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Abstract

Graph convolutional networks and their variants have shown significant promise in
3D human pose estimation. Despite their success, most of these methods only consider
spatial correlations between body joints and do not take into account temporal corre-
lations, thereby limiting their ability to capture relationships in the presence of occlu-
sions and inherent ambiguity. To address this potential weakness, we propose a spatio-
temporal network architecture composed of a joint-mixing multi-layer perceptron block
that facilitates communication among different joints and a graph weighted Jacobi net-
work block that enables communication among various feature channels. The major
novelty of our approach lies in a new weighted Jacobi feature propagation rule obtained
through graph filtering with implicit fairing. We leverage temporal information from the
2D pose sequences, and integrate weight modulation into the model to enable untangling
of the feature transformations of distinct nodes. We also employ adjacency modulation
with the aim of learning meaningful correlations beyond defined linkages between body
joints by altering the graph topology through a learnable modulation matrix. Extensive
experiments on two benchmark datasets demonstrate the effectiveness of our model, out-
performing recent state-of-the-art methods for 3D human pose estimation.

1 Introduction
3D human pose estimation is a fundamental task in computer vision, with the aim of pre-
dicting the 3D pose of a human body from images or videos [25]. While significant strides
have been made in recent years [24], accurately estimating the 3D human pose remains a
challenging problem. This is largely attributed to the complex and articulated nature of the
human body, as well as the difficulty of estimating 3D information from 2D images [28, 35].

Graph convolutional networks (GCNs) have recently emerged as a powerful framework
for 3D human pose estimation [41]. Despite their promising results, GCN-based methods
have several limitations. First, they use the same transformation matrix for all nodes in
graph convolution, thereby limiting information exchange. To address this limitation, Liu
et al. [23] introduce various weight unsharing mechanisms. One drawback of these mech-
anisms is that they result in a larger model size that scales with the number of body joints.
Second, GCNs suffer from the oversmoothing problem [17], where the model may struggle
to accurately distinguish between nodes and learn meaningful representations due to repeated
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graph convolutions as the network depth increases. Third, to leverage temporal correlations,
these methods require significant computational resources to process a larger number of in-
put sequences such as a 243-frame sequence. Furthermore, GCNs may not be able to capture
the global contextual information or long-range dependencies between nodes in the graph,
which can limit their ability to learn more complex relationships and patterns in the data.

On the other hand, Transformer architectures, which utilize a multi-head self-attention
mechanism to capture both spatial and temporal correlations from sequences of 2D poses [43],
have proven effective at capturing long-range dependencies between body joints in the spatio-
temporal domain. However, the complexity of the self-attention block increases quadrati-
cally with the number of input sequences, making the training and inference more compu-
tationally expensive. Taking this into account, Tolstikhin et al. [34] propose MLP-Mixer,
which has shown competitive performance compared to more complex architectures such
as Transformer networks. Compared to multi-layer perceptrons (MLPs), the MLP-Mixer
model has been shown to be effective at modeling long-range dependencies in the input data.
However, MLP-based models do not adequately capture the local information due largely to
the lack of prior knowledge about the human skeleton topology.

In this paper, we address the aforementioned challenges by proposing a novel spatio-
temporal graph neural network architecture, dubbed MLP-GraphWJ mixer, which leverages
spatio-temporal correlations and also makes use of weight and adjacency modulation. The
proposed framework employs a weighted Jacobi (WJ) feature propagation rule obtained via
graph filtering with implicit fairing. In summary, we make the following key contributions:

• We propose a graph weighted Jacobi (GraphWJ) network, which employs a weighted
Jacobi (WJ) feature propagation rule obtained via graph filtering with implicit fairing,
and also leverages weight and adjacency modulation.

• We design a spatio-temporal network architecture by incorporating MLPs to capture
global information and a GraphWJ network to capture local information between ad-
jacent joints across different channels.

• We demonstrate through experiments and ablation studies that our proposed model
outperforms strong baselines, attaining state-of-the-art performance in 3D human pose
estimation, while retaining a small model size.

2 Related work
3D Human Pose Estimation. The basic goal of 3D human pose estimation is to estimate
the 3D coordinates of the joints in the human body from images or videos. Single-stage
and two-stage methods are two commonly used approaches for 3D human pose estimation.
Single-stage methods are based on a direct regression from the input image to the 3D pose
estimation [18]. These methods typically use convolutional neural networks to extract fea-
tures from the input image and then use a regression network to directly estimate the 3D
pose. Two-stage methods, on the other hand, generally consist of two separate networks: an
off-the-shelf 2D pose detection network to extract 2D keypoints and a 3D pose estimation
network [3, 5, 7, 8, 12, 22, 29, 30, 33, 36, 41, 45]. Two-stage methods usually achieve higher
accuracy than single-stage methods, especially for complex pose estimation tasks.

Spatio-Temporal Methods. Current monocular 3D pose estimation methods can be clas-
sified into two mainstream types: single-frame or image-based and multi-frame or video-
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based approaches. Single-frame-based methods aim to predict 3D pose from a single RGB
image. In contrast, video-based methods take advantage of the temporal dependencies be-
tween frames in the video clip. Due to the ill-posed characteristic of generating accurate 3D
poses from a single RGB image, a number of techniques [3, 12, 21, 37, 38, 43] have been
developed that rely on temporal correlations to improve the robustness and accuracy of the
resulting 3D poses. Liu et al. [21] develop graph attention blocks in conjunction with dilated
temporal convolution that is capable of estimating 3D pose from consecutive 2D pose se-
quences. Zheng et al. [43] utilize a Transformer-based approach that is designed to capture
both the correlations between human joints and their temporal dependencies. Zeng et al. [38]
introduce a temporal aware dynamic graph convolution where the graph updates by physical
skeleton topology and the features of nodes. However, most of these methods tend to be
computationally demanding, and are inherently restricted in their ability to establish tem-
poral connectivity. Moreover, most GCN-based approaches are constrained by the fact that
they share a feature transformation for capturing the relationships between each node and its
adjacent nodes in a graph convolution layer. Also, sharing the same feature transformation
for all nodes hinders the efficient exchange of information between the body joints. Our pro-
posed framework falls under the category of 2D-to-3D pose lifting. It differs from existing
GCN-based approaches in that we use a new graph propagation rule combined with weight
and adjacency modulation to learn additional connections between body joints by adjusting
the graph topology through a learnable modulation matrix. We also design a network archi-
tecture that combines the strengths of MLPs and graph neural networks in order to improve
accuracy in 3D human pose estimation, while maintaining simplicity and efficiency.

3 Proposed Method

3.1 Preliminaries and Problem Formulation
Basic Notions. Let G = (V,E ,X) be an attributed graph, where V = {1, . . . ,N} is a set
of nodes that correspond to body joints, E is the set of edges representing connections be-
tween two neighboring body joints, and X = (x1, ...,xN)

⊺ is an N×F feature matrix of node
attributes whose i-th row xi is an F-dimensional feature vector associated to node i. We
denote by A an N ×N adjacency matrix whose (i, j)-th entry is equal to 1 if there the edge
between neighboring nodes i and j, and 0 otherwise. We also denote by Â = D−1/2AD−1/2

the normalized adjacency matrix, where D = diag(A1) is the diagonal degree matrix.

Weighted Jacobi Method. Given a matrix B ∈ RN×N and a vector x ∈ RN , the weighted
Jacobi iteration [32] for solving a matrix equation Bh = x is given by

h(k+1) = ω diag(B)−1x+(I−ω diag(B)−1B)h(k), (1)

where ω is a relaxation factor, and h(k) and h(k+1) are the k-th and (k+1)-th iterations of the
unknown h, respectively.

Problem Statement. Let D= {(xi,yi)}N
i=1 be a training set consisting of 2D joint positions

xi ∈ X ⊂R2 and their associated ground-truth 3D joint positions yi ∈ Y ⊂R3. The aim is to
learn a regression model f : X →Y by finding a minimizer of the following loss function

w∗ = argmin
w

1
N

N

∑
i=1

l( f (xi),yi), (2)
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where l( f (xi),yi) is an empirical loss function defined by the learning task. Since human
pose estimation is a regression task, we define l( f (xi),yi) as a weighted sum (convex com-
bination) of the ℓ2 and ℓ1 loss functions

l = (1−λ )
N

∑
i=1

∥yi − f (xi)∥2
2 +λ

N

∑
i=1

∥yi − f (xi)∥1, (3)

where λ ∈ [0,1] is a weighting factor controlling the contribution of each term.

3.2 Graph Filtering with Implicit Fairing
In the context of graph filtering, the implicit fairing approach [6] is applied by defining a
Laplacian operator on the graph, which captures the connectivity and structure of the graph.
Specifically, graph filtering with implicit fairing can be performed by solving the sparse
linear system (I+ sL)H = X, where X is the feature matrix of node attributes, L = I− Â
is the normalized Laplacian matrix, H is the filtered graph signal, and s is a positive scalar.
This sparse linear system can be efficiently solved using the weighted Jacobi method [32],
which uses a weighting parameter ω to compute the k-th iteration as follows:

H(k+1) = ω(diag(I+ sL))−1X+
(
I−ω(diag(I+ sL))−1(I+ sL)

)
H(k)

= H(k)−ωH(k)+(1−α)ωÂH(k)+αωX
(4)

where α = 1/(1+s), and ω can be chosen to optimize the convergence speed of the method.

3.3 Graph Weighted Jacobi Network
In graph neural networks, the aim of a layer-wise propagation rule is to encourage the net-
work to learn useful representations at each layer that can be used to inform subsequent
layers and ultimately improve the accuracy of the network’s predictions. Drawing inspira-
tion from the weighted Jacobi iterative solution for graph filtering with implicit fairing, we
define a weighted Jacobi (WJ) layer-wise propagation rule as

H(ℓ+1) = σ(WJ
(
H(ℓ))

)
, ℓ= 0, . . . ,L−1 (5)

where σ(·) is an activation function such as the Gaussian Error Linear Unit (GELU) [11] and
L is the number of layers. The input of the first layer is the initial feature matrix H(0) = X.
The weighted Jacobi operation on the input feature matrix H(ℓ) of the ℓ-th layer is given by

WJ(H(ℓ)) = H(ℓ)W1 −Ω⊙ (H(ℓ)W2)+(1−α)Ω⊙ (ÂH(ℓ)W2)+αΩ⊙ (XW3), (6)

where ⊙ denotes element-wise matrix multiplication, W1, W2, W3 are learnable weight ma-
trices, and Ω is a learnable weight modulation matrix. Notice that unlike the weighted Jacobi
iteration, the proposed weighted Jacobi layer-wise propagation rule updates node features
across layers, employs trainable weight matrices to learn an optimized graph representation,
incorporates a learnable weight modulation matrix that functions similarly to the weighted
parameter in the weighted Jacobi method, and applies a nonlinear activation function to cap-
ture the nonlinearity of the graph structure.

Adjacency Modulation. The graph structure has a limitation in that it cannot capture re-
lationships between distant nodes. To tackle this issue, we use adjacency modulation [44],
defined as Ǎ = Â+Q, where Q is an N ×N learnable modulation matrix.
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3.4 MLP-Graph Weighted Jacobi Mixer Model

Model Architecture. Inspired by the MLP-Mixer [34] and its recent variants for 3D hu-
man pose estimation and human motion forecasting tasks [2, 19], the architecture of the
proposed MLP-GraphWJ mixer consists of three main stages: 1) skeleton embedding, 2)
MLP-GraphWJ mixer layer, and 3) regression head. The overall architecture of the proposed
model is illustrated in Figure 1, which shows that the joint-mixing layer aggregates informa-
tion across different positions within each channel using MLPs, while the GraphWJ mixing
layer is responsible for aggregating information across different channels of the input using
the weighted Jacobi (WJ) feature propagation rule. The output of the final GraphWJ mixing
layer is then passed on to the regression head network.
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Figure 1: Schematic diagram of the proposed network architecture for 3D human pose es-
timation. The architecture is comprised of three main components: skeleton embedding,
MLP-GraphWJ mixer layer, and a regression head. The MLP-GraphWJ mixer layer consists
of a joints mixing MLP layer and a GraphWJ mixing layer. The architecture also includes
additional components such as skip connections, dropout, layer normalization, and batch
normalization.

1) Skeleton Embedding: To incorporate temporal information into our model, we take a
2D pose sequence as input. Given a 2D pose sequence S ∈ RN×2×T represented as a tensor,
where T denotes the number of frames and N is the number of joints, we first reshape it into
a matrix S̃ ∈ RN×2T by concatenating the 2D coordinates of all frames. Then, we pass it
through a fully-connected layer, resulting in an N ×F embedding matrix X = S̃W4, where
W4 ∈ R2T×F is a learnable weight matrix and F is the embedding dimension.

2) MLP-GraphWJ Mixer Layer: MLP-based models are not well-suited for handling graph-
structured data, as they simply connect all nodes without considering the graph structure. To
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address this issue, we propose the MLP-GraphWJ mixer layer, which takes the advantages
of both MLPs and graph neural networks in a single layer. Compared to the MLP-Mixer, our
proposed MLP-GraphWJ mixer layer leverages graph neural networks to extract features
of different channels, thereby helping to preserve domain-specific knowledge pertaining to
human body configurations. Specifically, our MLP-GraphWJ mixer layer consists of two
sub-layers: a joint-mixing MLP and a GraphWJ mixing layer. The joint-mixing MLP block
allows communication between different joints, while the GraphWJ mixing layer allows
communication between different channels. The joint-mixing MLP acts on the columns of
the input feature matrix H(ℓ) ∈ RN×F (i.e., applied to its transpose). On the other hand, the
GraphWJ mixing layer acts on the rows of its input feature. The joint-mixing MLP block
contains two fully-connected layers. We also add a skip connection between the input and
output. Hence, the output of the joint-mixing MLP is an N ×F matrix given by

U(ℓ+1) = H(ℓ)+

(
W6σ

(
W5

(
LN

(
H(ℓ)

)⊺)))⊺

, (7)

where LN(·) is layer normalization [1], W5 ∈ RN×F and W6 ∈ RF×N are learnable weight
matrices. The input of the first layer is the N ×F embedding matrix H(0) = X.

On the other hand, our GraphWJ mixing layer consists of two weighted Jacobi (WJ)
layers. The output U(ℓ+1) of the joint-mixing MLP layer is fed into the GraphWJ mixing
layer, which acts on the rows of its input matrix. Hence, the outputs of the first and second
WJ layers are given by

P(ℓ+1) = σ

(
BN

(
WJ

(
U(ℓ+1)

)))
∈ RN×R (8)

and
Q(ℓ+1) = σ

(
BN

(
WJ

(
P(ℓ+1)

)))
∈ RN×F , (9)

where BN(·) is a batch normalization layer, and R and F are embedding dimensions. Batch
normalization is similar to layer normalization, but instead of normalizing across the features
of each input, it normalizes across a batch of inputs.

Finally, the output Z of the last MLP-GraphWJ mixing layer is obtained by adding a skip
connection as follows:

Z = U(L)+Q(L) ∈ RN×F (10)

3) Regression Head: The output Z of the last MLP-GraphWJ mixing layer is passed on
to the regression head network comprised of a layer normalization, followed by a linear
fully connected layer, yielding a prediction Ŷ = (ŷ1, . . . , ŷN)

⊺ ∈ RN×3 of estimated 3D joint
positions. This prediction is regressed to the ground-truth of the 3D pose for the center frame
during model training.

Model Training. In order to train the MLP-GraphWJ mixer model for 3D human pose
estimation, the weight matrices for various layers are optimized by minimizing the following
loss function

L=
1
N

[
(1−λ )

N

∑
i=1

∥yi − ŷi∥2
2 +λ

N

∑
i=1

∥yi − ŷi∥1

]
, (11)

which is a weighted combination of the mean squared and mean absolute errors between the
estimated 3D joint positions ŷi and the ground-truth positions yi over N training body joints.
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4 Experiments
In this section, we evaluate the performance of our model against competitive baselines for
3D human pose estimation. More detailed descriptions of the datasets, additional experimen-
tal results and ablation studies are provided in the supplementary material. Code is available
at: https://github.com/nies14/Spatio-Temporal-MLP-Graph

4.1 Experimental Setup
Datasets. We assess the performance of our model on two widely used benchmark datasets
for 3D human pose estimation: Human3.6M [13] and MPI-INF-3DHP [26].

Evaluation Protocols and Metrics. For Human3.6M, we adopt two commonly used met-
rics, mean per joint position error (MPJPE) and Procrustes-aligned mean per joint position
error (PA-MPJPE), which are measured in millimeters. A lower value of these metrics in-
dicates better performance. For MPI-INF-3DHP, we evaluate our model using two standard
metrics: Percentage of Correct Keypoints (PCK) within 150mm and Area Under the Curve
(AUC), consistent with previous studies [10, 16, 29, 31, 36, 44]. Improved model perfor-
mance is indicated by higher values of PCK and AUC.

Baselines. We evaluate the performance of our MLP-GraphWJ mixer model against vari-
ous state-of-art methods, including semantic GCN [41], spatio-temporal GCN (ST-GCN) [3],
Weight Unsharing [23], temporal convolutions and semi-supervised training [30], skeletal
GNN [38], graph mixture density network (GraphMDN) [27], split-and-recombine network
(SRNet) [37], graph attention spatio-temporal network (GAST-Net) [21], PoseFormer [43],
modulated GCN (MGCN) [44], group graph convolutional networks (GroupGCN) [40],
mesh transformer (METRO) [20], and pose augmentation (PoseAug) [9].

Implementation Details. We train the model using AMSGrad optimizer for 50 epochs,
and the initial learning rate is set to 0.001 with a decay factor of 0.95 applied after each
epoch and 0.5 after every 5 epochs. For 2D pose detections [4], we set the batch size to 256,
the number of layers L = 3, the skeleton embedding layer hidden dimension and the MLP
hidden dimension F = 384, and the GraphWJ mixing layer hidden dimension R = 768. We
set the weighting factor λ = 0.01, α = 0.1, and the total number of input frames T = 243
for both 2D detected poses and ground truth poses.

4.2 Results and Analysis
Quantitative Results. In Table 1, we report the performance comparison results of our
MLP-GraphWJ mixer model and various state-of-art methods for 3D human pose estimation.
As can be seen, our model demonstrates superior performance with detected 2D pose as an
input across most actions and overall, as evidenced by both Protocol #1 and Protocol #2.
These findings demonstrate the model’s competitiveness, which is largely attributed to the
fact that MLP-GraphWJ mixer can better exploit joint connections through the proposed
graph propagation rule and also learns not only different modulation vectors for different
body joints, but also additional connections between the joints. Under Protocol #1, Table 1
shows that using a single frame MLP-GraphWJ mixer performs better than MGCN [44] on
14 out of 15 actions by a relative improvement of 10.73% on average. Of significance is the
fact that unlike our method, MGCN [44] employs a non-local layer. Despite this difference,
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our model demonstrates superior performance compared to MGCN [44], highlighting the
efficacy of our approach. Our model also performs better than Skeletal GNN [38], a temporal
graph neural network method for hard 3D pose estimation, yielding an error reduction of
approximately 3.92% on average. Under Protocol #2, our approach outperforms spatio-
temporal GCN with a relative improvement (average) of 6.67% in terms of PA-MPJPE.

Table 1: Performance comparison of our model and baseline methods on Human3.6M un-
der Protocol #1 and Protocol #2 using the detected 2D pose as input. The average errors
are reported in the last column. Boldface numbers indicate the best performance, and the
underlined numbers indicate the second-best performance. (†) - uses temporal information.

Action

Protocol #1 Dire.Disc. Eat GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT.Avg.

Zhao et al. [41] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Quan et al. [31] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8
Liu et al. [23] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Lin et al. [20] - - - - - - - - - - - - - - - 54.0
Zhao et al. [42] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Lee et al. [14] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
Zhang [40] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6
Gong et al. [9] - - - - - - - - - - - - - - - 50.2
Zou et al. [44] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Cai et al. [3] (†) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Li et al. [19] 43.7 49.3 45.5 47.8 50.5 56.0 46.3 44.1 55.9 59.0 48.4 45.7 51.2 37.1 39.1 48.0
Pavllo et al. [30] (†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Oikarinen et al. [27] 40.0 43.2 41.0 43.4 50.0 53.6 40.1 41.4 52.6 67.3 48.1 44.2 49.0 39.5 40.2 46.2
Zeng et al. [38] (†) 43.1 50.4 43.9 45.3 46.1 57.0 46.3 47.6 56.3 61.5 47.7 47.4 53.5 35.4 37.3 47.9
Zeng et al. [37] (†) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Liu et al. [21] (†) 43.3 46.1 40.9 44.6 46.6 54.0 44.1 42.9 55.3 57.9 45.8 43.4 47.3 30.4 30.3 44.9
Zheng et al. [43] (†) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

Ours (†) 38.9 44.5 41.4 43.7 45.0 48.7 42.8 39.5 54.9 67.1 42.5 43.1 44.0 33.2 33.0 44.1

Protocol #2 Dire.Disc. Eat GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT.Avg.

Lee et al. [15] (†) 34.9 35.2 43.2 42.6 46.2 55.0 37.6 38.8 50.9 67.3 48.9 35.2 31.0 50.7 34.6 43.4
Quan et al. [31] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9
Liu et al. [23] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Lee et al. [14] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
Zhang [40] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1
Zou et al. [44] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Gong et al. [9] - - - - - - - - - - - - - - - 39.1
Cai et al. [3] (†) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Lin et al. [20] - - - - - - - - - - - - - - - 36.7
Pavllo et al. [30] (†) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Ours (†) 33.0 36.8 34.3 37.5 36.4 40.4 34.1 31.9 45.4 57.0 35.6 34.8 36.2 26.5 26.9 36.4

In Table 2, we report the quantitative comparison results of MLP-GraphWJ mixer using a
single frame in comparison with several baselines on the MPI-INF-3DHP dataset. As can
be seen, our method achieves significant improvements over the comparative methods. Our
model outperforms the best performing baseline with relative improvements of 0.81% and
1.30% in terms of the PCK and AUC metrics, respectively. Although we train the model
using only the Human3.6M dataset, our method outperforms others on MPI-INF-3DHP, in-
dicating that our approach has strong generalization capabilities to unseen human poses.

Qualitative Results. Figure 2 shows some visualization results of the proposed MLP-
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Table 2: Performance comparison of our model without pose refinement and baseline meth-
ods on the MPI-INF-3DHP dataset using PCK and AUC as evaluation metrics.

Method PCK(↑) AUC(↑)

Chen et al. [16] 67.9 -
Yang et al. [36] 69.0 32.0
Pavlakos et al. [29] 71.9 35.3
Habibie et al. [10] 70.4 36.0
Quan et al. [31] 72.8 36.5
Zeng et al. [37] 77.6 43.8
Zhang et al. [40] 81.1 49.9
Zeng et al. [38] 82.1 46.2
Zou et al. [44] 86.1 53.7

Ours 86.8 54.4

GraphWJ mixer model on Human3.6M. As can be seen, the 3D predictions on various
actions made by our model are superior to those of MGCN [44] and more closely match
the ground truth. This indicates the effectiveness of our approach. Notice that MGCN [44]
struggles to accurately predict hand poses when there are overlapping joints or occlusions,
whereas our model is able to predict them with a high degree of accuracy.
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actions made by our model are superior to those of MGCN [43] and more closely match
the ground truth. This indicates the effectiveness of our approach. Notice that MGCN [43]
struggles to accurately predict hand poses when there are overlapping joints or occlusions,
whereas our model is able to predict them with a high degree of accuracy.

Input MGCN Our Prediction Ground Truth

1

1

Figure 2: Qualitative comparison between our model and MGCN on Human3.6M actions.

5 Conclusion
In this paper, we proposed a novel network architecture, named MLP-GraphWJ mixer,
which is comprised of an MLP-mixer layer and a GraphWJ mixer layer. The MLP-mixer
layer aggregates information across different positions within each channel, while the graph
weighted Jacobi network layer aggregates information across different channels. Our con-
tribution involves the incorporation of a feature propagation rule based on weighted Jacobi
iteration, which is derived through the application of graph filtering with implicit fairing.
The proposed model outperforms recent state-of-the-art techniques on two standard bench-
mark datasets for 3D human pose estimation, as demonstrated by our experimental results.
Our approach achieves this improved performance while employing a model with a smaller

Figure 2: Qualitative comparison between our model and MGCN on Human3.6M actions.

4.3 Ablation Study
We conduct ablation experiments on the Human3.6M dataset under Protocol #1 using MPJPE
as evaluation metric. Specifically, we investigate the effectiveness of each component in our
network architecture. The results are presented in Table 3, where the first row corresponds to
the performance of the MLP-Mixer baseline model [34] that does not include any GCN com-
ponents. The remaining rows in the table display the results of replacing various components
of the baseline model. We fix the number of parameters to be about 0.95M by merely chang-
ing the number of hidden dimensions of each model. Our proposed MLP-GraphWJ mixer
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outperforms the baseline model by a margin of 1.9mm, demonstrating that the combined use
of these components leads to more accurate 3D pose estimation.

Table 3: Effectiveness of each component used in our method without pose refinement on
Human3.6M under Protocol#1 using detected 2D poses as input.

Joint-
Mixing
MLP

Channel-
Mixing
MLP

GraphWJ
Mixing
Layer

Standard
GCN

Weighted
Jacobi

MPJPE (↓)

✓ ✓ ✗ ✗ ✗ 53.1
✓ ✗ ✓ ✓ ✗ 51.5
✓ ✗ ✓ ✗ ✓ 51.2

Runtime Analysis. We report the model performance, the total number of parameters, and
estimated floating-point operations (FLOPs) per frame with various input sequence lengths
(T ) in Table 4. We can see that increasing the sequence length of our model results in
improved accuracy, while keeping the total number of learned parameters low.

Table 4: Comparison of our model and baselines in terms of total number of parameters,
FLOPs, and MPJPE. The evaluation is performed without pose refinement on Human3.6M
under Protocol#1 using detected 2D poses as input.

Method Frames Params. FLOPs MPJPE(↓)
(T ) (M) (M)

VideoPose [30] 27 8.56 17.09 48.8
PoseFormer [43] 9 9.58 150.0 49.9
Ray3D [39] 9 27.50 - 49.7

Ours 1 5.42 29.01 50.8
Ours 9 5.43 29.21 48.7

5 Conclusion
In this paper, we proposed a novel network architecture, named MLP-GraphWJ mixer,
which is comprised of an MLP-mixer layer and a GraphWJ mixer layer. The MLP-mixer
layer aggregates information across different positions within each channel, while the graph
weighted Jacobi network layer aggregates information across different channels. Our con-
tribution involves the incorporation of a feature propagation rule based on weighted Jacobi
iteration, which is derived through the application of graph filtering with implicit fairing.
The proposed model outperforms recent state-of-the-art techniques on two standard bench-
mark datasets for 3D human pose estimation, as demonstrated by our experimental results.
Our approach achieves this improved performance while employing a model with a smaller
parameter count. For future work, we aim to take high-order connectivity between joints into
account by aggregating information from multi-hop neighbors.
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