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Abstract

We introduce a novel training strategy for stereo matching and optical flow estima-
tion that utilizes image-to-image translation between synthetic and real image domains.
Our approach enables the training of models that excel in real image scenarios while
relying solely on ground-truth information from synthetic images. To facilitate task-
agnostic domain adaptation and the training of task-specific components, we introduce a
bidirectional feature warping module that handles both left-right and forward-backward
directions. Experimental results show competitive performance over previous domain
translation-based methods, which substantiate the efficacy of our proposed framework,
effectively leveraging the benefits of unsupervised domain adaptation, stereo matching,
and optical flow estimation.

1 Introduction
Stereo matching and optical flow estimation are closely related computer vision tasks. Given
an image pair, the aim of optical flow estimation is to predict a 2D vector field that reflects
the pixel-wise displacement of temporally adjacent frames. In rectified stereo, the task is
essentially the same. We simply use the known relative camera geometry to impose epipolar
constraints, thereby reducing the correspondence-search problem from 2D to 1D. The result
is a disparity map between the left image and right images which can be easily translated
into a pixel-wise displacement field. We propose a co-training approach that exploits this
inter-task similarity to simultaneously train networks for both tasks.

Acquiring high-quality, real training data for stereo matching and optical flow estima-
tion is challenging and expensive, often requiring calibration between the depth sensor and
stereo cameras. Therefore, optical flow estimation and stereo-matching methods highly rely
on synthetic data for training. However, there is often a severe domain gap between synthetic
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and real data, affecting the cross-domain generalization performance. To address this prob-
lem, unsupervised domain adaptation methods have been proposed to bridge the domain gap
between synthetic and real data.

Inspired by StereoGAN [22], which first applied domain translation to stereo matching
task, we propose a multi-task framework that concurrently executes optical flow estimation
and stereo matching tasks with a shared domain translation module, in which we do not
need the ground-truth disparity and optical flow of target domain real images. In the shared
domain translation module, we use two ResNet-based generators of opposite directions to
perform cross-domain image translation. Then two discriminators are constructed to mini-
mize the discrepancy between translated and original images. Furthermore, we adopt per-
ceptual loss to maintain the feature-level consistency and cosine similarity loss to regularize
the cross-domain generation. Utilizing synthetic-to-real and real images, we predict corre-
sponding disparity maps via a stereo-matching network using only ground-truth disparity of
synthetic stereo data. Simultaneously we train an optical flow estimation network using the
adjacent frames of synthetic-to-real images and real images, leveraging ground-truth optical
flow data and occlusion masks from only synthetic data. The two task-agnostic networks
are jointly optimized. To connect the three modules, we build a multi-scale left-right feature
warping module and a forward-backward feature warping module, which not only provide
supervision for image translation but also for the training of task-specific networks.

The key contributions of our paper are summarized below:

• We build an end-to-end joint learning framework to combine unsupervised domain
translation with optical flow estimation and stereo matching in the absence of real
ground truth optical flow and disparity, which facilitates the co-optimization of mod-
els, yielding superior performance compared with executing each task in isolation.

• We apply novel constraints on the cycle domain translation process to achieve cross-
domain translation with global and local consistency, which significantly reduces the
pixel distortion during the domain translation stage.

• We employ task-specific multi-scale feature warping loss and iterative feature warping
loss during the training phase to regulate the training process of the shared domain
translation module and task-specific module in both spatial and temporal dimensions.

• Experimental results demonstrate that our proposed model achieves top-tier results
compared to other unsupervised domain adaptation methods for stereo matching and
optical flow estimation.

2 Related Work

2.1 Stereo Matching
The aim of stereo matching is to generate disparity maps from left and right epipolar images.
Traditionally, this involved a four-step process: matching cost computation, cost aggregation,
disparity computation, and disparity refinement. Since DispNet [27], deep learning-based
works [3, 17, 30, 31, 35] have become popular for more accurate, real-time stereo matching.

Inspired by RAFT [36], iterative 2D methods have been applied to this task. Notable
models include AANet [46], which forgoes 3D convolutions for efficiency; RAFT-Stereo [18],
an adaptation of previous optical flow work; CREStereo [16], a cascaded recurrent network
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for practical stereo matching; and IGEV-Stereo [45], which uses a combined geometry en-
coding volume for iterative disparity map updates.

2.2 Optical Flow Estimation
Optical flow estimation aims to estimate per-pixel motion between video frames. Since
FlowNet [7], a series of deep neural networks have been proposed, with some [4, 11, 40]
using U-Net encoder-decoder structures that often lose detail in feature maps, while others [9,
10, 33] use spatial pyramid networks with feature warping to reduce feature-space distance
and adaptively regulate flow. A classic method RAFT [36] extracts per-pixel features and
iteratively updates a flow field through a recurrent unit using multi-scale 4D correlation
volumes, which enables strong cross-dataset generalization. Recently, GMFlow [47] and
its follow-up work Unimatch [48], both based on Transformers, reformulate optical flow
as a global matching problem and compare feature similarities directly instead of applying
extensive iterative refinements.

Besides supervised methods, some unsupervised methods [14, 15, 20, 21, 24] have also
been proposed, among which UPFlow [24] proposed a self-guided upsample module to
tackle the interpolation blur problem in optical flow estimation, [20] proposed to use more
reliable supervision from transformations, and [14, 15, 21] tried to utilize the relationships
between stereo matching and optical flow estimation task. In our work, we suggest an effi-
cient end-to-end co-training framework for improving performance on both tasks.

2.3 Unsupervised Domain Adaptation
Transfer learning has been widely used in many computer vision tasks, such as detection [1,
23, 49], segmentation [25, 34, 44], and stereo matching [19, 51]. Unsupervised domain adap-
tation is a special transfer learning technique, which uses labeled source data and unlabeled
target data, with numerous methods [6, 8, 13, 39, 41, 43, 50] developed to bridge the domain
gaps. Many works have applied unsupervised domain adaptation to stereo matching and op-
tical flow estimation tasks. Key contributions include a self-adaptation method with graph
Laplacian regularization [29], real-time online deep stereo adaptation [38], Information-
Theoretic Shortcut Avoidance (ITSA) [5] for domain generalization, StereoGAN [22] em-
ploying an end-to-end training framework, and AdaStereo [32] utilizing a non-adversarial
progressive color transfer algorithm. In optical flow, strategies like co-teaching [42] for do-
main alignment and meta-training [28, 37] have also been proposed.

3 Method
We first describe the problem of domain translation-based optical flow estimation and stereo-
matching joint training. Then we introduce the overall framework of our proposed pipeline.
After that, we introduce the main components of the pipeline in detail, including the domain
translation module, the stereo matching and optical flow feature warping module, and the
unsupervised joint optimization scheme. The overall pipeline of our proposed framework is
shown in Figure 1.

3.1 Problem and Motivation
Given a set of N synthetic left-right-forward-disparity-flow tuples {(xl ,xr,xl_(t+1),xd ,x f )i}N

i=1
of source domain A, and a set of M real image tuples {(yl ,yr,yl_(t+1))i}M

i=1 of target domain
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Figure 1: The framework of our proposed method. The blue block represents the synthetic
domain and the yellow block represents the real domain. Domain translation is conducted
between these two blocks. The pink and green blocks show stereo matching and optical flow
estimation modules respectively. Please see Figure 2 for the detail of the cycle translation
module and Figure 3 for the feature warp module.

B without ground truth, our goal is to conduct accurate domain translation, jointly optimize
the disparity estimation network Fdisp and optical flow estimation network Ff low for estimat-
ing the disparity ŷd and optical flow ŷ f on the target domain. We propose to use left-right
and forward-backward feature warping to jointly supervise the cross-domain translation and
the task-specific framework in both spatial and temporal dimensions.

3.2 Domain Translation Module
In the domain translation module, take A as the source domain and B as the target domain.
In a data batch of dataloader, we load Ile f tA,IrightA, Ile f tA_(t+1), dispA, f lowA, Ile f tB, IrightB,
Ile f tB_(t+1). Inspired by pixel2pixel[12], we build a generator GA2B to translate the synthetic
image Ile f tA into to real domain and get I f ake_le f tB, and a discriminator DB to help distinguish
between the synthetic-to-real translated data I f ake_le f tB and the real data Ile f tB. Similarly,
we build another generator GB2A and discriminator DA with the same structure to do real-to-
synthetic image translation from Ile f tB to I f ake_le f tA in an adversarial manner. The adversarial
loss is defined as:

Ladv (GA2B,DB,X ,Y) = Ey∼{YL,YR} [logDB(y)]+Ex∼{XL,XR} [log(1−DB (GA2B(x)))] , (1)

where x ∼ {XL,XR} represents the synthetic image pair and y ∼ {YL,YR} represents the
real image pair. Similarly the inverse real-to-synthetic domain generation is represented as
Ladv (GB2A,DA,Y,X ).
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Figure 2: Cycle translation module. Figure 3: Multi-scale feature warping module.

Furthermore, inspired by CycleGAN [52], we make cycle domain translation from the
fake-real domain back to the synthetic domain through GB2A and get Irec_le f tA, with the re-
versed process from the fake-synthetic domain back to the real domain processed by passing
GA2B and we get Irec_le f tB. The framework of cycle domain translation is shown in Figure 2.
We name it cycle loss, which is formulated as below:

Lcyc (GA2B,GB2A) = Ey∼{YL,YR}[∥GA2B (GB2A(y))− y∥1 +(1−SSIM(GA2B(GB2A(y)− y)))]

+Ex∼{XL,XR}[∥GB2A (GA2B(x))− x∥1 +(1−SSIM(GA2B(GB2A(y)− y)))],
(2)

where Ex∼{XL,XR} represents source domain image pairs and Ey∼{YL,YR} represents target
domain image pairs. SSIM means structural similarity index measure(SSIM).

Specifically, to generate photorealistic cross-domain images, we use a VGG-19-based
encoder-decoder structure to maintain the global feature-level similarity between the cycle-
synthesized image and the source image, and adopt a perceptual loss. We also use cosine
similarity to measure the pixel-level distance between the source domain and target domain
and develop a cosine-similarity loss to help the domain translation network maintain local
similarity, which are defined as:

Lp (GA2B,GB2A) = Lperceptual (GA2B (GB2A(y)) ,y)+Lperceptual (GB2A (GA2B(x)) ,x) (3)

Lcos (GA2B,GB2A) = [1− cos(GA2B (GB2A(y)) ,y)]+ [1− cos(GB2A (GA2B(x)) ,x)] (4)

The domain translation loss could be calculated by summarizing the losses together in
the cycle-consistency component, which is defined as:

Ltranslation (GA2B,GB2A,DA,DB) = Ladv (GA2B,DB,X ,Y)+Ladv (GB2A,DA,Y,X )

+λcycLcyc (GA2B,GB2A)+Lp (GA2B,GB2A)+Lcos (GA2B,GB2A)
(5)

3.3 Stereo Matching and Optical Flow Feature Warping Loss
Feature warping losses are widely used in stereo matching and optical flow estimation tasks.
Direct domain translation may lack the precise location information between the left and
right images. Therefore, to supervise the training of domain translation and help gener-
ate images with precise information, we extract features of the source image and conduct
feature warping between both left-right images and forward-backward images. For models
like DispNetC, as they naturally output multi-scale disparities from correlation features of
network layers, we do multi-scale warp in the real-synthetic-real cycle translation. For re-
cent models like IGEV-Stereo [45], and Unimatch [48], as they are trained in an iterative
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refinement method like RAFT [36], we extract the predicted disparity map or optical flow of
different refinement stages. Inspired by [18], we calculated the smooth L1 loss between the
warped image and target image during different refinement stages, and calculate the weighted
warping loss. The framework of warping loss is shown in Figure 3.

Synthetic Image Loss During the training of the domain translation network, if the gen-
erators are well-trained, based on the synthetic ground-truth disparity and optical flow, the
warped features should match the features of the target image exactly. Therefore, to su-
pervise the training of the generators, we warp the feature maps of GA2B and GB2A in the
synthetic-real-synthetic cycle translation process. The left-right warping loss for synthetic
images is formulated as Eq 6.

Ldisp_warpx (GA2B,GB2A) = E(xl ,xr ,xd)∼X
1
T1

T1

∑
i=1

[∥∥∥W
(

G(i)
A2B (xl) ,xd

)
−G(i)

A2B (xr)
∥∥∥

1

+
∥∥∥W

(
G(i)

B2A (GA2B (xl)) ,xd

)
−G(i)

B2A (GA2B (xr))
∥∥∥

1

]
,

(6)

in which T1 is the number of extracted feature layers of the domain translation generator
for the stereo matching task. G(i)(x) represents the feature of image x at ith-layer in the
domain translation network G, the warping function W (G(i)(xl),xd) warps the left feature
map G(i)(xl) with the ground truth disparity xd . The inverse warp from IrightA to I f ake_le f tB
is conducted in the meantime. Similarly, we use the forward-backward warping loss to
provide temporal supervision. Based on the predicted flow, we use GA2B generator to warp
the image from t time synthetic domain Ile f tA_t to (t + 1) time real domain I f ake_le f tB_(t+1),
and conduct an inverse warp from (t + 1) time synthetic domain Ile f tA_(t+1) to t time real
domain I f ake_le f tB_t in the meantime. The process is formulated as:

L f low_warpx (GA2B,GB2A) = E(xl ,xl_(t+1),x f )∼X
1
T2

T2

∑
i=1

[∥∥∥W
(

G(i)
A2B (xl) ,x f

)
−G(i)

A2B

(
xl_(t+1)

)∥∥∥
1

+
∥∥∥W

(
G(i)

B2A (GA2B (xl)) ,x f

)
−G(i)

B2A

(
GA2B

(
xl_(t+1)

))∥∥∥
1

]
,

(7)
in which T2 is the number of extracted feature layers of the domain translation generator
for the optical flow estimation task and x f is the ground truth flow of t time left image.
The feature warping loss of synthetic images serves as a bond between the shared domain
translation module and the task-specific module, which supervises the generator to maintain
feature-level consistency in the domain translation process.

Real Image Loss During the training of the task-specific modules, we further use multi-
scale disparity maps and flow to warp the feature maps of GB2A. If the task-specific net-
works are well-trained, based on the estimated disparity and flow of real data, the warped
feature maps should match the feature maps of the target images. Therefore, we conduct
left-right and forward-backward feature warping to supervise the training of stereo matching
and optical flow estimation modules respectively. For the stereo matching task, based on the
predicted disparity, we extract multi-scale features of the image and use the GB2A generator
to warp the image from I f ake_rightA to Ile f tB. In the meantime, we also conduct inverse warp
from I f ake_le f tA to IrightB. The disparity warping loss of real images is defined as:

Ldisp_warpy(GB2A) = E(yl ,yr)∼(YL,YR)
1
T1

T1

∑
i=1

[∥∥∥W
(

G(i)
B2A(yl), ŷd

)
−G(i)

B2A(yr)
∥∥∥

1

+
∥∥∥W

(
G(i)

B2A(yr),−ŷd

)
−G(i)

B2A(yl)
∥∥∥

1

]
,

(8)
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where ŷd is the estimated disparity of real stereo image pairs by Fdisp(yl ,yr).
Similarly, for the optical flow estimation task, we use the forward-backward warping

loss to provide supervision and help maintain temporal consistency. Based on the predicted
flow, we use GB2A generator to warp the image from t time real domain Ile f tB_t to (t + 1)
time synthetic domain I f ake_le f tA_(t+1), and similarly do an inverse warp from (t + 1) time
real domain Ile f tB_(t+1) to t time synthetic domain I f ake_le f tA_t . The flow warping loss of real
images is formulated as:

L f low_warpy(GB2A) = E(yt ,yt+1)∼(Yt ,Yt+1)
1
T2

T2

∑
i=1

[∥∥∥W
(

G(i)
B2A(yt), ŷ f

)
−G(i)

B2A(yt+1)
∥∥∥

1

+
∥∥∥W

(
G(i)

B2A(yt+1),−ŷ f

)
−G(i)

B2A(yt)
∥∥∥

1

]
,

(9)

where ŷ f is the estimated optical flow of t time real stereo image pairs by Ff low(yt ,yt+1).

3.4 Stereo Matching and Optical Flow joint training
Based on the cross-domain synthesized images, we jointly train stereo matching and optical
flow estimation networks. We calculate the smooth L1 loss between the predicted dispar-
ity/flow and estimated disparity/flow, during which features in the different refinement stages
are all used under the supervision of the refinement stage. The loss functions are summarized
below:

Ldisp(Fdisp) = E(xl ,xr ,xd)∼X
[∥∥Fdisp (GA2B (xl) ,GA2B (xr))− xd

∥∥
1

]
, (10)

L f low(Ff low) = E(xt ,xt+1,x f )∼X
[∥∥Ff low (GA2B (xt) ,GA2B (xt+1))− x f

∥∥
1

]
, (11)

where Fdisp is the stereo matching network for estimating disparity and Ff low is the optical
flow estimation network for estimating optical flow from real domain stereo images of left-
right views and forward-backward views. We try different stereo-matching and optical flow
estimation networks to evaluate the effectiveness of our proposed framework.

3.5 Joint Optimization
In the training process, we train the domain translation module, the stereo matching module,
and the optical flow estimation module in an iterative way. For every k iteration, we update
the gradient of the domain translation module while freezing the weights of stereo matching
and optical flow estimation networks. During the nk to (n+1)k−1 iterations, the gradients
of stereo matching and optical flow estimation modules are updated in the meantime while
the parameters of the domain translation module are frozen.

Besides the losses we introduced above, we borrow correlation consistency loss Lcorr
and mode-seeking loss Lms from StereoGAN [22], and follow the same loss setting as this
work. The total loss for the domain translation network is the weighted sum of the individual
loss functions:

LT (GA2B,GB2A,DA,DB) = Ltranslation(GA2B,GB2A,DA,DB)+λ fdisp_warpxL fdisp_warpx(GA2B,GB2A)

+λ f f low_warpxL f f low_warpx(GA2B,GB2A)+λcorrLcorr(GA2B,GB2A)+λmsLms(GA2B)
(12)

For the stereo matching network, the loss is formulated as:

Ld(Fdisp,GB2A) = λdispLdisp(Fdisp)+λ fdisp_warpyL fdisp_warpy(GB2A) (13)

For the optical-flow estimation task, the loss is formulated as:

L f
(
Ff low,GB2A

)
= λ f lowL f low(Ff low)+λ f f low_warpyL f f low_warpy(GB2A) (14)
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Table 1: Results on datasets from Driving to KITTI2015. We take IGEV-Stereo [45] as the
stereo matching network and Unimatch-flow [48] as the optical-flow estimation network.
Source only means training on Driving and directly fine-tuning on KITTI2015.

Method EPE D1-all(%) >2px(%) >4px(%) >5px(%) EPE(flow) F1-all(%)

IGEV-Stereo source only 2.48 16.40 28.23 11.08 8.06 − −
Stereo GAN [22] 1.65 10.55 18.59 7.57 5.90 − −

Unimatch-flow source only − − − − − 14.72 42.20
proposed 1.56 9.16 16.29 6.48 4.94 7.20 29.48

Table 2: Results on datasets from Driving to KITTI2015. We take DispNetC [27] as the
stereo-matching network and Unimatch-flow as the optical-flow estimation network.

Method EPE D1-all(%) >2px(%) >4px(%) >5px(%) EPE(flow) F1-all(%)

DispNetC source only 7.56 53.84 65.91 45.05 38.36 − −
Stereo GAN [22] 3.65 36.36 51.31 27.24 20.79 − −

Unimatch-flow source only − − − − − 14.72 42.20
proposed 2.98 29.62 44.31 21.52 16.13 8.30 28.79

In the equations above, λs,s∈{translation, fdisp_warpx, f f low_warpx,corr,ms,disp, fdisp_warpy,
f low, f f low_warpy} represent the weights of the different losses respectively. In the training
stage, we jointly optimize LT , Ld and L f together.

4 Experiments
In this section, we validate the effectiveness of our proposed method for unsupervised learn-
ing of stereo matching and optical flow estimation on several standard benchmark datasets.

4.1 Datasets

We implement our experiments on three autonomous driving datasets. The first one is Driv-
ing, which is a subset of a commonly used synthetic dataset, Sceneflow [26]. The sum of
this subset is 4400 in total, with both ground-truth disparity and optical flow provided. The
image size is 540× 960 and the disparity value range from 0 to 300. The second one is
Virtual-KITTI2 (VKITTI2) [2] dataset, which is a large-scale virtual autonomous driving
dataset with rich weather conditions. The resolution of the images is 1920× 1080. The
third one is the widely used KITTI2015 dataset, including 200 training images collected in
real scenarios and the image size is 375× 1242. We split the training set into 160 images
for training and 40 images for validation. During the training stage, we use Driving and
VKITTI2 datasets as synthetic data and the 160-image split from KITTI2015 as real data,
and report the performance on the 40-image validation split.

4.2 Evaluation Metrics

For stereo matching task, we use the standard End-Point Error (EPE) and D1-all metrics
to evaluate the performance of the model, among which EPE is the mean average disparity
error in pixels, and D1-all means the percentage of pixels whose absolute disparity error is
larger than 3 pixels or 5% of ground-truth. Also, we report the percentages of erroneous
pixels larger than 2, 4, and 5. For the optical-flow estimation task, besides using EPE, we
also use percentage or erroneous pixels (F1-all) as evaluation metrics, which share the same
definition as D1-all.
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Table 3: Results on datasets from VKITTI2 to KITTI2015. We take IGEV-Stereo [45] as
the stereo matching network and Unimatch-flow [48] as the optical-flow estimation network.
Source only means training on VKITTI2 and directly fine-tuning on KITTI2015.

Method EPE D1-all(%) >2px(%) >4px(%) >5px(%) EPE(flow) F1-all(%)

IGEV-Stereo source only 1.01 3.80 7.91 2.78 2.23 − −
Stereo GAN [22] 0.98 3.59 7.52 2.67 2.13 − −

Unimatch-flow source only − − − − − 5.79 21.81
proposed 0.93 3.18 7.04 2.37 1.90 5.19 18.32

Table 4: Results on datasets from VKITTI2 to KITTI2015. We take DispNetC [27] as the
stereo-matching network and Unimatch-flow as the optical-flow estimation network.

Method EPE D1-all(%) >2px(%) >4px(%) >5px(%) EPE(flow) F1-all(%)

DispNetC source only 1.30 7.14 14.27 4.75 3.45 − −
Stereo GAN [22] 1.27 6.78 13.02 4.70 3.50 − −

Unimatch-flow source only − − − − − 5.79 21.81
proposed 1.18 5.98 11.83 4.12 3.03 4.98 19.30

4.3 Experimental Details

We implement our algorithm using Pytorch with Adam optimizer and AdamW optimizer for
stereo matching and optical flow estimation networks respectively. We scale the images to
the resolution of 512×256 during the training stage. For a fair comparison with the previous
GAN-based stereo matching method StereoGAN [22], we do not use data augmentation in
our training stage. We empirically set the weight factors of the losses as λtranslation = 10,
λ fdisp_warpx = 5, λ f f low_warpx = 5, λcorr = 1, λms = 0.1, λdisp = 1, λ fdisp_warpy = 5, λ f low = 1,
λ f f low_warpy = 5.

4.4 Results compared with other methods

We compare our method with other methods on both domain adaptation based unsuper-
vised stereo matching and unsupervised optical flow estimation tasks. We use Driving &
KITTI2015 and VKITTI2 & KITTI2015 as our datasets, which are shown in Table 1 & 2
and Table 3 & 4 respectively. For a fair comparison, for the stereo matching task, we compare
our method with StereoGAN, which is the only previous work that applies image-to-image
domain translation into stereo matching, and we do not use data augmentation in the training
process. Notice that for the Driving dataset, we use frames_finalpass data, which is harder
than frames_cleanpass used by StereoGAN. For IGEV-Stereo and Unimatch-flow joint train-
ing, we compare the results with the source-only result on these tasks, which are trained only
on the source dataset and directly tested on the KITTI2015 validation set.

As VKITTI2 dataset contains complex autonomous driving scenes, like different weather
conditions (fog, clouds, and rain) and times of day (morning and sunset), there is a larger do-
main gap between the source and target datasets. Therefore, the improvement from VKITTI2
to KITTI2015 is not as significant as from Driving to KITTI2015. Please see the visualiza-
tion in the supplementary material.
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Table 5: Ablation study on datasets from Driving to KITTI2015 with different objectives.
Lower value means better performance.

Model Method EPE D1-all(%) EPE(flow) F1-all(%)

DispNet+ Unimatch-flow

baseline [22] 3.65 36.36 − −
w/ perceptual loss 3.46 33.16 − −

w/ cosine similarity loss 3.48 32.45 − −
w/o flow warp 3.06 31.06 11.40 37.56

full obj. 2.98 29.62 8.30 28.79

IGEV-Stereo+Unimatch-flow

baseline 1.65 10.55 − −
w/ perceptual loss 1.61 10.03 − −

w/ cosine similarity loss 1.62 9.97 − −
w/o flow warp 1.60 9.57 12.22 37.96

full obj. 1.56 9.16 7.20 29.48

Table 6: Evaluation of Real-Synthetic-Real Cycle Translation
CycleGAN w/disp_warpx w/Lper w/Lcos w/flow_warpx Ours(full)

PSNR↑ 20.42 23.09 22.96 23.77 23.97 24.50
SSIM↑ 0.8710 0.8725 0.9076 0.8802 0.9148 0.9355
LPIPS↓ 0.2850 0.2545 0.1588 0.2053 0.1404 0.1018

4.5 Ablation Study

We conduct experiments to evaluate the efficiency of the loss functions to improve the ef-
fect of domain translation and the multi-scale warping loss of optical flow estimation and
stereo matching, which is shown in Table 5. The perceptual loss and cosine similarity loss
help the domain translation network generate images with both global and local consistency,
which contribute to the training of stereo matching and optical flow estimation networks. In
the training stage, we find that the feature warping loss serves as strong supervision, which
not only contributes to better performance in evaluation but also contributes to the conver-
gence of the optical flow estimation networks, which demonstrates the effectiveness of our
proposed framework.

We also conduct further experiments to get the quantitative results of domain translation
and compare it with CycleGAN [52] and StereoGAN [22]. We calculate the PSNR, SSIM
and LPIPS between the real-synthetic-real translated image and the ground truth real image
of our validation set, which reflects the domain translation ability of our model on both
translation directions, shown in Table 6. It shows that our method improves the quality of
domain translation.

5 Conclusion

We proposed a novel co-training framework that combines domain translation, stereo match-
ing, and optical flow estimation. We demonstrated that models trained using our framework,
which incorporates a multi-scale feature warping and a cycle-consistency loss, achieve better
performance on both stereo matching and optical flow estimation tasks. The strong perfor-
mance of our models on real images, all without any ground-truth labels for real images,
demonstrates the effectiveness of our proposed framework in bridging the domain gap be-
tween the synthetic and real data domains.
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