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Abstract
Knowledge distillation (KD) is widely adopted in anomaly detection but how to ex-

tend it to the few-shot setting, where a few normal samples are provided for detecting
anomalies in unseen categories, has not been explored yet. To remedy this problem, we
propose a novel Prototype-Aware Contrastive Knowledge Distillation (PACKD) frame-
work. Specifically, we first design a prototype extraction and integration module (PEIM)
to improve the generalization of the KD model by integrating prior information of a
given category from the teacher network into the student network. The PEIM is trained
to generate prototypes from few-shot normal samples to give priors and further uses them
to guide the student to restore distillation targets. Subsequently, we adopt a novel con-
trastive distillation strategy to robustly distill both normal sample representations and
inter-sample relations in the training phase. The negative and positive pairs are obtained
from the feature correlations of the teacher and student. Comprehensive studies demon-
strate that the proposed method outperforms the comparable few-shot methods on three
benchmarks, even in more challenging cross-dataset scenarios.

1 Introduction
Anomaly detection (AD) receives quite some attention in recent years due to its wide range
of applications, like defect detection [2], video surveillance [11] and medical diagnosis [43].
Since it is difficult to collect an exhaustive set of anomalous samples, recent efforts [8,
21, 28, 29, 37, 40] usually formulate it as an unsupervised learning problem (vanilla AD),
where only normal data is available, and has developed into several categories: reconstruc-
tion [14, 32, 35, 41], knowledge distillation (KD) [2, 3, 9, 30], embedding [7, 8, 19, 27]
and generation [20, 21, 39, 42]. They model normal distribution from the training data and
samples that deviated from the distribution are considered as anomalies. Nevertheless, these
approaches need abundant data to train a category-dependent model for each class, which
is inefficient in real-world scenarios like defect detection. To reduce the demand for train-
ing samples, a couple of studies tend to explore few-shot anomaly detection (FSAD), which
detects anomalies in a target category with a handful of normal samples.
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Most existing FSAD methods focus on extending approaches in vanilla AD to few-shot
scenarios. For instance, PatchCore [27] and DifferNet [28] are directly evaluated in the few-
shot setting. RegAD [15] introduces a proxy task to C2F [44] and trains a category-agnostic
model for AD. FAAD [37] proposes an adaptive sparse coding layer for EBAD [10] to avoid
retraining for new categories. However, we observe that knowledge distillation, one of the
mainstream methods in vanilla AD, has not been explored in the few-shot setting. To rem-
edy this problem, in this paper, we integrate two novel components into reverse knowledge
distillation (RD) [9] for few-shot anomaly detection.

The fundamental challenge lies in that the scarcity of the target category data makes fine-
tuning challenging. To mitigate this issue, we formulate the FSAD as a meta-learning prob-
lem and propose a novel Prototype-Aware Contrastive Knowledge Distillation (PACKD)
framework that improves the generalization by exploring discriminative information from
few-shot normal samples. Specifically, we first devise a prototype extraction and integration
module (PEIM) to extract prior information of a given category and guide the reconstruction
of distillation targets. The PEIM is trained to generate prototypes from the teacher repre-
sentations of support images and integrates these priors into the student representations of
the query image for decoding. The student thus generalizes to unseen categories. Then we
adopt a novel contrastive distillation strategy (CDS) to constrain the reconstruction results
between categories during training. Given the teacher and student representation of a query
sample, the teacher representations of its support sample are selected as anchors. The feature
correspondences of the anchor-student are encouraged to be consistent with that of anchor-
teacher, which further guarantees the robustness of knowledge distillation. To the best of our
knowledge, PACKD is the first KD-based method for few-shot anomaly detection.
Contributions. (1) We present a novel Prototype-Aware Contrastive Knowledge Distillation
paradigm that explores KD in FSAD. (2) We devise a prototype extraction and integration
module to improve the generalization of the KD model by integrating prior information. (3)
We adopt a novel contrastive distillation strategy to improve the robustness of KD. (4) The
proposed method outperforms the comparable methods in different few-shot scenarios.

2 Related Works
Few-Shot Anomaly Detection. Anomaly detection has achieved prominent progress in the
past few decades and can be categorized into several groups: reconstruction-based meth-
ods [9, 30, 35, 41], feature embedding [7, 8, 19, 27] and generation-based approaches [20,
21, 39, 42]. They have to collect hundreds of data to train a dedicated model for each given
category, which is time-consuming and inefficient. To improve efficiency, the few-shot set-
ting begins to achieve attention recently, where only limited samples are provided to detect
anomalies. TDG [31] trains the model by distinguishing which transformation is applied
to image patches and patch-based votes of correct transformation give the anomaly score.
RegAD [15] aggregates normal data from different categories to train a model and anoma-
lies in a new category are identified by comparing features between test and support images.
FAAD [37] models abnormal distribution and designs a sparse coding layer for model adap-
tation. Energy-based models are then leveraged to detect anomalies. In this paper, following
the setting in [15, 37], we explore knowledge distillation for few-shot anomaly detection,
which has not been explored yet.
Knowledge Distillation [13] is originally designed to transfer knowledge from a heavy net-
work to a lightweight one for model compression and has been extensively explored in un-
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supervised anomaly detection [2, 9, 29, 30, 34]. The discrepancies in features between the
teacher and student (S-T) are used for AD. However, they ignore the inter-category relation
and KD models are hard to be fine-tuned with limited data. Instead, we formulate the FSAD
as a meta-learning problem and design the PEIM to improve the model generalization and a
novel contrastive distillation strategy to explore more robust distillation.
Memory Networks. Recently, memory-augmented neural networks have been introduced
in various computer vision fields [6, 11, 14, 16, 36]. For example, MID [6] designs a mem-
ory network to capture rain streak information in time-lapse data. CDFSS [36] proposes a
memory bank to store the style from source domain instances for enhancing target samples.
In the context of anomaly detection, the memory mechanism [11, 14, 24, 26] constructs
memory banks to store normal patterns during training for suppressing the generalization of
Auto-Encoders [18]. In the few-shot setting, it is hard to build a memory bank from limited
samples. We instead train a lightweight network to adaptively generate representative fea-
tures (prototypes) from few-shot normal samples of novel categories, which are further used
to guide the student to restore targets of distillation.
Contrastive Learning [4, 12, 25, 38] aims to learn visual representations via attracting sim-
ilar instances while repelling dissimilar ones. Some recent works [23, 33, 45] introduce it to
anomaly detection. For example, CRADL [23] learns more semantic-rich representations by
it to fix the over-fixation of low-level features. SPD [45] proposes the SmoothBlend to pro-
duce negatives and treats globally augmented images as positives for conducting contrastive
learning. Differently, we adopt a novel contrastive distillation strategy for KD to explore the
knowledge of intra and inter-sample relations during the training stage.

3 Problem Formulation

We follow previous works [15, 37] to formalize the FSAD as a meta-learning problem, where
the model is trained on several categories while tested on unseen/novel categories.

Assume the training set consists of N categories, i.e.,
⋃N

c=1Tc = {(Xq,{Xn
s }k

n=1) j}|Tc|
j=1,

where Xq ∈ RH×W refers to the query image and {Xn
s }k

n=1 is its corresponding k normal
images (support images). The PEIM is trained to extract prior information from {Xn

s }k
n=1

and integrate them into Xq. Then the CDS is applied to representations of Xq and loss is
calculated. Each test sample of novel categories also owns k normal samples in inference.
The PEIM adopts the same process to them as mentioned above. Finally, anomaly detection
is conducted based on the test image following the vanilla AD [9]. Next, we will focus on
the 1-shot setting and how to extend it to the k(k > 1)-shot setting is described in Sec. 4.4.

4 Prototype-Aware Contrastive Knowledge Distillation

In this section, we present the Prototype-Aware Contrastive Knowledge Distillation (PACKD)
that explores the RD [9] in the few-shot setting, as shown in Fig. 1. The main idea is to use in-
formation in the support image to guide anomaly detection on the query sample. To this end,
we first devise the prototype extraction and integration module to improve the model gen-
eralization by integrating prior information of the support image from the teacher network
into the student network. Then a new contrastive distillation strategy is adopted to explore
the knowledge of intra and inter-sample relations for more robust knowledge distillation.
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Figure 1: Overview of the proposed PACKD framework. We first use the prototype extrac-
tion and integration module to extract prior information from the teacher representation of
the support image. These priors are then integrated into the student representation of the
query to guide the reconstruction of the distillation target. Moreover, we adopt a contrastive
loss to constrain the retrieved representation from the feature correlation perspective.

4.1 Preliminaries: Reverse Knowledge Distillation for FSAD
Reverse knowledge distillation (RD) [9] is a recently proposed method for vanilla AD and
we choose it as our basic paradigm due to its efficiency. It owns a pre-trained encoder (the
teacher network) and a trainable decoder (the student network), which is built on the one-
class embedding of the teacher. In the few-shot setting, given a normal sample for reference,
the RD is expected to detect anomalies on the test sample of the same category.

In the training phase, given a support sample Xs ∈ RC×H×W and the query sample Xq ∈
RC×H×W of the target category, the teacher extracts features {FTi

s }3
i=1 ∈ RCi×Hi×Wi based on

Xs from the first three stages and the student gives corresponding representations {FSi
s }3

i=1,
where Ci, Hi and Wi are the channel, height, and width at ith stage, respectively. Then a
knowledge distillation loss is used to enforce the feature consistency between them:

LKD(FTi
s ,FSi

s ) = 1− flat(FTi
s )

∥flat(FTi
s )∥2

· flat(FSi
s )T

∥flat(FSi
s )∥2

, (1)

where flat(·) : RCi×Hi×Wi → RCiHiWi is the flatten function and ∥ · ∥ means the l2 norm. In in-
ference, the pixel-wise similarity between {FTi

q ,FSi
q }3

i=1 is computed for anomaly detection.

4.2 Prototype Extraction and Integration Module (PEIM)
The scarcity of support images of the target category makes training RD challenging. Thus,
the FSAD is formulated as a meta-learning problem. Then how to use the support image
becomes vital. Note that the student aims to restore the teacher’s representations. So intro-
ducing information about novel categories to the student is beneficial. To this end, we design
a prototype extraction and integration module to extract priors from teacher representations
of the support sample and later integrate them into student representations of the query.
Generating prototypes. A direct way is to store features of the support image. However, the
size of the features makes it inefficient. We instead train a lightweight network to adaptively
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generate a fixed number of prototypes from the teacher representation of the support image.
Concretely, given the feature of the support image FTi

s = {(FTi
s )m ∈ RCi}HiWi

m=1 at ith stage,
we first apply a convolution (RCi×Hi×Wi → RL×Hi×Wi ) of kernel size 3 × 3 and a reshape
operation on it to produce feature F̄Ti

s = {(F̄Ti
s )l ∈RHi×Wi}L

l=1. Then the softmax is conducted
on (F̄Ti

s )l to give L attention map for aggregating the spatial dimension of FTi
s and generating

L prototypes PTi
s = {(PTi

s )l ∈ RCi}L
l=1. The whole process can be formulated as follows:

(PTi
s )l =

HiWi

∑
m=1

(F̄Ti
s )l,m

∑h,w(F̄
Ti
s )l,m

· (FTi
s )m, (2)

where (h,w) indicates the spatial index. We use the orthogonal loss Lorth [36] to make sure
that each prototype is as independent as possible from others. The generated prototypes
contain class-specific information from normal samples and we consider them as the priors.
Integrating prototypes. Since the number of support images is limited, we provide each
location in the query feature with the most similar prototype and their similarity to L proto-
types, which is different from previous works [11, 24, 26] using prototypes for retrieval.

Formally, we first measure the cosine similarity CSi
q = {(CSi

q )l ∈RHi×Wi}L
l=1 between each

prototype (PTi
s )l and each location (h,w) on the query feature FSi

q ∈ RCi×Hi×Wi as follows:

(CSi
q )l

h,w := Sim((PTi
s )l ,(FSi

q )h,w) = ∑
c

(PTi
s )l · (FSi

q )h,w

∥(PTi
s )l∥ · ∥FSi

q )h,w∥
. (3)

Then, for each position, a prototype (PTi
s )lh,w with the largest similarity are selected to form

the guide feature FSi
G ∈ RCi×Hi×Wi , where lh,w = argmaxl(C

Si
q )l

h,w. We also add up similarity

information in CSi
q across all prototypes to get the probability map FSi

P ∈ RHi×Wi . Finally,
the original query feature, the guide feature, and the probability map are concatenated along
channel dimension to provide guiding information for the student Di+1, resulting in FSi+1

q :

FSi+1
q = Di+1(FSi

q ⊕FSi
G ⊕FSi

P ), (4)

where ⊕ is the concatenation. FSi+1
q is enforced to be consistent with FTi+1

q by Eq. (1).

4.3 Contrastive Distillation Strategy (CDS)
Recent progress [22] in contrastive learning has yielded methods that empower the repre-
sentation of few-shot models. Inspired by this, we conduct the contrastive loss to explore
rich information from intra- and inter-instance correlations for KD. The teacher and student
representations of the support image and the query are exploited to form contrastive pairs.

We define the correspondence RTi,Si
a,b ∈RHiWi×HiWi between two features FTi

a ,FSi
b ∈RCi×Hi×Wi :

RTi,Si
hawahbwb

(FTi
a ,FSi

b ) = ∑
c

(FTi
a )ha,wa · (F

Si
b )hb,wb

∥(FTi
a )ha,wa∥ · ∥(F

Si
b )hb,wb∥

, (5)

where each entry stands for the cosine similarity between feature at spatial position (ha,wa)

of FTi
a and position (hb,wb) of FSi

b . In the context of knowledge distillation, the correspon-
dence between teacher and student features provides semantic relations of different regions
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from normal samples and we adopt it to construct the contrastive objective. More specifi-
cally, given a query’s teacher and student representations FTi

q and gi(F
Si
q ) at ith stage, where

gi(·) is the projection head [5] for transformation, we select the correspondence between
teacher representation FTi

s of the support image and FTi
q as an anchor correlation, denoted as

RTi,Ti
s,q . RTi,Si

s,q and RTi,Si
s,q− are treated as positive-negative pairs, where q− belongs to a different

category. The contrastive distillation loss with the temperature coefficient τ is formulated as:

LNCE(FTi
s ,FTi

q ,FSi
q ) =− RTi,Ti

s,q ·RTi,Si
s,q /τ + log(∑

q−
e

R
Ti ,Ti
s,q ·RTi,Si

s,q−/τ
). (6)

The CDS attracts intra-sample correlations while repelling inter-sample ones. And this for-
mulation brings several merits. 1) Since the sources for calculating the anchor are fixed, the
student can be effectively optimized. 2) As one query sample owns k support images, the
student is supervised by multiple anchors, which further guarantees the robustness of KD.

4.4 Extension to the k-shot Setting and Anomaly Detection
Extension to the k-shot setting. In PEIM, we generate L prototypes for each support sample
and put these kL prototypes together for similarity calculation in Eq. (3) and further selection.
Besides, for the CDS, Eq. (6) is computed on all support samples and we take their average.

Finally, the objective contains the distillation loss, contrastive loss and orthogonal loss:

L=
3

∑
i=1

[LKD(FTi
q ,FSi

q )+
λ1

k
·

k

∑
n=1

LNCE(FTi
sn ,F

Ti
q ,FSi

q )+λ2 ·Lorth(PTi
s )], (7)

where λ1 and λ2 are a balancing hyper-parameter and set 0.5 by default.

5 Experiments

5.1 Experimental Setup
Datasets. Our experiments are based on three large-scale benchmarks, i.e., MVTec AD [1],
VisA [45], MPDD [17]. The MVTec AD contains more than 5000 images of 15 classes
and the Visa is composed of 10,821 images for 12 categories. Besides, MPDD consists of 6
classes of about 1300 images. Images in these benchmarks own full pixel-level annotations.
Evaluation metrics. We evaluate our method by the Area Under the Receiver Operator
Curve (AUROC), which is a common metric adopted in AD [9, 15]. The image-level and
pixel-level AUROC (%) are computed for anomaly detection and localization, respectively.
Baselines. We compare the proposed PACKD with several SOTA few-shot and vanilla AD
methods. For the former, DifferNet [28], TDG [31], PatchCore [27] and RegAD [15] are
selected, which are trained by their default settings. For the latter, we consider SPADE [7],
STPM [34] and RD [9] and train them with the provided normal samples of novel categories.
Implementation details. All images are resized into 256× 256 and Adam is used as the
optimizer with a learning rate of 0.0005 during training. The model is trained for 100 epochs
with a batch size of 32. L is set to 20 for all stages and τ is 0.05. We employ the default set-
tings in [9] to implement RD, i.e., an ImageNet pre-trained WideResNet50 as the teacher and
a corresponding reversed structure as the student network. Support samples are augmented
by rotation as in [15] and all experiments are conducted on a Nvidia Tesla V100 GPU.
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Method
MVTec AD [1] VisA [45] MPDD [17]

k=2 k=4 k=8 k=2 k=4 k=8 k=2 k=4 k=8

SPADE [7] 70.7 71.6 75.3 80.7 81.7 - 58.2 58.3 58.5
STPM [34] 74.2 74.8 77.6 72.5 73.1 74.6 62.4 62.6 63.1

RD [9] 75.5 76.9 78.5 75.9 76.9 77.2 61.8 62.1 62.4
TDG [31] 73.2 74.4 76.7 71.7 72.9 73.4 60.3 63.5 68.2

DifferNet [28] 80.6 81.3 83.2 74.3 76.2 80.6 60.2 63.3 68.5
PatchCore [27] 87.8 89.5 94.3 81.6 85.3 - 59.5 59.8 60.0

RegAD [15] 85.7 88.2 91.2 75.3 79.5 81.9 63.4 68.3 71.9

Ours 90.2 91.6 95.3 83.4 86.3 87.5 66.6 69.8 70.5
(a) K-shot anomaly detection performance. Image-level AUROC (%) is reported.

Method
MVTec AD [1] VisA [45] MPDD [17]

k=2 k=4 k=8 k=2 k=4 k=8 k=2 k=4 k=8

SPADE [7] 79.8 80.2 80.5 82.2 82.6 - 75.4 75.9 76.2
STPM [34] 59.8 60.8 61.6 71.4 72.3 73.1 75.8 76.2 76.6

RD [9] 79.3 81.4 83.9 79.3 81.4 81.9 74.5 75.5 75.7
PatchCore [27] 91.0 91.3 91.6 94.7 95.7 96.3 78.2 78.7 79.0

RegAD [15] 94.6 95.8 96.8 95.6 96.0 97.0 93.2 93.9 95.1

Ours 95.0 96.2 97.3 96.3 97.2 97.9 94.4 94.8 95.3
(b) K-shot anomaly localization performance. Pixel-level AUROC (%) is reported.

Table 1: Few-shot anomaly detection results on MVTec AD, VisA, and MPDD datasets.
Results are the average score over all categories and listed as the average AUC of 10 runs.

5.2 Main Results

Few-shot anomaly detection and localization. Tab. 1 (a) and (b) respectively demonstrate
the comprehensive comparisons of k-shot anomaly detection and localization on MVTec
AD [1], VisA [45] and MPDD [17] benchmarks. Several representative works in FSAD and
vanilla AD are studied. It is found that a larger k leads to better results since more information
about the category is provided. Besides, methods in the vanilla AD, i.e., the RD, STPM, and
SPADE under-perform their competitors in the few-shot setting. This derives from the fact
that compared to FSAD approaches with fewer trainable parameters, the scarcity of category
data makes fine-tuning these models with massive parameters challenging. On the contrary,
the proposed PACKD is trained to explore discriminative information from few-shot novel
categories for better generalization and thus achieves better results.
Cross-dataset FSAD. In real-world industrial scenarios, there exist domain shifts, derived
from varying poses and imaging conditions, between novel categories and the seen ones. To
model this setting, we pre-train the proposed method on one dataset and test it on another
one. Tab. 2 demonstrates the results on the MVTec AD and MPDD datasets. Compared to
the intra-dataset setting in Tab. 1, domain shifts make AD more difficult and thus degrade the
overall performance. Moreover, results from pre-training on MPDD outperform those from
pre-training on MVTec AD by about 20% because the MPDD dataset is more challenging
for its various spatial orientations, light intensities, and non-homogeneous backgrounds. And
the learned ability on it can be adapted to detecting anomalies in easier situations.

5.3 Ablation study

We conduct ablation studies to evaluate the proposed method and the RD [9] is our baseline.
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Method
MVTec AD→MPDD MPDD→MVTec AD

k=2 k=4 k=8 k=2 k=4 k=8

TDG [31] 54.3 59.1 60.9 66.2 67.2 68.6
DifferNet [28] 57.6 62.2 66.4 76.0 78.9 82.8
RegAD [15] 60.1 63.4 67.6 82.4 85.1 88.7

Ours 62.1 65.8 68.4 83.8 86.9 90.5

Table 2: Cross-dataset few-shot anomaly detection results on MVTec AD and MPDD bench-
marks. Test samples come from a different dataset and image-level AUROC (%) is reported.

PEIM CDS k=2 k=4
75.5 76.9√
86.1 89.0√
82.7 84.3√ √
90.2 91.6

(a) Key components on MVTec AD.

k MVTec AD VisA
2 90.2 83.4
8 95.3 87.5
32 95.9 89.7
64 96.8 93.6

(b) Number of shots.

N k = 2 k = 4
0 75.5 76.9
5 81.5 84.9

10 85.7 88.2
14 90.2 91.6
(c) Training categories.

L k = 2
10 89.6
20 90.2
50 90.5
100 90.9
(d) Prototypes.

Backbone MVTec AD VisA MPDD
RegAD [15] 85.7 75.3 63.4

ResNet18 86.7 77.3 63.8
ResNet34 87.6 80.2 64.5
ResNet50 88.9 82.1 65.4

WideResNet50 90.2 83.4 66.6
(e) Different teacher backbones.

Operation MVTec AD VisA MPDD
Generation [11] 82.7 77.9 62.4
Integration [11] 88.4 82.2 65.2

Ours 90.2 83.4 66.6
w/o rotation [15] 87.2 81.1 63.9

(f) Prototype generation and integration.

Table 3: Ablation study on different benchmarks. Image-level AUROC (%) is reported.

Study on key components. We study the impacts of the prototype extraction and integration
module (PEIM) and the contrastive distillation strategy (CDS). Tab. 3 (a) reports the results.
The baseline (first row) having no access to the test categories owns inferior performance.
Introducing priors via the PEIM significantly improves the baseline by about 10.6%. Com-
pared to PEIM, the CDS gives less improvement (7.2% v.s. 10.6% on k = 2 and 7.4% v.s.
12.1% on k = 4), which means learning the ability to extract and integrate priors is more
important. Of course, combining them all achieves the best results.
Study on the number of shots. The shot k controls the amount of the prior information
about categories and we investigate its effects in Tab. 3 (b). It is observed that a larger k
contains more priors and thus better results are obtained. However, compared to the VisA
dataset, the performance gains for the MVTec AD dataset are limited as k increases, e.g.,
0.9% ↑ versus 3.9% ↑ from k = 32 to k = 64. We guess samples in the same category, e.g.,
the screw, are similar and thus provide redundant information, limiting the improvement.
Study on category number. We train the model on different categories to obtain the ability
of extracting prior information from few-shot normal samples and integrating them to the test
sample. Impacts of the category number are explored in Tab. 3 (c). First of all, adopting the
pre-training consistently improves anomaly detection. Besides, more categories give more
cases to model the extraction and integration process, which produces better results.
Study on prototype number. The number of prototypes decides how many priors are ex-
tracted from support samples. Tab. 3 (d) shows its effects. As can be found that generating
more prototypes brings better results. However, the performance gains are not proportional
to the increased amount of L (0.6% ↑ from L = 10 → L = 20, 0.3% ↑ from L = 20 → L = 30
and so on). To balance the performance and time consumption, L is set to 20 by default.
Study on prototype generation and integration. In the paper, we train a lightweight net-
work to generate and integrate prototypes. Methods in [11, 14] can also be used for this
purpose, which is explored in the first three rows of Tab. 3 (f). Since they set memory vec-
tors as parameters of the network and optimize them by back-propagation, rich information
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Test Image GTRegAD+PEIMBaseline
(RD)

+PEIM+CDS
(Ours)

Support 
Image1

Support 
Image2

Candle

Screw

Cable

Figure 2: Visualization on impacts of PEIM and CDS for anomaly detection in the 2-shot set-
ting. The PEIM pays attention to anomalous regions while CDS further suppresses responses
to anomaly-free areas. Our method localizes anomalies more accurately than RegAD [15].

in the support sample is not explored and inferior results are obtained. Instead, our method
is trained to generate and integrate priors from the support sample to provide the network
with guidance for detecting anomalies on the query sample, leading to better performance.
Study on backbones. Tab. 3 (e) gives the ablation on backbones. The WideResNet50, which
is deeper and wider, has a stronger representative capacity and thus facilitates the detection of
anomalies. Besides, compared to the work RegAD [15], building the proposed PACKD upon
smaller neural networks, e.g., ResNet18 and ResNet34, still owns competitive performance.
Study on the support set augmentation. Following previous works [15, 28, 31], we also
adopt the rotation transformation to few-shot samples for augmentation. Tab. 3 (f) inves-
tigates its impacts. We observe that it produces consistent improvements, i.e., 3.0% ↑ on
MVTec AD, 2.3% ↑ on VisA, and 2.7% ↑ on MPDD. Since the augmentation diversifies
few-shot samples, the PEIM extracts richer prior information from these augmented data to
provide guidance for the student network, thus benefiting anomaly detection.

5.4 Visualization
To Intuitively illustrate how the proposed PEIM and CDS improve the baseline RD [9] for
AD, we give some visual comparisons in Fig. 2. RD presents poor generalization since the
tested categories are unseen during training. Taking support images as a reference, the PEIM
provides vital cues for detecting anomalies in the test image. For example, the wire of the
“cable" in support images is straight but it is bent in the test image. Similar cases can be
found in the “candle” and “screw”. It is also observed that the CDS helps suppress responses
to anomaly-free areas since it ensures the feature consistency between the S-T for them.

6 Conclusion
In this work, we present a novel Prototype-Aware Contrastive Knowledge Distillation frame-
work to explore knowledge distillation in few-shot anomaly detection. A prototype extrac-
tion and integration module is first proposed to generate prototypes from the teacher repre-
sentations of support images and integrate these priors into the student representations of the
query image for later decoding, significantly improving the generalization. Then, a novel
contrastive distillation strategy is adopted to further improve the robustness of KD.
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