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Abstract
Image completion techniques have made significant progress in filling missing regions

(i.e., holes) in images. However, large-hole completion remains challenging due to
limited structural information. In this paper, we address this problem by integrating
explicit structural guidance into diffusion-based image completion, forming our structure-
guided diffusion model (SGDM). It consists of two cascaded diffusion probabilistic
models: structure and texture generators. The structure generator generates an edge image
representing plausible structures within the holes, which is then used for guiding the
texture generation process. To train both generators jointly, we devise a novel strategy
that leverages optimal Bayesian denoising, which denoises the output of the structure
generator in a single step and thus allows backpropagation. Our diffusion-based approach
enables a diversity of plausible completions, while the editable edges allow for editing
parts of an image. Our experiments on natural scene (Places) and face (CelebA-HQ)
datasets demonstrate that our method achieves a superior or comparable visual quality
compared to state-of-the-art approaches. The code is available for research purposes at
https://github.com/UdonDa/Structure_Guided_Diffusion_Model.

1 Introduction
Image completion aims to fill missing regions (i.e. holes) in images with visually coherent con-
tent. Prior work has used guidance clues such as edges [34, 60] and semantic maps [22, 23] to
divide the problem into structure and texture generation. These attempts have enabled various
image-editing applications like object removal [35], insertion [38], and manipulation [12, 64].
However, large-hole completion remains a challenge because of the difficulty in generating
useful guidance clues.
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Figure 1: The SGDM first generates edges within missing regions, indicated by blue. Then, it
produces textured images using the edges as structural guidance. Optionally, the edges can be
manually edited, which are then refined by SDEdit [31] using the SGDM’s prior, represented
by green. The SGDM’s stochastic process allows for generating diverse outputs.

Image completion has been achieved using various techniques, including convolutional
neural networks [18] and generative adversarial networks (GANs) [8, 15]. While GAN-
based methods [19, 69] are good at filling large holes in flat texture patterns, they often
produce images with distorted structures. Researchers have tried to integrate structural
guidances [5, 34, 60] to fill holes with rational structure; however, they still struggle to
generate reasonable clues for large holes. Recently, autoregressive (AR) transformers [51, 55]
and diffusion models (DMs) [10, 48] have gained attention as promising techniques in
image completion. Their ability to generate diverse results is an additional strength from an
application viewpoint. Still, these techniques struggle to fill holes with coherent structures.
Thus, providing diverse ways to complete large missing regions with coherent structures
remains challenging.

To address this challenge, we focus on DMs and explore the incorporation of structural
guidance into the image completion process. We propose a structure-guided diffusion model
(SGDM), which explicitly considers structural guidance using edge information. Our frame-
work consists of a structure generator that generates plausible edges and a texture generator
that completes textures guided by the edges. Leveraging structural guidance and DMs, our
SGDM can complete large holes with diverse and structurally coherent results. Addition-
ally, structural guidance provides opportunities for user-guided image editing, such as using
sketching tools (see Fig. 1).

To train the structure and texture generators simultaneously, we present a novel joint-
training strategy using optimal Bayesian denoising, specifically Tweedie’s formula [6, 13, 49],
which can denoise noisy images in a single step and thus allows backpropagation. End-to-end
training of two cascaded DM-based generators is a non-trivial problem; the SGDM’s training
is conditioned by noise, preventing the texture generator from directly using the noisy edge
map from the structure generator. We solve this problem by using optimal Bayesian denoising,
improving the generalizability as in multi-task learning [33, 42]. Our experiments with natural
scene (Places [73]) and face (CelebA-HQ [14]) datasets demonstrate that our method achieves
a superior or comparable visual quality compared to state-of-the-art methods.

Our contributions are summarized as follows. 1) We propose the structure-guided diffusion
model (SGDM) for large-hole image completion. It consists of structure and texture generators
producing coherent, realistic contexts in large holes. As far as we know, this is the first work
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combining structural generation and guidance with diffusion models for image completion.
2) We design a novel joint-training strategy using optimal Bayesian denoising to enable
end-to-end training of two cascaded DM-based generators. 3) We show that SGDM achieves
state-of-the-art or comparable visual quality on both Places [73] and CelebA-HQ [14] datasets.

2 Related Work
2.1 Deterministic Image Completion
The advent of deep learning brought significant success to image completion, especially GAN-
based methods [11, 72]. To achieve fine-grained textures, many works proposed task-specific
operations such as global and local discriminators [11], attention mechanisms [25, 57, 59, 62],
partial [24], and gated [60] convolutions. Concurrently, several works utilized explicit clues
such as object edges [3, 5, 34], foreground contours [12, 58, 64], smoothed images [39],
reference images [74], confidence maps [63], and semantic segmentation maps [22, 23].
Nazeri et al. [34] first proposed a two-stage framework for edges and textures, introducing
structure guidance. ZITS [5] used an attention-based transformer [53] to predict structural
guidance. However, these methods still have difficulties in predicting guidance within large
missing regions. In contrast, the use of DMs with strong model capacity and novel joint
training generates reasonable edges.

2.2 Diverse Image Completion
Recent image completion studies have addressed more challenging issues, i.e., filling large
holes in images with multiple visually plausible and diverse contents [20, 26, 36, 56, 71].
Variational-auto-encoder-based methods [67, 70] demonstrated diverse image completion,
although their synthesized quality was limited due to variational training [68]. Subsequently,
CoModGAN [69] and MAT [19] successfully filled large holes, particularly in flat texture
patterns. However, they often produce images with distorted or unrealistic structures and
limited diversity.

Recent studies [27, 55, 61] have focused on an AR transformer [53], achieving high-
fidelity quality and diversity. However, AR-based methods [55, 61] faced information loss
issues due to “low resolution” and “quantization,” which down-sample images to a much
lower resolution (e.g. 32×32) and quantize RGB values 2563 into a much lower dimension
512. To address this, PUT [27] used a patch-based autoencoder with VQVAE [52] and
applied the AR transformer to vector quantized tokens. Nonetheless, AR transformer-based
approaches struggle with handling high-resolution images and sampling orders [7] due to their
pixel-by-pixel autoregressive sampling. In contrast, our proposed method overcomes these
limitations by leveraging diffusion models and explicit structural guidance, which allows for
generating coherent structures and diverse images.

2.3 Image Completion with Diffusion Models
Diffusion and score-based models have emerged as a family of likelihood-based models,
showing remarkable success in quality, diversity, mode coverage, and generality in their
training objective [10, 47]. Most previous studies [30, 45, 48] have demonstrated image
completion using unconditional image generation models by replacing the known region
with a designated hole at each sampling step. However, a major limitation of these methods
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is their inability to produce harmonious images that match the known regions. To address
this, Palette [43] learned conditional completion, and RePaint [30] introduced a conditional
sampling method, which alternately performs the forward and reverse diffusion processes
for pre-trained unconditional models. Nonetheless, these methods often generate irrelevant
content for large holes. Our method overcomes this limitation by explicitly estimating the
structure of missing regions and using it as guidance. ControlNet [65] proposed an encoder to
support additional input conditions for pretrained diffusion models. It also uses an edge map
as structural guidance to fill holes. However, edges within holes must be prepared beforehand.
In contrast, our method learns to generate edges within missing regions and then synthesize
textures.

3 Preliminaries
This section provides an overview of diffusion models, focusing on denoising diffusion proba-
bilistic models (DDPM) and latent diffusion models (LDM), which underpin our proposed
method. We also introduce optimal Bayesian denoising, which is crucial for our joint training.

3.1 Diffusion Models
DDPM is built upon a discrete Markov chain between two processes: forward and re-
verse processes. The forward process, initiated from a noiseless data x0, adds Gaussian
noise to a previous data xt−1 at each timestep t to generate a current data xt . The re-
verse process, on the other hand, iteratively samples xt−1 from xt , starting from a Gaussian
noise xT . The forward process is modeled as q(xt |xt−1) :=N (xt ;

√
1−βtxt−1,βtI), where

βt is a pre-defined noise scale depending on timestep t. By accumulating the timesteps,
we can express the forward to any time t from a data as a reparameterization trick [17]:
q(xt |x0) =N (xt ;

√
αtx0,(1−αt)I), where αt := ∏

t
i=1(1−βi). The reverse process is mod-

eled as pθ (xt−1|xt) :=N (xt−1; µθ (xt , t),Σθ (xt , t)). DDPM employs UNet [41] to approximate
this posterior. For conditional cases, the UNet εθ can be trained using a denoising score
matching ∥εθ (xt , t,y)− ε∥2

2, where ε is a Gaussian noise added to x0 to create xt , y is a condi-
tion such as an image and an edge image with a hole in our case, and εθ (xt , t,y) represents a
score function of the perturbed data distribution, ∇xt log pθ (xt). After the training, DDPM
can generate images using annealed Langevin dynamics [47].

3.2 Latent Diffusion Model
DMs typically learn denoising in an RGB pixel space, which requires high-computational
costs for high-resolution images. In contrast, LDM [40] learns denoising in the latent space
of pretrained autoencoders, significantly improving both training and sampling efficiency
without compromising quality compared to pixel-based DMs.

LDM consists of an autoencoder with an encoder E and decoder D in an RGB space as
well as denoising autoencoders in the latent space. Given a data x ∈ RH×W×3 in an RGB
space, the encoder E encodes x into a latent representation z = E(x), and the decoder D
reconstructs the data from the latent z ∈ Rh×w×c, denoted as x̃ =D(z) =D(E(x)), where h
and w are downsampled latent size. LDM learns the denoising autoencoder εθ in the latent
space using DDPM.
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Figure 2: Overview of our individual training (left) and joint training (right).

3.3 Optimal Bayesian Denoising
Optimal Bayesian denoising is a technique that performs minimum mean square error (MMSE)
denoising in a single step. Given a Gaussian noise ε ∼N (ε; µ,Σ), its MMSE estimator is
given by Tweedie’s formula [6, 13, 49]; that is, E[µ|ε] = ε +Σ∇ε log p(ε). In DDPM, the
forward step is modeled as q(xt |x0) =N (xt ;

√
αtx0,(1−αt)I) as described in Section 3.1.

Therefore, we can apply Tweedie’s formula by substituting
√

αtx0 and (1−αt)I for µ and Σ,
respectively. This allows us to determine a single-step denoising operation as

F(xt) := x̂t
0 =

xt +(1−αt)∇xt log p(xt)√
αt

, (1)

where x̂t
0 represents a denoised sample. This operation enables us to convert the noisy sample

(at time t) into a denoised one (at time 0) in a single step, provided that the optimal score
function ∇xt log p(xt) is known. To reconstruct a denoised sample in an RGB space, the
operation is written as D(F(xt)); however, we will omit the decoder D for simplicity. We
note that previous studies have used the single-step denoising technique for sampling [46] or
a formulation of DMs [16] while we aim to use it for a component of training.

4 Structure-Guided Diffusion Model
Given an input image with missing regions (i.e. holes), our goal is to generate a structurally
reasonable image that respects the context of the visible regions. We denote the target image
by I ∈ RH×W×3, the binary mask representing the missing regions by M ∈ {0,1}H×W×1, and
the generated image by Î ∈ RH×W×3, where H and W represent a spatial resolution. With
this notation, the objective is to generate Î from IM = I ⊙M. Our proposed SGDM utilizes
structural guidance during the generation process. Specifically, it generates a hole-filled edge
image Ê and then uses it as structural guidance to generate the output image Î. The edge
image Ê is generated using an edge image with missing regions, denoted by EM , which is
produced from IM using an existing edge detection algorithm [37].

4.1 Framework Architecture
Our framework consists of two DM-based networks: a structure generator fθ and a texture
generator gφ , where θ and φ are learnable parameters. In particular, we employ LDM [40] to
reduce computational cost in high-resolution images as described in Section 3.2. We train a
condition encoder R to encode input conditions with five channels for each network, including
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a mask, masked image, masked edge image, and hole-filled edge image, using [65]. The
encoded condition is incorporated into the generator.

The framework procedure for hole-filling follows these steps: First, the structure generator
fills in the holes of the edge image EM to produce the hole-filled edge image Ê. Then, the
texture generator creates plausible textures with the guidance of Ê while maintaining the
context of the visible regions of the input image. These generations use the iterative sampling
of DMs as described in Section 3.1. Compared to GAN and AR methods, the SGDM using
DMs has two advantages: 1) input data with noise have no holes and 2) iterative generation.
In other words, the SGDM generates an output by recursively denoising a noisy input without
holes, whereas GAN and AR methods predict the output from a masked input that lacks most
contextual information.

4.2 Individual Training
We describe the data preparation and training procedure. Suppose we have a ground-truth
image I from a training dataset. Then, we extract an edge image E using the edge detection
algorithm [37]. We degrade the image I and the edge image E using a binary mask M, which
is randomly drawn for each sample, denoted as the masked image IM = I⊙M and the masked
edge image EM = E ⊙M, respectively. We fill the masked region with zeros. To train DMs,
we create a noisy image It ∈ Rh×w×3 and a noisy edge image Et ∈ Rh×w×3 in a latent space
at timestep t (out of T timesteps) using Gaussian noises εI and encoded image εE with edge
map E(I) and E(E), respectively, following the reparameterization trick in Section 3.1.

Figure 2 illustrates our individual training process. The structure generator fθ generates,
from the noisy edge image at timestep t, a less noisy edge image at the previous timestep
t −1. More specifically, given the noisy edge image Et , masked image IM , mask M, masked
edge image EM , and timestep t, it outputs a less noisy edge image Êt−1 ∈ Rh×w×3. Similarly,
given the noisy image It , masked image IM , mask M, edge image (without noise or masked
regions) E, and timestep t, the texture generator gφ outputs Ît−1 ∈ Rh×w×3. These processes
can be written as

fθ (Et ,Rθ̂
(IM,M,EM), t) = Êt−1, gφ (It ,Rφ̂

(IM,M,E), t) = Ît−1, (2)

where θ̂ and φ̂ are parameters of condition encoders R for the structure fθ and texture genera-
tor gφ , respectively. These networks can be trained via the denoising score matching [10] in a
closed form as described in Section 3.1,

L f = EI,M,E,t,εE

[
∥ fθ (Et ,Rθ̂

(IM,M,EM), t)− εE∥2], (3)

Lg = EI,M,E,t,εI

[
∥gφ (It ,Rφ̂

(IM,M,E), t)− εI∥2], (4)

where the noises εE and εI are sampled from Gaussian distribution to create Et and It .

4.3 Joint Training
The individually trained structure generator sometimes generates unreasonable edges. This
is because edge images are sparse compared to textured images, making the modeling more
difficult. To mitigate this issue and improve generalization, we propose joint fine-tuning of
both networks in an end-to-end manner after the individual training. For this purpose, we
propose a novel joint-training strategy using optimal Bayesian denoising, as shown in Fig. 2.
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Method Modeling
Places (512 × 512) CelebA-HQ (512 × 512)

Small mask Large mask Small mask Large mask

FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑

SGDM (ours) DM 3.85 25.54 38.53 6.96 18.12 31.78 2.58 22.01 33.56 4.72 13.99 24.97

Stable Diffusion [1] DM 5.36 16.32 32.05 7.21 15.34 30.80 - - - - - -
LDM [40] DM 5.64 13.42 30.66 8.74 11.7 27.00 - - - - - -
MAT [19] GAN 4.10 25.56 37.73 7.11 18.40 32.46 2.81 19.24 31.33 5.04 11.42 24.13
MISF [21] GAN 14.52 3.58 16.23 18.05 2.8 13.19 9.92 4.27 14.53 21.04 0.43 1.88
CoordFill [28] GAN 6.32 10.4 27.74 14.52 3.58 16.23 4.27 7.35 20.13 10.54 1.57 5.52
ZITS [5] GAN 4.25 19.56 34.56 8.24 10.84 25.74 - - - - - -
MAE-FAR [4] GAN 4.06 22.18 36.82 7.71 15.06 28.74 - - - - - -
LaMa [50] GAN 4.09 22.18 36.58 8.00 13.54 27.47 4.06 8.55 21.34 8.59 2.17 7.41
CoModGAN [69] GAN 4.87 22.44 35.99 8.73 15.60 30.10 - - - - - -
PUT [27] AR 7.73 2.68 18.35 15.17 2.54 12.89 - - - - - -

Table 1: Quantitative comparisons on Places [73] and CelebA-HQ [14]. The best and second
best results are in red and blue. Stable Diffusion inpainting model is trained on LAION-
Aesthetics V2 5+ [1].

The joint training of DMs cannot be performed in a straightforward manner, such as in the
training of GANs [5, 34]. This is because the texture generator requires a noiseless edge image
as input, but the structure generator cannot generate a noiseless edge image without iterative
sampling. Even if we produce a noiseless edge image via iterative sampling, backpropagation
becomes intractable due to gradient accumulation and computational costs. We tackle this
issue by applying the single-step denoising operation in Eq. (1); that is, we obtain a noiseless
estimate by Êt

0 =F(Et). This approach allows us to perform backpropagation in an end-to-end
manner. Finally, we formulate our total loss for the joint training as

L jt = L f +Lg_o +Lg_d , (5)

where Lg_o and Lg_d are both calculated by Eq. (4), but with different edge images. Lg_d uses
edge images generated by the structure generator (Eq. (2)) and Tweedie’s formula (Eq. (1)),
encouraging the structure generator to learn texture-aware edge prediction (see Fig. 4). Lg_o
uses original (ground truth) edge images, regularizing the texture generator and preventing
overfitting to edge images generated by the structure generator and Tweedie’s formula.

5 Experiments

Datasets. The experiments were conducted with Places [73] and CelebA-HQ [14], which
cover different degrees of context (natural scenes only vs. face). The image resolution was
512×512 for all experiments. For Places, we prepared a train set and a test set with 8 million
(M) and 5,000 images. The test set was created from the official test set for our evaluation. For
CelebA-HQ, we prepared a train set and a test set with 24,183 and 2,993 images, respectively.
For a better understanding of the performances for holes with various sizes, we prepared two
different masks (i.e. large and small masks) following MAT [19].
Evaluation metrics. Following [19, 69], we used FID [9], P-IDS, and U-IDS [69] to measure
a perceptual fidelity between ground truth and hole-filled images for evaluation. P-IDS and
U-IDS robustly assess perceptual fidelity and correlate well with human preferences [69].
Similarity-based metrics such as PSNR and SSIM fail to measure completion, thus, we did
not use these metrics.
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Places Large mask

Model Samples FID ↓ LPIPS ↓

(a) Indiv. only 25M 32.28 0.188
(b) + Joint w/o OBd 0.1M 28.68 0.175
(c) + Joint w OBd 0.1M 27.47 0.170

1M 27.81 0.168

Table 2: Result of the ablation study on Places with large masks. Indiv. and Joint indicate in-
dividual and joint training settings, respectively. OBd represents optimal Bayesian denoising.

Input Original
edges

Original
image

Stable 
diffusion

MAT ZITS SGDM
(Ours)

Figure 3: Qualitative comparison between existing methods and the SGDM on Places.

Implementation details. Before the training, we initialized our generators’ weights with
stable-diffusion-2-1-base [2], which was trained using LAION-5B dataset [44]. We did not
use any prompt inputs. For the individual training, each network was trained for 25M images
on Places and CelebA-HQ. Additionally, we carried out the joint training with 1M images.
The batch size was fixed to 1. Both trainings were performed with AdamW optimizer [29]
with β1 = 0.9 and β2 = 0.999 and a learning rate of 10−5. We conducted all experiments with
four NVIDIA A100 GPUs. To generate images, we used RePaint [30] sampler.

5.1 Comparison with State-of-the-Art Methods

Quantitative comparisons. We provide the quantitative performance with different masked
regions on Places and CelebA-HQ, respectively. Only ZITS [5] used an edge map as structure
guidance. Table 1 shows the SGDM achieved the best performance in all metrics under both
small and large masks on CelebA-HQ. However, on Places, the SGDM yielded the best FID,
but demonstrated P-IDS and U-IDS comparable to MAT.
Qualitative comparisons. Figure 3 shows the qualitative comparison of the competing
methods. We see that the proposed SGDM was able to produce rational edges and coherent
textures in large holes. Stable diffusion (SD) and MAT produced content without blurring
but generated messy results, especially for the region of the human and tables. We observed
that SD often generated persons unrelated to the context of the input. ZITS failed to generate
reasonable edges for large holes and the generated textures contain a lot of blur. All these
results demonstrate that the SGDM was superior to the current state-of-the-art methods.
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Input Original (a) Indivual training (b) + Joint w/o optimal 
Bayesian denosinig

(c) + Joint with optimal 
Bayesian denosinig (Full)

Figure 4: Visual comparison among the models of the ablation study using the same seed.

Input User-edited 
edges Output Input User-edited 

edges Output

Figure 5: Image completion results using user-edited edges directly (without refinement).
The input images and user-edited edge images are the same as in Fig. 1.

5.2 Ablation Study
We conducted an ablation study with large masks using FID and LPIPS [66] to evaluate
the image quality. We created a subset with 1,000 images from the test set on Places. We
compared SGDMs with different settings: (a) only individual training with 25M training
images, (b) joint training after the individual training with 0.1M images without optimal
Bayesian denoising, and (c) joint training after individual training with optimal Bayesian
denoising using 0.1M and 1M images as our full model. Table 2 shows the result. Comparing
models (b) and (c), we see that the joint training with optimal Bayesian denoising improved
the metrics. Figure 4 visually compares the settings. Model (a) could not generate reasonable
edges and textures. Model (b) could generate edges of the animal’s head but failed to
synthesize visually coherent textures. In contrast, model (c) could generate realistic content.
We conjecture that the texture generator in model (b) did not learn contextual correspondences
between edges and textures well because it was conditioned by noisy edges in training. Joint
training with optimal Bayesian denoising effectively improved the image quality.

5.3 Applications

Sketch-guided image completion. Figure 1 shows image completion results using user-
edited edge images, highlighting SGDM’s potential of use as a user-guided image editing tool.
First, the edge images generated by our structure generator (the third column) were manually
edited by the user with sketching tools (the fifth column). Then, they were further refined
using the prior of the structure generator by SDEdit [31] (the sixth column); specifically,
we first perturbed the user-edited edge images with Gaussian noise at timestep 500 and 200
out of 1,000, respectively, and then progressively removed the noise via the reverse process.
This process, called SDEdit, can refine (potentially) unrealistic user-edited edges, making
them more compatible with the texture generator. We found this approach to be sufficiently
robust and well-suited for interactive editing. Note that our SGDM can also generate plausible
images directly from raw edges manually drawn by users, i.e. without the refinement by
SDEdit, as demonstrated in Fig. 5.
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Original 
image Input Generated 

edges Output

(a) “A photo of a smile person, laughing mouth, eyes” (b) “A photo of a person, blue eye”

Original 
image Input Generated 

edges Output

Figure 6: Language-guided image completion for (a) structure and (b) texture modifications.

Language-guided image completion. Figure 6 demonstrates a language-guided image
completion application where user-provided text prompts successfully control structure and
texture generation. Note, however, that SGDM may not work well with more complex
prompts because SGDM has not been explicitly trained using prompt input.

6 Limitation and Discussion

Failure cases. Our method sometimes struggled to generate structurally rational edges.
For example, in the second row of Fig. 1, the auto-generated edges were not very rational,
especially in the bottom right region. Nonetheless, users can manually correct such irrational
edges if necessary; this flexibility is one of the SGDM’s strengths.
Computational costs. Our method requires the iterative denoising process. In contrast, GANs
can generate images in a single step, meaning that our method inherently takes more time
than GAN-based methods. ARs-based methods such as PUT also require iterative inference,
but their computational cost is lower than ours. To investigate the computational cost issue,
we measured the time needed to complete a center-masked image for each method. As a
result, MAT (GAN-based) needed 0.098 seconds, and PUT (AR-based) required 4.06 seconds,
respectively. Our method with the RePaint sampler, on the other hand, took 133 seconds.
Potential societal impacts. Our method inherits the potential societal impact of previous
image completion methods (e.g. [30]). Generated images may reflect the biases in the datasets,
such as gender, age, ethnicity, etc. Moreover, the image-editing capability of our method
could aid in DeepFake creation [32, 54]. On the other hand, image completion may enhance
privacy protection by removing identifiable information from public-space photographs.
Future work. Even though our SGDM was not explicitly trained using prompts, our SGDM
could reasonably perform language-guided image completion for simple prompts, as shown
in Fig. 6. The original ControlNet [65], on the other hand, presents a training method that
explicitly uses prompt input to achieve more sophisticated language guidance. Exploring such
training methods that utilize prompt input is a promising direction for future research.

7 Conclusion
We have presented a structure-guided diffusion model (SGDM), which uses structural guid-
ance in image completion. We have proposed a novel training strategy to enable effective
end-to-end training. Extensive experiments show that the SGDM achieves a superior or
comparable visual quality on both Places and CelebA-HQ as compared to state-of-the-art
methods. Incorporating structural guidance has not only improved the visual quality but also
enabled user-guided image editing.
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