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Abstract

Real-world data often exhibit long-tailed distributions, on which modern deep net-
works often make skewed predictions. Post-hoc correction approaches tackle this prob-
lem by introducing class-dependent correction biases to adjust the posterior distribution
p̂s(y|x), thereby compensate the discrepancy between training distribution ps(y) and test
distribution pt(y). Most works along this line focus on the design of correction bias,
but little attention has been paid to the estimation of p̂s(y|x) which is fairly crucial for
post-hoc approaches. In this paper, we highlight the inaccurate estimation of p̂s(y|x)
learned through cross-entropy loss minimization, which produces poorly calibrated pre-
dictions and limits the effectiveness of post-hoc correction, particularly under large label
distribution shifts. To this end, we propose Predictive Consistency Learning (PCL) for
long-tailed learning that learns to maintain consistency between current predictions and
the aggregation of historical predictions, which iteratively refine p̂s(y|x) to improve the
post-hoc correction. In large-scale dataset, the storage of historical predictions requires
high space complexity. To address this issue while maintaining similar performance,
we further propose the compressed PCL (ComPCL) that reduces the space complexity
of storing historical predictions to linear by label compression and debias operations.
Experiments demonstrate that our method achieves significant improvements on several
long-tailed recognition benchmarks. Code will be made available.

1 Introduction
The recent success of neural networks is largely attributed to the availability of large amounts
of training data with sufficient samples per class. However, collecting sufficient samples for
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each class is often challenging in real-world scenarios, where the data typically follows an
extreme long-tailed distribution. Unfortunately, state-of-the-art deep models tend to produce
skewed predictions in long-tailed recognition and often fail to recognize tail classes.

Early long-tailed learning approaches used data re-sampling or loss re-weighting to re-
balance learning for different classes. However, these approaches tend to learn overfitted
representations and generalize worse than standard training [15]. To overcome this, recent
works have instead adopted two-stage approaches, including decoupled training [15, 26] and
post-hoc correction [10, 12, 27] by adjusting the classifier or logits in the second stage while
keeping the representation of the first stage unchanged. Specifically, post-hoc correction
methods introduce class-dependent correction biases to the logits, reflecting the discrepancy
between the source (training) distribution ps(y) and the target (test) distribution pt(y).

While previous post-hoc correction approaches focus on the label distribution shift be-
tween ps(y) and pt(y), little attention has been paid to the predicted class posterior proba-
bilities p̂s(y|x) from long-tailed training data. In [12, 27], the correction bias is derived as-
suming that predicted p̂s(y|x) is the true ps(y|x). However, deep neural networks often learn
poorly calibrated p̂s(y|x) [9], indicating a mismatch between prediction confidence and true
correctness likelihood. In this work, we demonstrate that one-hot labels for cross-entropy
(CE) loss encourage models to be equally confident for both head and tail classes, leading to
sharp outputs and violate the calibration principle. We verify that poorly calibrated models
fail to output desirable predictions via post-hoc correction under large test label distribution
shift. Moreover, one-hot supervision ignores inter-class correlations, restricting knowledge
transfer between classes.

To overcome these obstacles, we propose prioritizing the learning of p̂s(y|x) and adapt-
ing predictions in a post-hoc manner. As illustrated above, we want hard-to-classify samples
(especially tail samples) to be less confident on p̂s(y|x) in order to be consistent to its cor-
rectness. We achieve this by introducing adaptive soft labels derived from the aggregation of
the model’s historical predictions. Specifically, we introduce Predictive Consistency Learn-
ing (PCL), which enforces consistency between current prediction probabilities and adaptive
soft labels to mitigate miscalibration and maintain inter-class correlations. As the learning
difficulty of different classes varies in long-tailed distribution, we adopt Class-aware Weight
Adjustment (CWA) to further refine predictions for different classes. Morover, to reduce the
high memory cost of storing historical predictions in PCL, we propose Compressed PCL
(ComPCL) with Adaptive Label Compression (ALC), which reduces space complexity to
O(N), where N is the size of the training set. To counteract the associated class bias from
label compression, we introduce Equivalent Class Distribution (ECD), which replace the
original class distribution p(y) with the estimated p̂ecd(y) so as to adaptively eliminate the
bias with no extra cost.

We evaluate our method on several long-tailed recognition benchmarks, demonstrating
significant improvements over different post-hoc correction methods and achieving state-of-
the-art performance. Furthermore, our method incurs minimal computational overhead in
terms of training time and introduces only an additional linear space complexity. Therefore,
it can serve as a plug-and-play module to enhance various existing methods.

2 Related Work

Long-Tailed Learning. Data resampling and loss reweighting are two common approaches
for mitigating class imbalance. However, they usually learn overfitted representations than
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standard learning [15]. There are also many other approaches proposed for long-tailed learn-
ing with different strategies including decoupled training [15, 26], meta-learning [24, 28],
contrastive learning [5, 14, 16, 17, 30], knowledge distillation [11, 22] and ensemble [31, 38].
Recently, some logits manipulation approaches have been proposed, including loss mod-
ification [27, 28, 34] which modifies the logits during training, and post-hoc correction
[10, 12, 23] which post-processes the model predictions during evaluation. Although im-
plemented differently, the former is equivalent to the latter if the learning objectives are
convex [27]. In practice, post-hoc correction is more flexible since it does not require re-
training the model when the test distribution changes. Prior post-hoc correction approaches
have primarily focused on the bias term associated with ps(y) and pt(y), while our method
emphasizes learning a more calibrated p̂s(y|x) to better align with the post-hoc correction
theory and remedy the flaw of post-hoc correction approaches.
Confidence Calibration. In addition to classification performance, calibration is an impor-
tant property for the reliability and interpretability of machine learning algorithms. It refers
to the alignment between model’s predictive confidence and the true correctness likelihood.
[9] discussed that modern neural networks are often poorly calibrated. Many strategies have
been proposed to improve calibration, including temperature scaling [36], histogram binning
[35], ensemble methods [21, 32], and mixup [29, 36, 37]. In this work, we investigate the
relationship between calibration and post-hoc correction of label distribution shift.

3 Method

3.1 Preliminaries

Notations. Let {N1,N2, · · · ,NK} and {M1,M2, · · · ,MK} denote the number of samples per
class for the training (source) set Ds and test (target) sets Dt , respectively. Without loss
of generality, we assume that N1 ≥ N2 ≥ ·· · ≥ NK . In long-tailed recognition, the training
set is highly imbalanced with a high imbalance ratio r = N1/NK , and the tail classes have
very few training samples. Early long-tailed recognition approaches assume a balanced test
distribution pt(y) with Mi = M j for all i, j, while recent works [12, 38] allow for arbitrary
test distributions.
Revisit of Post-hoc Correction. Under the label distribution shift between ps(y) and pt(y),
previous works introduce correction biases to minimize the average classification error.
These biases can be applied either through loss modification during training or post-hoc
correction during evaluation. For example, [27, 28] introduce an additive bias to the training
logits: fθ (x)[c] + τ · log ps(c), where τ is a hyper-parameter to control the strength. The
post-hoc version of the bias is given by reversing the sign of the bias term at test time:

argmaxc fθ (x)[c]− τ · log ps(c). (1)

Assuming the class-conditional data distribution remains unchanged, i.e. ps(x|y) = pt(x|y),
this bias can be derived by noting that p(y|x) ∝ p(x|y) · p(y). In theory, τ should be equal
to 1. However, in practice, the optimal τ∗ may be different, which reflect the degree of bias
of model predictions. In this case, tuning τ to maximize accuracy is close to calibrating the
logits using temperature scaling [9].
Analysis. The post-hoc correction biases reflect the discrepancy between the source distri-
bution ps(y) and the target distribution pt(y), and can be explicitly calculated and uniquely
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Figure 1: The average prediction Ex[p̂t(y|x;θ)] of CIFAR-100-LT under different test dis-
tributions. The training distribution is Forward-100. As the distribution shift becomes large
(from left to right), the average prediction no longer matches pt(y).

determined. However, they typically assume that the estimated posterior probabilities p̂s(y|x)
are accurate approximations of the true probabilities ps(y|x), which may not hold, particu-
larly for tail classes.

In Fig. 1, we illustrate that poorly calibrated models fail to adapt to the target distribution
by visualizing the average prediction probability Ex[p̂t(y|x;θ)]. From a statistical perspec-
tive, a well-calibrated model should have an average prediction probability Ex[ p̂t(y|x;θ)]
that closely matches the label frequency pt(y). When pt(y) is imbalanced, models are ex-
pected to be more confident in sample-rich categories, which is a reasonable solution for
maximizing the overall accuracy. However, in Fig. 1, model trained using CE is unable to
well match the ideal pt(y) when the distribution shift becomes large.

The reasons can be summarized into the following two points. Firstly, minimizing the
cross-entropy loss with one-hot labels enforces each class to be equally confident, which
violates the calibration principle when dealing with long-tailed distributions. To reflect the
true correctness likelihood, hard-to-classify samples, especially tail samples, should output
smoother predictions on long-tailed dsitribution with more relaxed targets, rather than being
uniformly pushed towards 1.0 using one-hot labels. Moreover, one-hot labels provide limited
supervision for minority classes, as the inter-class correlations are ignored. This hampers the
transfer of knowledge from the majority to the minority classes, which is essential for post-
hoc correction, where the correction is applied in a class-wise manner as shown in Eq. (1).

3.2 Predictive Consistency Learning
The observations discussed above motivate us to estimate the model’s posterior probabilities
p(y|x) more accurately, which would enhance the effectiveness of post-hoc correction. Ide-
ally, we want hard-to-classify samples to produce less confident predictions and also main-
tain the inter-class correlations. It can be achieved by introducing a smoothing function
T (x) ∈ RK for each sample and obtaining the soft target cross-entropy loss L(x,T ) as:

L(x,T ) =−
K

∑
j=1

T j(x) · log [p̂s(y = j|x)] , (2)

where T j(x) is the j-th element of T (x). It can be proved that for soft target cross-entropy,
the optimal solution of Eq. (2) is p∗s (y = j|x) = T j(x)/∑cTc(x). Thus, the prediction p̂s(y|x)
would align with T (x), meaning that lower values of T j(x) would result in lower predictions
for that class and vice versa.

To obtain an accurate estimation of p̂s(y|x), T (x) can be optionally formulated as the
output of a teacher model or an ensemble model. However, this would bring extra train-
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ing costs. Besides, the output of another model may not well capture the highly predictive
uncertainty of tail classes, leading to T (x) being too far from the current prediction and pro-
ducing large gradients during training. Motivated by [18, 20], we instead propose using the
exponential moving average of historical predictions H(x) for T (x). By doing so, Eq. (2)
learns to maintain consistency for each sample and constrain the prediction probability in an
adaptive way.

To achieve this goal, we propose Predictive Consistent Learning (PCL), which optimizes
the posterior prediction p̂s(y|x) to enforce prediction consistency of training samples with
historical predictions. PCL can be viewed as an iterative learning method of the p̂s(y|x),
similar to the expectation-maximization (EM) algorithm. In the E-step, it updates the ex-
pected prediction T (x) based on historical predictions H(x). In the M-step, it uses soft
target cross-entropy to encourage the model’s prediction to be consistent with T (x).

Given an input x and ground-truth label i, T (x) in epoch e for the j-th class is defined as:

T e
j (x) = (1−αe,i) ·δi, j +αe,i · H̄e

j(x), (3)

H̄e
j(x) = (1−β ) ·He−1

j (x)+β · H̄e−1
j (x), (4)

He−1
j (x) = p̂s(y = j|x;θ e−1), (5)

where β is the EMA factor and δi, j is the Kronecker Delta function, representing the one-hot
target. αe,i is a parameter controlling the relative strength of one-hot and H̄(x), which will
be introduced next.

During the early stages of training, the historical predictions may not be well learned and,
consequently, may be less trustworthy in representing the hardness of the samples. There-
fore, it is necessary to progressively increase the strength of H̄e

j(x). PSKD [18] propose a
simple solution to set the αe = e/E, where E represent the total number of epochs. However,
due to the lack of sufficient gradient descent updates, the predictions for tail classes may be
arbitrarily random and, therefore, less trustworthy than those for head classes. To tackle
this, we propose Class-aware Weight Adjustment (CWA) for αe. Specifically, we introduce
a class-dependent factor:

αe,i = α ·
( e

E

)λ ·(1−qi)
, (6)

where qi = Ni/N1 is correlated with class frequencies. The hyper-parameter λ controls the
exponential term. By using 1− qi, the exponential term is designed to be negatively corre-
lated with the number of samples per class.

PCL improves p̂s(y|x) by regularizing the predictions of hard samples. To illustrate this,
consider a toy example of binary classification. Let us assume that the one-hot target for
input x is [1,0], and the predicted probability is [p,1− p]. According to Eq. (3), the weighted
T (x) would be [1−α(1− p),α(1− p)]. When x is a hard sample, meaning that 1− p is
high, T (x) is flatter than the one-hot target, thereby enforcing a flat prediction of x to match
its true likelihood. Conversely, when x is an easy sample, meaning that 1− p is low, T (x) is
close to the one-hot target, and the effect of PCL on them is much smaller.

3.3 Compressed PCL
Although effective, storing H(x) requires O(N ·K) additional memory cost, which can be
expensive when the dataset is large. To address this issue, we propose Compressed PCL
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(ComPCL), which compresses the storage of H via a compression function C and then per-
forms a debias operation to alleviate the associate class bias caused by the class imbalance.
Compression. To compress the size of T (x), the simplest solution is to set β = 0 and
store only the top-k highest prediction scores, which reduces the memory cost to O(N · k).
However, this solution cannot ultimately maintain the information of the complete H(x),
since hard samples require a larger k to approximate the original one. Therefore, we propose
Adaptive Label Compression (ALC) via the adaptive prediction set (APS) [1] on conformal
predictions to adaptively compress H(x).

Denote by o(·) the permutation function such that Ho(1)(x)≥Ho(2)(x)≥ ·· · ≥Ho(K)(x).
Then, the size of the adaptive prediction set S(x;H,γ) at the coverage level γ is defined as:

S(x;H,γ) = min{c ∈ [1,K] :
c

∑
j=1

Ho( j)(x)≥ γ}. (7)

Then, the adaptive prediction set is defined as

Cγ(x) = {c : o(c)≤ S(x;H,γ)}. (8)

Based on Cγ(x), we keep the value of T j(x) if j ∈ Cγ(x) and set it to zero otherwise. In
practice, γ = 0.95 is sufficient to compress the average size of CIFAR-100-LT to be less than
5, while maintaining 95% prediction information.
Debias. After compression, as the model prediction more prefers majority classes, the mi-
nority classes are more likely to be excluded by Cγ . Thus, the compressed H(x) would
exhibit more bias towards the majority, leading to a higher τ∗ in Eq. (1). To tackle this issue,
one option is solving the optimal transport (OT) [10] on the predictions with the Sinkhorn-
Knopp algorithm [6], which is an effective debias operation when the balanced validation or
test data is available [10, 38]. To avoid the computation of solving OT, following the distri-
bution criterion of Fig. 1, a simplified alternative is to tune τ to maximizing the entropy of
the average class distribution (EntMax) to make it closer to uniform distribution. It is also
an effective operation that can find nearly optimal values of τ . However, both approaches
require an additional balanced set for tuning and can be computationally inefficient.

To make the debias operation more efficient and eliminate the dependence of an ad-
ditional balanced set, we propose to compute the Equivalent Class Number of the train-
ing set, which is defined as the average prediction at the last epoch: N̂ecn(c) = ∑x p̂s(y =
c|x;θ E) ,∀c ∈ [1,K]. Then we replace ps(y) in Eq. (1) with the Equivalent Class Distribu-
tion (ECD), which is defined as p̂ecd(y) = N̂ecn(y)/∑c N̂ecn(c). This adaptively eliminates
the bias based solely on training logits. the introduction of p̂ecd decouples the class bias
from the value of τ . Thus, for any strength of class bias, τ only needs to be set to the default
value of 1. Besides, The computation of N̂ecd can be performed online, incurring minimal
computational overhead.

4 Experiments

4.1 Datasets

CIFAR-LT. CIFAR-10-LT and CIFAR-100-LT are long-tailed versions of CIFAR-10 and
CIFAR-100 datasets [19] with different imbalance ratios r =N1/NK , where r ∈{10,50,100}.
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Unless otherwise specified, we use 100 as the default ratio. To obtain more reliable results,
we report the average and standard deviation of 5 different runs. We use ResNet-32 as the
backbone following [2], which contains 0.47M parameters.
ImageNet-LT. ImageNet-LT is a long-tailed subset of ImageNet [7] with an imbalance ratio
of 256. We train the ResNet-50 from scratch with 200 epochs with a cosine classifier.
Places-LT. Places-LT is a long-tailed subset of Places [40] with an imbalance ratio of 996.
Following previous works, we fine-tune an ImageNet pre-trained ResNet-152 on Places-LT.

4.2 Comparisons to Prior Methods
We compare our method with prior methods in Tab. 1 and Tab. 2. Existing methods usually
adopt two kinds of settings: weak setting, which involves using standard data augmentation
and training techniques; and strong setting, which employs advanced techniques like stronger
data augmentation or contrastive learning. Therefore, in order to have a fair comparison,
we present the table in two segments: the upper segment corresponds to the weak setting,
while the lower segment corresponds to the strong setting. In the strong settings, we use
AutoAugment [3] for CIFAR-10-LT and CIFAR-100-LT, and use the the sharpness-aware
optimization (SAM) [8] and RandAugment [4] for ImageNet-LT and Places-LT.

(1) CIFAR-LT. The results for CIFAR-LT are presented in Tab. 1. Compared with the
PC-Softmax baseline, our method shows impressive improvements for different imbalance
ratios. For example, when the imbalance ratio is 100, our method achieves up to 4.4%
and 3.9% improvements for CIFAR-10-LT and CIFAR-100-LT, respectively. (2) ImageNet-
LT. The results for ImageNet-LT are presented in Tab. 2. Our method achieves 55.8% top-
1 accuracy without any additional modifications like strong data augmentation, mixup, or
ensemble, which is a superior performance compared to previous methods. In the strong
setting, we further incorporate the SAM and RandAugment into our method. By increasing
the training epochs to 400 following [5], we achieve top-1 accuracy of 60.0%, as shown in
the table. (3) Places-LT. We evaluate our method on Places-LT, as presented in Tab. 2, and
again achieve significant improvements over previous methods. Specifically, our methods
produces more balanced predictions, where the accuracy for few-shot split is only around
5% lower than the many-shot split, showing the effective of PCL for dealing with long-tailed
problem.

Table 1: Top-1 accuracy (%) on CIFAR-10-LT and CIFAR-100-LT.
Dataset CIFAR-10-LT CIFAR-100-LT

Imbalance Ratio 100 50 10 100 50 10

Softmax 70.4 74.8 86.4 38.4 43.9 55.8
LDAM-DRW [2] 77.1 81.1 88.4 42.1 46.7 58.8
MiSLAS [39] 82.1 85.7 90.0 47.0 52.3 63.2
TSC [25] 79.7 82.9 88.7 43.8 47.4 59.0
MetaSAug [24] 80.7 84.3 89.7 48.0 52.3 61.3
PC-Softmax [12] 79.4 ±0.5 82.8 ±0.3 88.4 ±0.4 45.5 ±0.7 50.3 ±0.4 60.0 ±0.3
PCL 83.8 ±0.42 86.1 ±0.21 90.1 ±0.10 49.4 ±0.37 54.0 ±0.20 62.9 ±0.15

BALMS [28] 81.5 ±0.0 - 91.3 ±0.1 50.8 ±0.0 - 63.0 ±0.1
PaCo [5] - - - 52.0 56.0 64.2
CC-SAM [41] 83.9 86.2 - 50.8 53.9 -
DCRNets [13] 85.0 - - 51.4 - -
PCL + AA 85.5 ±0.34 87.5 ±0.21 91.3 ±0.22 52.1 ±0.16 57.0 ±0.24 65.0 ±0.20
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Table 2: Top-1 accuracy (%) on ImageNet-LT and Places-LT.
Dataset ImageNet-LT Places-LT

Method Many Med. Few All Many Med. Few All

Softmax 64.0 33.8 5.8 41.6 45.9 22.4 0.4 27.2
cRT [15] 58.8 44.0 26.1 47.3 42.0 37.6 24.9 36.7
OLTM [10] - - - 52.4 - - - -
TSC [25] 63.5 49.7 30.4 52.4 - - - -
MiSLAS [39] 61.7 51.3 35.8 52.7 39.6 43.3 36.1 40.4
PC-Softmax [12] 64.1 48.4 32.4 52.2 43.1 39.7 33.9 39.8
PCL 66.2 53.0 36.1 55.8 43.5 42.6 38.0 42.0

CC-SAM [41] 61.4 49.5 37.1 52.4 41.2 42.1 36.4 40.6
PaCo [5] 65.0 55.7 38.2 57.0 36.1 47.9 35.3 41.2
PaCo + DLSA [33] 64.6 54.9 41.8 56.9 44.4 44.6 32.3 42.1
PaCo + DCRNets [13] - - - 58.0 - - - 41.7
PCL + SAM + RA 67.3 58.8 43.5 60.0 43.5 44.0 39.9 43.0

4.3 Ablation Study

The value of α . In Fig. 2(a), we investigate the impact of α by varying its value from 0 to
1 on CIFAR-100-LT. When α = 0, Eq. (2) reduces to CE loss. As α increases, we observe
a consistent improvement in performance across different values. The optimal value of α
varies depending on the dataset complexity and imbalance ratio. Specifically, we use α∗ is
0.9 for CIFAR-10-LT and CIFAR-100-LT, 0.7 for ImageNet-LT, and 0.4 for Places-LT.
The value of λ . In Fig. 2(b), we study the influence of λ with different computations for
qi in the CWA. When qi = 0, tuning λ is equivalent to tuning a class-agnostic exponential
term in Eq. (6). As shown, the class-agnostic way cannot achieve as high a performance
improvement as the class-aware way, where qi = Ni/N1. It verifies the effectiveness of class-
aware weight adjustment, which allows for composing better T (x) that depend on the class
distribution.
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Figure 2: (a) Ablation study of the value of α on CIFAR-100-LT. (b) Ablation study of the
value of λ with different computations for class-aware qi on CIFAR-100-LT. (c) Comparision
of different compression and debias operations when varying the size of T (x).

Each component. In Tab. 3, we evaluate the influence of each component. As shown, each
component contributes to its respective improvement on performance or efficiency. Com-
pared with cross-entropy, PCL achieves significant improvement with all other settings be-
ing the same. By introducing the label compression and debias operation, ComPCL achieves
similar performance with only much lower space complexity.
Compression and Debias. In Fig. 2(c), we examine the impact of compression and debias
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Table 3: Ablation studies of the influence of each component on CIFAR-100-LT.
Method α CWA ALC ECD Memory Cost (×N) Acc. (+PC)

CE 0 45.5

PCL
! 100 48.4 +2.9
! ! 100 49.2 +3.7

ComPCL

! top-5 5 46.1 +0.6
! top-5 ! 5 48.2 +2.7
! adaptive ! 3.7 48.3 +2.8
! ! adaptive ! 3.7 48.6 +3.2

operations on ComPCL with different compression size. As depicted, the ALC outperforms
the top-k compression when the size of H(x) is small. Besides, we observe a significant de-
cline in performance when compression is naively applied to H(x) without debias. However,
by introducing the equivalence class distribution for debias, the performance decline caused
by label compression is greatly mitigated, with only slightly lower (sometimes even better)
than that of the complete PCL. This indicates that ALC and ECD are inseparable.

In Tab. 4, we further compare different debias operations. For a better comparison, in
addition to the operations discussed in , we also implemented OT-Train, which involves cal-
culating bias solely from the training set using OT, and then compose an additional debias
factor for debiasing. As shown, all operations yield positive effects on ComPCL and matched
performance on the complete PCL. Notably, the EntMax and OT achieve the highest accu-
racy, which however utilize extra data thus perform better than OT-Train. In comparison,
the proposed ECD achieves similarly effective debiasing without the need for extra data and
incurs minimal computational overhead.

Table 4: Comparision of different debias operations.
Debias Operation extra data compuation cost ComPCL PCL

- low 46.4 49.2
EntMax ! high 48.8 +2.4 49.4 +0.2

OT ! high 49.2 +2.8 49.4 +0.2
OT-Train high 48.7 +2.3 49.0 -0.2

Equiv. low 48.6 +2.2 49.2 +0.0

Oracle τ - - 48.9 +2.5 49.4 +0.2

4.4 Further Analysis

Optimal τ . For the PC-Softmax, τ = 1 has been proved to be optimal in theory [27]. How-
ever, the optimal τ for the target distribution is often larger than 1, which indicates skewed
predictions. In Fig. 3, we show that the τ∗ of PCL is much closer to 1 compared to CE,
which means our method learns a better p̂s(y|x) that is more consistent with theory. Besides,
we visualize the difference of introducing the ECD for ComPCL in Fig. 3(c). The results
again indicate that relying solely on label compression can cause obvious τ value shifts, but
the debias operation effectively remove the bias without re-adjusting τ .
Results on various test label distribution shifts. To further verify the effectiveness of
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Figure 3: (a) & (b) Accuracy on CIFAR-LT with varying τ . (c) Comparision of the debias
operation for ComPCL on CIFAR-100-LT with varying τ .

Table 5: Comparison of recognition accuracy on test time shifted CIFAR-100-LT.
Dataset Forward Uniform Backward

Imbalance ratio 100 50 25 10 5 2 1 2 5 10 25 50 100

CE 66.8 64.3 61.2 56.5 52.3 46.5 41.5 36.6 30.4 26.3 21.6 18.6 16.2
PCL 69.1 66.2 62.7 57.3 52.6 45.4 39.8 34.3 27.3 22.6 17.5 14.2 11.6

CE + PC 66.8 63.9 60.8 56.4 53.0 48.7 45.5 43.1 40.4 39.7 39.4 39.7 40.7
PCL+ PC 69.1 66.3 63.3 59.3 56.1 52.1 49.2 47.0 44.8 44.2 44.0 44.6 45.6

our method under various test distributions with PC-Softmax in Tab. 5. Without the post-
hoc correction, PCL actually performs slightly worse than CE, which is expected since PCL
implicitly down-weights the tail classes to ensure calibration. However, we can observe
that (1) before correction, PCL still performs better than CE when there is no distribution
shift (Forward-100), (2) after correction, PCL consistently outperforms CE, especially under
large distribution shifts (Backward regions). This indicates that PCL is beneficial on different
settings.

5 Conclusion

In this work, we study the effect of ps(y|x) for post-hoc correction in long-tailed recogni-
tion. We show that p̂s(y|x) learned from one-hot target cross-entropy loss fail to generalize
to target distributions via post-hoc correction. To improve the learning of p̂(y|x), we propose
Predictive Consistency Learning (PCL) to iteratively refine p̂s(y|x). We also extend PCL to
ComPCL that further reduces the computation cost. Our method achieves remarkable im-
provements on several long-tailed recognition benchmarks. We also conduct comprehensive
experimental studies for further understanding our method. We hope that our method can
contribute to a strong baseline and motivate more works for future research.
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