97 Native 4.22±3.17 0.44%±0.33% 0.31±0.25
TeFS 2.30±1.67 0.24%±0.17% 0.31±0.25

Town 10 950.05 Native 0.98±0.64 0.10%±0.07% 0.27±0.22
TeFS 1.01±0.63 0.10%±0.07% 0.27±0.22

4.2 Challenging Case Evaluation for vSLAM Models

Current state-of-the-art vSLAM models achieve great performance on established datasets
such as KITTI[7]. However, challenging cases such as hazardous environments, high noise,
and low-light conditions still persist as obstacles for current vSLAM models. In the GTAV-
TeFS dataset, we have prepared comparison data groups for three distinct road segments
under various weather conditions, including one urban scenario and two off-road scenar-
ios. Sample images can be found in Fig. 3. Each route has three corresponding weather
combinations: ’Extra Sunny’, ’Cloudy with Rain’, and ’Night with Thunderstorm’. ’Extra
Sunny’ represents the basic condition,’ Cloudy with Rain’ serves as the moderate noise con-
dition, and ’Night with Thunderstorm ’stands as the most challenging condition, featuring
not only low contrast and high noise but also includes overexposure caused by lightning. All
of the road segments incorporate loop closures, aiming to test the loop detection capabilities
of each visual SLAM model. For models equipped with loop detection features, it should
theoretically further enhance their evaluation results.

Figure 3: Comparison group samples: Three distinct road segments captured under diverse
weather and lighting conditions, together with their corresponding ground truth trajectories.
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Table 2: Stereo odometry evaluation results of various state-of-the-art feature-based vSLAM
algorithms on the challenging-case comparison groups of our GTAV-TeFS dataset. In all
experiments, we only aligned origin with ground truth.

Scene Length(m) Weather Model Metrics
APE(m)↓ APE(%)↓ RPE(m)↓ Loop Detected

City 04 760.0

Extra Sunny
ORBSLAM3 3.20±0.85 0.42±0.11 2.78±0.16 ✓
OV2SLAM 2.53±1.21 0.33±0.16 0.06±0.09 ✓

VINS Fusion 2.95±1.36 0.39±0.18 0.09±0.26 ✓

Cloudy with Rain
ORBSLAM3 2.13±1.19 0.28±0.16 0.03±0.04 ✓
OV2SLAM 21.01±9.33 2.77±1.23 0.29±2.28 ✓

VINS Fusion 3.63±2.00 0.48±0.26 0.21±0.48 ✓

Night Thunderstorm
ORBSLAM3 Lost track of the map
OV2SLAM 54.19±48.40 7.11±6.35 0.59±4.15

VINS Fusion Map range unreachable

Offroad 01 1206.0

Extra Sunny
ORBSLAM3 3.16±1.65 0.26±0.14 0.11±0.12 ✓
OV2SLAM 4.81±2.21 0.39±0.18 0.21±0.19

VINS Fusion 4.27±1.73 0.35±0.14 0.16±0.25 ✓

Cloudy with Rain
ORBSLAM3 4.19±2.39 0.35±0.20 0.07±0.40 ✓
OV2SLAM 6.60±4.19 0.54±0.34 0.20±0.25

VINS Fusion 49.75±32.98 4.12±2.73 0.38±4.73 ✓

Night Thunderstorm
ORBSLAM3 Lost track of the map
OV2SLAM 91.90±45.50 7.57±3.79 0.29±2.31

VINS Fusion Map range unreachable

Offroad 02 3230.0

Extra Sunny
ORBSLAM3 8.19±3.95 0.25±0.12 0.39±0.26 ✓
OV2SLAM 15.47±12.69 0.48±0.39 0.36±2.07 ✓

VINS Fusion 15.44±8.99 0.48±0.39 0.16±0.21 ✓

Cloudy with Rain
ORBSLAM3 9.45±2.77 0.29±0.09 0.16±0.14
OV2SLAM 85.62±65.35 2.65±2.03 0.14±0.21

VINS Fusion 72.47±61.96 2.26±1.93 0.22±0.70

Night Thunderstorm
ORBSLAM3 Lost track of the map
OV2SLAM 160.33±82.39 4.97±2.49 0.34±3.54

VINS Fusion Map range unreachable

4.2.1 Stereo Odometry Evaluation On Feature-based vSLAM Models

We first undertook an evaluation of the stereo odometry capabilities of three feature-based
vSLAM models, including ORB-SLAM3 [3], VINS Fusion [10], and OV2SLAM[12]. As
presented in Table 2, all three models show excellent performance in all road segments under
the base ’Extra Sunny’ weather. Notably, ORB-SLAM3 demonstrated superior robustness
and accuracy in the longest road segment, Offroad 02, demonstrating 48% lower APE than
that of the other two. Moving to the rainy scenario, ORB-SLAM3 consistently outperformed
the other visual SLAM models, with the mean APE score sitting comfortably below 0.35%
maintaining its dominant edge across all road segments. This was largely attributed to its
advanced loop merging capability; while VINS Fusion and OV2 both detected loop closure,
the final merged map did not match the quality produced by ORB-SLAM3.

When subjected to the most challenging scenario, ‘Night with Thunderstorm’, all mod-
els suffered severe degradation in performance. ORB-SLAM3 lost a significant portion of
the maps, and the results of the VINS FUSION across all three road segments were un-
usable. Remarkably, OV2SLAM was the only model that generated complete results for
evaluation under these conditions, despite the high APE scores. Based on these evaluation
results, we conclude that ORB-SLAM3 provides the most reliable performance and excep-
tional loop merging capability under normal and moderately noisy environments. Mean-
while, OV2SLAM demonstrated remarkable robustness, consistently delivering comparable
maps under hazardous situations.
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Table 3: Evaluation results of DROID-SLAM’s [20]stereo and RGB-D odometry on the
challenging-case comparison groups of our GTAV-TeFS dataset. The table includes both
corrected APE/RPE scores with ground truth and raw APE results. The inclusion of raw APE
results emphasizes DROID-SLAM’s stereo scaling issue, while providing a comprehensive
evaluation of its overall performance.

Scene Weather Input Mode Metrics(Corrected) Metrics(Raw)
APE(m)↓ APE(%)↓ RPE(m)↓ APE(m)↓

City 04

Extra Sunny Stereo 1.27±0.58 0.23±0.12 0.63±0.14 73.69±33.71
RGBD 0.86±0.45 0.11±0.06 0.63±0.10 15.77±6.79

Cloudy with Rain Stereo 1.73±0.95 0.23±0.12 0.63±0.14 73.75±33.65
RGBD 2.99±1.19 0.39±0.16 0.62±0.10 13.16±5.48

Night Thunderstorm Stereo 6.42±2.09 0.84±0.27 0.63±0.20 74.61±33.79
RGBD 4.91±2.39 0.64±0.31 0.62±0.15 10.29±4.77

Offroad 01

Extra Sunny Stereo 3.61±1.15 0.30±0.10 0.58±0.19 98.68±49.18
RGBD 1.35±0.54 0.11±0.04 0.58±0.18 19.72±9.85

Cloudy with Rain Stereo 6.23±3.66 0.51±0.30 0.59±0.18 99.44±49.29
RGBD 2.64±1.13 0.22±0.09 0.58±0.18 18.59±9.23

Night Thunderstorm Stereo 18.24±6.11 1.50±0.50 0.62±0.31 100.32±50.09
RGBD 6.68±4.42 0.55±0.35 0.62±0.19 21.48±12.89

4.2.2 Stereo and RGB-D Odometry Evaluation on Learning-based vSLAM Model

In addition to feature-based vSLAM models, we also evaluated one learning-based model,
DROID-SLAM [20]. Despite its claimed stereo support, the research community has re-
ported multiple scaling issues with its stereo trajectory estimation results. Our evaluation,
as presented in Table 3, corroborates these findings. When only aligning the estimated tra-
jectory with the origin without any scaling, the DROID-SLAM’s stereo raw APE scores are
excessively large, as if it is tested on monocular mode. Based on our observations over ex-
periments, we need to match the scale of our prediction with ground truth. We first calculate
scalar by dividing ground truth trajectory length with estimated length; then we multiply
our estimations by the scalar. Upon scaling with ground truth, all trajectories produced by
DROID-SLAM maintain the overall shape and demonstrate great accuracy. It is somewhat
understandable that DROID-SLAM might encounter stereo scaling issues, considering the
fact that the model was primarily trained on RGB-D data rather than stereo data.

Fortunately, our dataset also includes dense depth maps. Hence, to further substantiate
our findings and assess the capabilities of DROID-SLAM, we incorporated RGB-D evalua-
tion results alongside the stereo results. Unsurprisingly, both scaled stereo and RGB-D tra-
jectory estimation under sunny weather conditions were readily handled by DROID-SLAM,
with mean APE scores well below 0.3% for both road segments. What surprised us was
its performance in rainy and thunderstorm scenarios. Like other models, DROID-SLAM’s
stereo results suffered a performance downgrade under high-noise and overexposure environ-
ments. However, it still manages to produce much more consistent results than any feature-
based vSLAM models we evaluated. Especially in the most challenging scenarios. To be
specific, in both City 04 and Offroad 01’s Night with Thunderstorm scene, previously only
OV2SLAM was able to provide complete results with mean APE at 7.11% and 7.57%, re-
spectively. While scaled stereo of DROID-SLAM provides mean APE at 0.84% and 1.50%,
respectively. Furthermore, its RGB-D results are even more outstanding, providing accurate
trajectory estimation in all rainy and thunderstorm scenarios, with mean APE well below
0.64%. However, DROID-SLAM has its own drawbacks as well, its long evaluation time
and hardware requirement(11GB VRAM minimum [20]) are considerably demanding, caus-
ing some challenging and lengthy segments such as Offroad 02 in GTAV-TeFS dataset unable
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to finish evaluation before our RTX 3090 GPU (24GB VRAM) shut down the process.

5 TeFS Visual Comparisons
We present visual comparisons to showcase actual differences among the resulting outputs
of the TeFS, native stereo, and the simple swap method through Fig. 4. The top images
compare stereo data collected using TeFS and native API in CARLA. By visual comparison,
the two appear identical due to the TeFS’s minimal 0.5ms temporal offset, which translates
to a 2mm spatial difference at 15km/h. This offset only causes a sub-pixel difference in a
1080p image. The bottom images contrast the stereo data collected via TeFS and the simple
frame swap method in GTA V. The latter would have a temporal offset of 16.7ms, which is 80
times larger than the 0.2ms temporal offset in TeFS. This significant discrepancy is causing
the right output to lose important information and make depth-related tasks unfeasible.

Figure 4: TeFS vs native stereo in CARLA and TeFS vs simple swap stereo in GTA V

6 Conclusion
This paper introduces Temporal-controlled Frame Swap, a novel method designed to over-
come the single viewport limitation in commercial video games like GTA V. By enabling the
dynamic collection of high-quality stereo driving data, we creates the GTAV-TeFS dataset,
which proves to be a valuable resource for evaluating and enhancing stereo vSLAM algo-
rithms. The effectiveness and generalizability of the TeFS method, as well as the qual-
ity of the collected stereo data, have been scientifically analyzed and confirmed. With its
precise control over in-game time, TeFS could potentially aid in the development of fu-
ture surrounding-view data acquisition tools. This expansion of data collection capabilities
presents exciting avenues for the advancement of future autonomy models.
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