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Abstract

The focus of 3D-aware image synthesis lies in preserving spatial consistency while
generating high-resolution images with fine details. Recently, Neural Radiance Field
(NeRF) has emerged as a powerful method for synthesizing novel views with low compu-
tational cost and exceptional performance. Although existing generative NeRF approaches
have achieved significant results, they are unable to handle conditional and continuous
feature manipulation during the generation process. In this work, we present a novel
model, called Class-Continuous Conditional Generative NeRF (C3G-NeRF), which syn-
thesizes conditionally manipulated photorealistic 3D-consistent images by projecting
conditional features onto the generator and discriminator. We evaluate the proposed
C3G-NeRF on three image datasets: AFHQ, CelebA, and Cars. Our model demonstrates
robust 3D-consistency, fine details, ability of 360◦ generation, and smooth interpolation in
conditional feature manipulation. For example, C3G-NeRF achieves a Fréchet Inception
Distance (FID) of 7.64 in 3D-aware face image synthesis with a 1282 resolution. Fur-
thermore, we provide FIDs and for generated 3D-aware images of each class within the
datasets, showcasing the ability of C3G-NeRF to synthesize class-conditional images.

1 Introduction

There have been many approaches [20, 43] for synthesizing novel images. Generative
Adversarial Network (GAN) [11] has shown outstanding results in generating images by
learning the distributions of datasets, resulting in the synthesis of photo-realistic instances.
Furthermore, many studies have improved the ability to generate high-resolution images
[5, 6, 18, 19]. Notwithstanding the advances made by existing studies, GANs still have
limitations when synthesizing multiple views of a single object due to most data collections
being based on two-dimensional information, which can lead to instability in 3D-consistency.

In order to address this problem, 3D-based GANs [30, 31, 44] have been studied, which
make use of volume rendering methods. However, those methods require high computational
power and memory in order to train effectively. In recent years, Mildenhall et al. [26]
proposed the Neural Radiance Field (NeRF) as an alternative to conventional voxel-based
volume rendering methods [10, 14, 17]. NeRF greatly reduces the complexity of computations
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and memories required compared to other approaches. Accordingly, NeRF has been extended
for use in 3D-based GAN studies [4, 9, 32, 39] with excellent results and low complexities.

Figure 1: Synthesized images of each class of
AFHQ by our model (with a 2562 resolution).
A row displays a single object with different ro-
tation input vectors. Note that the images of dif-
ferent classes are generated by a single model
with different conditional input vectors. Our
model can generate various views of different
objects that conserves strong 3D-consistency.

Nevertheless, existing NeRF-based GANs
cannot control image generation with condi-
tional labels continuously, as they do not
incorporate the necessary conditional in-
formation into the generator of the GAN.
Conditioning NeRF-based GANs is crucial,
as many industry applications demand pre-
cise manipulation during generation, such
as selecting avatar details in the emerg-
ing metaverse. GIRAFFE [32], a NeRF-
based generative model, can generate 3D-
aware images without extra information,
like camera location and direction, which
conventional NeRF requires. Although GI-
RAFFE achieves impressive results, partic-
ularly in 360◦ generation with real-world
datasets compared to other state-of-the-art
models like pi-GAN and Efficient Geometry-
aware 3D Generative Adversarial Networks
(EG3D) [3, 4], it cannot disentangle vari-
ous features [2, 24, 31] needed to generate
images with desired attributes.

Jo et al. [16] attempted to address this is-
sue by providing condition information such
as image types and texts. However, this ap-
proach is ineffective in representing condi-
tion intensity, as texts are ambiguous compared to numerical values, which offer a more
intuitive means of setting intensity. Controlling condition intensity is essential, as most
metaverse users want to customize their avatars with specific eye shapes or hair colors, which
can be achieved by selecting numerical values that represent the intensity of each condition.

In this paper, we propose a novel method to tackle the task of 3D-aware conditional image
generation. This task requires that conditional label values [27, 28, 33] control the features
of generated images, as illustrated in Figure 1, and that these values be continuous to enable
smooth changes in the corresponding condition intensities. To the best of our knowledge, this
paper is the first to address this task.

We introduce our proposed method, Class-Continuous Conditional Generative Neural
Radiance Field (C3G-NeRF), which focuses on conditional and continuous feature manip-
ulation in 3D-aware image generation. Our backbone model is GIRAFFE, which enables
360◦ generation without extra camera parameters, a core task in 3D-aware generation due
to its wide range of applications. Although EG3D and pi-GAN outperform GIRAFFE in
generation quality, they are not suitable for 360◦ generation in real-world datasets. EG3D
relies on extra camera parameters, making it unsuitable for learning real-world datasets
without these parameters. Additionally, we validate the necessity of GIRAFFE by comparing
its performance in generating a real-world car dataset [1] with pi-GAN using the Fréchet
Inception Distance (FID) and Kernel Inception Distance (KID) metrics.

We observe that conditional GIRAFFE without residual modules struggles to learn data
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distributions with fine details, making residual modules essential for training conditional
GIRAFFE. To address this issue, we incorporate residual modules [12, 13] into our model
architecture to support training and improve image synthesis.

Addressing the challenge of generating multi-view instances in 3D-aware images, C3G-
NeRF provides fine 3D-consistency across multiple views. We present results from three
datasets, AFHQ [7], CelebA [23], and Cars [1], and demonstrate control over image synthesis
through translation, rotation, and the addition of objects within a single image.

The contributions of this paper are as follows:

• We propose the C3G-NeRF model to address a novel task: conditional and continuous
feature manipulation in 3D-aware image generation.

• We reduce training time and enhance performance by incorporating residual modules
into the NeRF architecture.

• We showcase conditional and continuous feature manipulation in 3D-aware image
generation using multiple datasets: AFHQ, CelebA, and Cars.

• Since our model can generate class-conditional 3D-aware images, we provide FID
scores for each label in AFHQ and Cars datasets.

2 Related Work

Implicit Neural Representation and Rendering: The use of deep learning techniques
[21] to represent three-dimensional space has received considerable attention in recent years.
Among the various approaches that have been proposed, implicit neural representations
[36, 40, 42] have shown particular promise. NeRFs have been proposed by combining an
implicit neural representation with volume rendering [10] to enable the synthesis of novel
views that are not explicitly represented in the training data. As a result, NeRF is capable
of synthesizing 3D-consistent images with fine details. However, one downside to using
NeRFs is that they require highly constrained images for supervision during training. Another
concern is that each instance of a NeRF can only represent a single object rather than multiple
objects simultaneously. It has been proposed that generative NeRFs may be able to alleviate
these problems.

Generative NeRF: There has been some recent progress in NeRF-based methods for
generating 3D-aware images from 2D unconstrained image datasets. In these methods,
generative models are trained to ensure continuous 3D geometric consistency. For instance,
the GRAF [39] and pi-GAN [4] both proposed a generative NeRF, and showed promising
results. GIRAFFE is another method that is more closely related to our work and improves on
GRAF by separating an object from its background scene. However, none of these methods
can control the conditional generation of images, which enables various feature manipulation
in generated images. To address this issue, Jo et al. [16] proposed CG-NeRF. Specifically,
CG-NeRF takes two types of conditional information. First, conditional data forms are used
to translate one image into another; while our study aims to generate novel images directly
from noise vectors instead. Second, CG-NeRF takes texts as conditions with CLIP (a natural
language processing technique) [34]; whereas our model uses numerical conditions, which
can be interpolated by varying values, allowing for continuous feature manipulation in image
synthesis that represents intensity changes in relation to the given values.
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Figure 2: Overview of the proposed C3G-NeRF. Since our model is inspired by the architecture
of GIRAFFE, our model generates N −1 objects and the background with N decoders and
a composition operator. D_i indicates ith decoder and C(·) represents the composition
operator. The decoders take a 3D coordinate vectors of positional encoding γ(x) and viewing
direction γ(d), where γ indicates positional encoding functions. In addition, the decoders take
conditional vectors c, which are encoded by linear layers, shape codes zs, and appearance
codes za. By compositing the outputs of each decoders with the composition operator C(·)
and then volume-renders the result. Consequently, a composited feature vector v is produced.
The feature vector v passes the neural rendering module πneural . In this process, the generator
G(θ) synthesizes a fake image Î. The discriminator D takes a real image I or the fake image Î
projected by the conditional labels c.

3 Methods

Our goal is to make a framework for conditionally controllable 3D-aware image synthesis
that guarantees representations of the intensity of conditions with continuous values. Given a
labeled real-world 2D image dataset, the 3D-aware image generator G takes conditions and
camera pose, which are denoted by x and d, respectively, and latent vectors for representing
shape and appearance, i.e., zs and za. Then, G produces an image Î, corresponding to the
input condition. At training time, real images from the dataset and Î are directed to the
discriminator D. Figure 2 shows an overview of our model.

3.1 Conditional Neural Radiance Fields

A conventional neural radiance field maps a 3D coordinate x = (x,y,z) and viewing direction
d = (θ ,φ) to a volume density σ and a view-dependent RGB color value R, G, and B with
fully-connected layers. However, several studies [35] observed that deep learning techniques
are difficult to represent high-frequency details, especially with low-dimensional inputs. To
diversify the inputs, NeRFs introduced positional encoding [41] to the inputs, x and d, before
the fully-connected layers:

γ(p,L) = (sin(20
π p),cos(20

π p),sin(21
π p),cos(21

π p), · · · ,sin(2L−1
π p),cos(2L−1

π p)),
(1)

where γ(·) indicates positional encoding, L is the dimensionality of positional encoding, and
p is a scalar value as a component of x and d. To extend to generative neural radiance fields,
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shape and appearance codes, zs and za, are fed into the MLP as follows:

(γ(x),γ(d),zs,za) 7→ (σ ,R,G,B). (2)

In our model, the generative neural radiance field was substituted to generative neural
feature fields by extending the dimensionality of color [32], which was originally three-
dimensional, to a feature space having a dimension of M f as:

hθ : RLx ×RLd ×RMs ×RMa 7→ R×RM f , (γ(x),γ(d),zs,za) 7→ (σ , f), (3)

where hθ represents a generative neural feature field, Lx and Ld indicate dimensionalities of
positional encoding output, and Ms and Ma are dimensionalities of latent encodings of the
shape and appearance, respectively.

In this work, we project conditions to the latent vectors [28], zs and za, by element-wise
production. Before the projection, conditional vectors c having a dimension of Mc are encoded
by a fully-connected layer to make the dimension the same as the dimensionalities of zs and
za. The shape and appearance conditional encodings, cs and ca, are constructed as

cs = Ls(c)∗ zs, ca = La(c)∗ za, Ls : RMc 7→ RMs , La : RMc 7→ RMa , (4)

where Ls and La are the encoding layers for the shape and appearance, respectively, and ∗ de-
notes element-wise multiplication. We employ these conditional projections as a replacement
for conventional latent vectors in generative feature fields:

hθ : RLx ×RLd ×RMs ×RMa 7→ R×RM f , (γ(x),γ(d)),cs,ca 7→ (σ , f). (5)

3.2 Scene Compositions
As our model is motivated by GIRAFFE, it can separate scenes and individual objects with
multiple feature vectors [32]. Consequently, in the model, there are N generative feature fields
when N −1 objects and a background scene exist in an image. To composite N entities, the
composition operator C (·) composites all feature fields from the N entities. Each single entity
hi

θ i outputs a volume density θi and a feature vector fi. Following the method in GIRAFFE,
we composite each component of entities with density-weighted mean-based composition.
The mathematical expression of the composition operator can be represented as

C(x,d,c) =
(

σ ,
N

∑
i=1

σifi

σ

)
, (6)

where σ = ∑
N
i=1 σi.

3.3 Volume Rendering and Neural Rendering
For scene rendering, our model volume-renders a camera ray r(t) = o+ td to feature vectors
[32], and subsequently, neural-renders the feature vectors to generate synthetic images. Our
approach basically follows a discretized form of volume rendering methods used in NeRF
[26]; nonetheless, detailed methods follow those of GIRAFFE to render features to images,
which can be represented as

v =
Ns

∑
j=1

Tj(1− e−σ jδ j)f j, where Tj =
j−1

∏
k=1

e−σ jθ j , (7)
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where v represents a final feature vector, T denotes an accumulated transmittance along the
cast ray, and NN is the number of sample points along a cast ray for an arbitrary camera
pose ξ . By sampling points along the camera ray, we utilize a feature vector f j and a density
σ j corresponding to each point. Furthermore, the feature images have a 162 resolution,
i.e., HV ×WV for cost-effectiveness. Existing studies, including GRAF and NeRF [26, 39],
commonly adopted the volume rendering approach for 3D-to-2D projections. However, in
our model, an additional 2D neural rendering network is required since the volume rendering
composes feature images, not colored high-resolution images. The additional neural rendering
network,

πneural : RHV×WV×M f 7→ RH×W×3, (8)

maps outputs of the volume rendering to a synthetic image, Î ∈ RH×W×3, by upsampling the
feature images. The architecture of neural rendering network is similar to a neural rendering
operator in existing studies [32]; however, we hire residual modules instead of conventional
convolutional networks to enhance training speed and performance.

3.4 Training Details
At training time, we randomly sample latent vectors zs and sa, as well as camera pose ξ

from prior distributions ps, pa, and pξ . Prior distributions ps and pa are defined as Gaussian
distributions, and camera pose distribution ξ are set to a uniform distribution. In the generator
G, we project conditional labels to latent vectors [28] zs and za. Similarly, conditional labels
are projected to real images I or synthesized images Î, in the discriminator D. Real images
I are randomly sampled from the training dataset, which follows distribution pI. We use a
GAN loss with R1 gradient penalty [25] as follows:

L(G,D) =Ezs∼ps,za∼pa,ξ∼pξ

[
− log(D(G(zs,za,ξ ,c)))

]
(9)

+EI∼pI

[
− log(1−D(I))+λ∥∇D(I)∥2].

We train the generator and discriminator of the proposed model by competing for a zero-sum
game with the above loss function. We use the RMSprop optimizer [38] with a learning rate
of 3×10−4 and 1×10−4 for the generator and the discriminator, respectively. The model is
trained on one A6000 GPU with 48GB memory with a batch size of 32. We set M f = 128
for a 642 resolution and a 1282 resolution, while we set M f = 256 for a 2562 resolution. We
utilize ReLU activations [29] as activation functions used in our model, except for the final
layer in the neural renderer, which uses a sigmoid function [37].

3.5 Accelerating Training with Residual Modules
We observe elaborate conditional generation with GIRAFFE is not feasible without residual
modules [12, 25]. In the experiments of this study, we demonstrate that conditional gener-
ation with plain networks shows lagging performance. We argue that this result is because
conditionally projected latent vectors are too far from the discriminator, which causes gradient
vanishing. Therefore, residual modules support conveying the information to conditionally
projected latent vectors from the discriminator. Moreover, the range of varying latent vectors
expands since we projected conditional labels to latent vectors, which is challenging to learn
with plain networks. We apply residual modules to our model in the decoder, neural rendering
network, and discriminator. We validate the efficiency of this contribution in the Section 4.
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(a) (b)
Figure 3: Class conditional synthetic object rotation generated by C3G-NeRF trained with
CelebA and Cars. In (a), each row represents a single object of CelebA with the same
latent vectors. Each column indicates rotation angles. In the left figure of (a), we fixed the
input conditions as a bald man, whereas we fixed the conditions as a blonde smiling woman
in the right figure of (a). In (b), by controlling the horizontal and depth translation, the
disentanglement of the objects and background are shown in Horizontal translation and Depth
translation. After training with unstructured 2D images with a single object, we can generate
N −1 objects in one scene by replicating N decoders as in Add objects. All images have a
resolution of 1282. Using C3G-NeRF, 3D-consistent image generation is successful under the
given conditions.

4 Experiments

In this section, we evaluate our C3G-NeRF on three real-world datasets: CelebA [23],
AFHQ [7], and Cars [1]. We first evaluate the conditionally controlling 3D-consistent image
generations. We then evaluate the quality of generation by FIDs [15]. Finally, we include an
evaluation of residual modules to validate the efficiency of residual modules adopted in our
model.

4.1 Controllable Features in 3D Object Generation

The model evaluation involves performing object rotations, horizontal translations, depth
translations, and object additions. The results of this evaluation are presented in Figure 1
and 3. These figures demonstrate that C3G-NeRF effectively learns 3D-consistency for
AFHQ, CelebA, and Cars datasets, respectively, by preserving spatial consistency despite the
introduced transformations. Additionally, the model is observed to successfully capture the
conditional input features and generate images accordingly.

Furthermore, in Figure 3, we assess C3G-NeRF using out-of-distribution images with
translating depth and horizontal at test time. This means C3G-NeRF can generate beyond
the distribution of training images by using extended rotation and transition values over the
training sets. Moreover, we can finely control each object and scene in the generated images
by C3G-NeRF; for instance, while adding the objects in a scene, each object can be controlled
by translating and rotating in 3D space.
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(a) (b)
Figure 4: Interpolation and extrapolation on conditional input values with CelebA and AFHQ.
Each row and column represent the same latent vectors (identical object) of AFHQ and
the same class-conditional values, respectively. In (a), we present the conditional results
according to conditional input values with the range of zero to three. Note that, in training
time, the features are trained only with the two values of zero and one, which indicate the
existence of the corresponding feature. The features in the face images with interpolated and
extrapolated input values smoothly change, which means the continuous conditional learning
is adequately progressed. By interpolating the values of each class, features of each category
coexist at the intermediate state of class-conditional values.

4.2 Continuously Controllable Features in 3D Object Generation

We demonstrate our model’s ability to manipulate individual conditions by interpolating 40
conditional binary values in the CelebA dataset, such as chubby, smiling, blonde, and pale
skin. Although the training procedure has a range of zero to one due to binary encoding in the
CelebA dataset, we expand the test procedure range to zero to three, as illustrated in Figure 4.
This experiment assesses whether each facial feature maps to the generator’s input label. With
various conditional label values, C3G-NeRF exhibits superior performance in interpolation
and extrapolation for each condition. For instance, chubby and smiling conditions [23] change
smoothly according to conditional values, regardless of the extrapolation range. This result
highlights our model’s capacity to generate out-of-distribution images, such as exaggerated
features with high input label values exceeding one.

We also examine non-characteristic (implicit) labels corresponding to AFHQ classes,
which are more challenging to learn due to less obvious image features. We generate inter-
class images with interpolated class-conditional input values, as depicted in Figure 4. We
observe that features of each class coexist at intermediate class-conditional values, indicating
that feature manipulation can be applied to implicit class labels.

4.3 Quantitative Evaluation

We evaluate image quality using a conventional method with KIDs and FIDs, comparing
20,000 randomly sampled real and generated images. Assessments demonstrate generation
quality for each dataset and label, evaluating images generated with random conditional inputs
across different resolutions and datasets.

Table 1 shows that C3G-NeRF achieves impressive FIDs and KIDs in conditional 3D-
consistent generation, outperforming conditional GIRAFFE regardless of resolution and
indicating robustness in high resolutions. The conditional GIRAFFE exhibits high FIDs,
suggesting training issues. For instance, in CelebA face image generation at 1282 resolution,
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MODEL
AFHQ (FID) CELEBA(FID) CARS(FID)

642 1282 2562 642 1282 642 1282 2562

BASELINE 212.74 226.51 239.01 55.90 83.89 228.66 244.55 266.51
OURS 26.72 25.79 28.58 5.60 7.64 44.79 43.29 31.63

MODEL
AFHQ (KID) CELEBA(KID) CARS(KID)

642 1282 2562 642 1282 642 1282 2562

BASELINE 0.200 0.352 0.323 0.119 0.296 0.096 0.166 0.303
OURS 0.077 0.059 0.051 0.046 0.023 0.057 0.039 0.043

Table 1: Quantitative comparison with FIDs (↓) and KIDs (↓) with three datasets. The baseline
is set to the conditional GIRAFFE with plain networks. The 642, 1282, and 2562 are the
image resolutions of the generated images and real images.

CATEGORY
CARS

CATEGORY
AFHQ

642 1282 2562 642 1282 2562

PEYKAN 73.54 67.47 68.57 CAT 10.38 13.65 15.48
QUIK 58.73 62.71 49.64 CAT 10.38 13.65 15.48

SAMAND 54.63 50.53 61.01 DOG 31.64 43.37 51.73
PEUGEOT-PARS 65.34 66.27 46.45 LEOPARD 17.20 14.98 13.42
PEUGEOT-207I 71.17 71.06 52.99 FOX 25.97 28.01 22.50

PRIDE-111 67.91 62.28 68.84 LION 8.76 12.20 7.61
PRIDE-131 68.70 57.70 65.43 TIGER 12.78 8.96 5.93

TIBA2 60.80 61.79 55.57 WOLF 28.39 30.82 14.85
RENAULT-L90 67.79 65.51 76.84

NISSAN-ZAMIAD 78.17 88.83 133.77
PEUGEOT-206 63.53 61.55 128.10
PEUGEOT-405 71.79 66.15 71.45
MAZDA-2000 71.75 77.23 104.53

Table 2: Quantitative comparison with FIDs (↓) with each class of AFHQ and Cars. The 642,
1282, and 2562 are the image resolutions of the generated images and real images.

C3G-NeRF attains an FID of 7.64, reducing the value by 90.9% compared to the baseline.

Model
Cars (KID) Cars (FID)

642 1282 642 1282

pi-GAN 0.105 0.083 137.34 104.51
Ours 0.057 0.039 44.79 43.29

Table 3: Quantitative comparison with FIDs (↓) and
KIDs (↓) on Cars dataset for 360◦ generation at reso-
lutions 642 and 1282, with comparison to pi-GAN.

Table 2 presents FIDs for each la-
bel, reflecting the conditional disen-
tanglement achieved by C3G-NeRF.
FIDs for individual labels are similar
to or better than those for all labels
combined, implying that C3G-NeRF
effectively learns features for each
condition across datasets. Moreover,
even with few examples (e.g., foxes,
lions, tigers in AFHQ), comparable FIDs indicate that C3G-NeRF excels at learning from
data, irrespective of its unposed distribution.

Table 3 shows that our model outperforms pi-GAN on Cars dataset, effectively disen-
tangling class conditions. Generally, conditional models underperform unconditional ones,
rendering pi-GAN unsuitable for 360◦ generation. Additionally, EG3D struggles with Cars
dataset as it needs camera positions corresponding to samples while EG3D can obtain camera
positions using an independent algorithm for facial datasts [8, 22]. Thus, we adopt GIRAFFE
for the generality in 360◦ generation with real-world datasets.
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4.4 Evaluation of Residual Modules
We assess image quality generated by C3G-NeRFs with residual modules, comparing it
to conditional GIRAFFE with a plain network. This experiment emphasizes the impact
of incorporating residual modules [12, 25] in the C3G-NeRF architecture. FID and KID
comparisons across three datasets (Table 1) show that C3G-NeRF significantly outperforms
conditional GIRAFFE with plain networks, supporting our hypothesis that residual modules
enhance generation quality and are crucial for conditional 3D-aware generation. Residual
modules aid gradient flow from the discriminator’s output to the conditional inputs of the
generator, facilitating conditional information learning. Qualitative comparisons are shown
with the Figure 12, which is included in the Supplementary Materials.

5 Conclusions
We presented a novel model, C3G-NeRF, for conditional and continuous feature manipulation
in 3D-aware image generation. Our approach projects conditional labels with encoding layers
onto the generator’s latent vectors and an intermediate discriminator layer to disentangle
dataset features. C3G-NeRF leverages residual modules to optimize 3D-aware conditional
training. Interpolating and extrapolating conditional input values, we achieved precise 3D-
consistent image generation and feature manipulation.
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