Predictive Consistency Learning for Long-Tailed Recognition

Nan Kang1,2 \texttt{nan.kang@vipl.ict.ac.cn}
Hong Chang1,2 \texttt{changhong@ict.ac.cn}
Bingpeng Ma2 \texttt{bpma@ucas.ac.cn}
Shutao Bai1,2 \texttt{shutao.bai@vipl.ict.ac.cn}
Shiguang Shan1,2,3 \texttt{sgshan@ict.ac.cn}
Xilin Chen1,2 \texttt{xlchen@ict.ac.cn}

1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS Beijing, 100190, China
2University of Chinese Academy of Sciences Beijing, 100049, China
3CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China

Abstract

Real-world data often exhibit long-tailed distributions, on which modern deep networks often make skewed predictions. Post-hoc correction approaches tackle this problem by introducing class-dependent correction biases to adjust the posterior distribution $\hat{p}_s(y|x)$, thereby compensate the discrepancy between training distribution $p_s(y)$ and test distribution $p_t(y)$. Most works along this line focus on the design of correction bias, but little attention has been paid to the estimation of $\hat{p}_s(y|x)$ which is fairly crucial for post-hoc approaches. In this paper, we highlight the inaccurate estimation of $\hat{p}_s(y|x)$ learned through cross-entropy loss minimization, which produces poorly calibrated predictions and limits the effectiveness of post-hoc correction, particularly under large label distribution shifts. To this end, we propose Predictive Consistency Learning (PCL) for long-tailed learning that learns to maintain consistency between current predictions and the aggregation of historical predictions, which iteratively refine $\hat{p}_s(y|x)$ to improve the post-hoc correction. In large-scale dataset, the storage of historical predictions requires high space complexity. To address this issue while maintaining similar performance, we further propose the compressed PCL (ComPCL) that reduces the space complexity of storing historical predictions to linear by label compression and debias operations. Experiments demonstrate that our method achieves significant improvements on several long-tailed recognition benchmarks. Code will be made available.

1 Introduction

The recent success of neural networks is largely attributed to the availability of large amounts of training data with sufficient samples per class. However, collecting sufficient samples for
each class is often challenging in real-world scenarios, where the data typically follows an extreme long-tailed distribution. Unfortunately, state-of-the-art deep models tend to produce skewed predictions in long-tailed recognition and often fail to recognize tail classes.

Early long-tailed learning approaches used data re-sampling or loss re-weighting to re-balance learning for different classes. However, these approaches tend to learn overfitted representations and generalize worse than standard training [15]. To overcome this, recent works have instead adopted two-stage approaches, including decoupled training [15, 26] and post-hoc correction [10, 12, 27] by adjusting the classifier or logits in the second stage while keeping the representation of the first stage unchanged. Specifically, post-hoc correction methods introduce class-dependent correction biases to the logits, reflecting the discrepancy between the source (training) distribution \(p_s(y) \) and the target (test) distribution \(p_t(y) \).

While previous post-hoc correction approaches focus on the label distribution shift between \(p_s(y) \) and \(p_t(y) \), little attention has been paid to the predicted class posterior probabilities \(\hat{p}_s(y|x) \) from long-tailed training data. In [12, 27], the correction bias is derived assuming that predicted \(\hat{p}_s(y|x) \) is the true \(p_s(y|x) \). However, deep neural networks often learn poorly calibrated \(\hat{p}_s(y|x) \) [9], indicating a mismatch between prediction confidence and true correctness likelihood. In this work, we demonstrate that one-hot labels for cross-entropy (CE) loss encourage models to be equally confident for both head and tail classes, leading to sharp outputs and violate the calibration principle. We verify that poorly calibrated models fail to output desirable predictions via post-hoc correction under large test label distribution shift. Moreover, one-hot supervision ignores inter-class correlations, restricting knowledge transfer between classes.

To overcome these obstacles, we propose prioritizing the learning of \(\hat{p}_s(y|x) \) and adapting predictions in a post-hoc manner. As illustrated above, we want hard-to-classify samples (especially tail samples) to be less confident on \(\hat{p}_s(y|x) \) in order to be consistent to its correctness. We achieve this by introducing adaptive soft labels derived from the aggregation of the model’s historical predictions. Specifically, we introduce Predictive Consistency Learning (PCL), which enforces consistency between current prediction probabilities and adaptive soft labels to mitigate miscalibration and maintain inter-class correlations. As the learning difficulty of different classes varies in long-tailed distribution, we adopt Class-aware Weight Adjustment (CWA) to further refine predictions for different classes. Moreover, to reduce the high memory cost of storing historical predictions in PCL, we propose Compressed PCL (ComPCL) with Adaptive Label Compression (ALC), which reduces space complexity to \(O(N) \), where \(N \) is the size of the training set. To counteract the associated class bias from label compression, we introduce Equivalent Class Distribution (ECD), which replace the original class distribution \(p(y) \) with the estimated \(\hat{p}_{ecd}(y) \) so as to adaptively eliminate the bias with no extra cost.

We evaluate our method on several long-tailed recognition benchmarks, demonstrating significant improvements over different post-hoc correction methods and achieving state-of-the-art performance. Furthermore, our method incurs minimal computational overhead in terms of training time and introduces only an additional linear space complexity. Therefore, it can serve as a plug-and-play module to enhance various existing methods.

2 Related Work

Long-Tailed Learning. Data resampling and loss reweighting are two common approaches for mitigating class imbalance. However, they usually learn overfitted representations than
standard learning [15]. There are also many other approaches proposed for long-tailed learning with different strategies including decoupled training [15, 26], meta-learning [24, 28], contrastive learning [5, 14, 16, 17, 30], knowledge distillation [11, 22] and ensemble [31, 38]. Recently, some logits manipulation approaches have been proposed, including loss modification [27, 28, 34] which modifies the logits during training, and post-hoc correction [10, 12, 23] which post-processes the model predictions during evaluation. Although implemented differently, the former is equivalent to the latter if the learning objectives are convex [27]. In practice, post-hoc correction is more flexible since it does not require retraining the model when the test distribution changes. Prior post-hoc correction approaches have primarily focused on the bias term associated with $p_s(y)$ and $p_t(y)$, while our method emphasizes learning a more calibrated $\hat{p}_s(y|x)$ to better align with the post-hoc correction theory and remedy the flaw of post-hoc correction approaches.

Confidence Calibration. In addition to classification performance, calibration is an important property for the reliability and interpretability of machine learning algorithms. It refers to the alignment between model’s predictive confidence and the true correctness likelihood. [9] discussed that modern neural networks are often poorly calibrated. Many strategies have been proposed to improve calibration, including temperature scaling [35], histogram binning [36], ensemble methods [21, 32], and mixup [29, 36, 37]. In this work, we investigate the relationship between calibration and post-hoc correction of label distribution shift.

3 Method

3.1 Preliminaries

Notations. Let $\{N_1, N_2, \cdots, N_K\}$ and $\{M_1, M_2, \cdots, M_K\}$ denote the number of samples per class for the training (source) set D_s and test (target) sets D_t, respectively. Without loss of generality, we assume that $N_1 \geq N_2 \geq \cdots \geq N_K$. In long-tailed recognition, the training set is highly imbalanced with a high imbalance ratio $r = N_1/N_K$, and the tail classes have very few training samples. Early long-tailed recognition approaches assume a balanced test distribution $p_t(y)$ with $M_i = M_j$ for all i, j, while recent works [12, 38] allow for arbitrary test distributions.

Revisit of Post-hoc Correction. Under the label distribution shift between $p_s(y)$ and $p_t(y)$, previous works introduce correction biases to minimize the average classification error. These biases can be applied either through loss modification during training or post-hoc correction during evaluation. For example, [27, 28] introduce an additive bias to the training logits: $f_\theta(x)[c] + \tau \cdot \log p_s(c)$, where τ is a hyper-parameter to control the strength. The post-hoc version of the bias is given by reversing the sign of the bias term at test time:

$$\arg \max_c f_\theta(x)[c] - \tau \cdot \log p_s(c). \quad (1)$$

Assuming the class-conditional data distribution remains unchanged, i.e., $p_s(x|y) = p_t(x|y)$, this bias can be derived by noting that $p(y|x) \propto p(x|y) \cdot p(y)$. In theory, τ should be equal to 1. However, in practice, the optimal τ^* may be different, which reflect the degree of bias of model predictions. In this case, tuning τ to maximize accuracy is close to calibrating the logits using temperature scaling [9].

Analysis. The post-hoc correction biases reflect the discrepancy between the source distribution $p_s(y)$ and the target distribution $p_t(y)$, and can be explicitly calculated and uniquely
determined. However, they typically assume that the estimated posterior probabilities \(\hat{p}_s(y|x) \) are accurate approximations of the true probabilities \(p_s(y|x) \), which may not hold, particularly for tail classes.

In Fig. 1, we illustrate that poorly calibrated models fail to adapt to the target distribution by visualizing the average prediction probability \(\mathbb{E}_x[\hat{p}_t(y|x; \theta)] \). From a statistical perspective, a well-calibrated model should have an average prediction probability \(\mathbb{E}_x[\hat{p}_t(y|x; \theta)] \) that closely matches the label frequency \(p_t(y) \). When \(p_t(y) \) is imbalanced, models are expected to be more confident in sample-rich categories, which is a reasonable solution for maximizing the overall accuracy. However, in Fig. 1, model trained using CE is unable to well match the ideal \(p_t(y) \) when the distribution shift becomes large.

The reasons can be summarized into the following two points. Firstly, minimizing the cross-entropy loss with one-hot labels enforces each class to be equally confident, which violates the calibration principle when dealing with long-tailed distributions. To reflect the true correctness likelihood, hard-to-classify samples, especially tail samples, should output smoother predictions on long-tailed distribution with more relaxed targets, rather than being uniformly pushed towards 1.0 using one-hot labels. Moreover, one-hot labels provide limited supervision for minority classes, as the inter-class correlations are ignored. This hampers the transfer of knowledge from the majority to the minority classes, which is essential for post-hoc correction, where the correction is applied in a class-wise manner as shown in Eq. (1).

3.2 Predictive Consistency Learning

The observations discussed above motivate us to estimate the model’s posterior probabilities \(p(y|x) \) more accurately, which would enhance the effectiveness of post-hoc correction. Ideally, we want hard-to-classify samples to produce less confident predictions and also maintain the inter-class correlations. It can be achieved by introducing a smoothing function \(\mathcal{T}(x) \in \mathbb{R}^K \) for each sample and obtaining the soft target cross-entropy loss \(\mathcal{L}(x, \mathcal{T}) \) as:

\[
\mathcal{L}(x, \mathcal{T}) = - \sum_{j=1}^{K} \mathcal{T}_j(x) \cdot \log [\hat{p}_s(y = j|x)],
\]

(2)

where \(\mathcal{T}_j(x) \) is the \(j \)-th element of \(\mathcal{T}(x) \). It can be proved that for soft target cross-entropy, the optimal solution of Eq. (2) is \(p_s^*(y = j|x) = \mathcal{T}_j(x) / \sum_c \mathcal{T}_c(x) \). Thus, the prediction \(\hat{p}_s(y|x) \) would align with \(\mathcal{T}(x) \), meaning that lower values of \(\mathcal{T}_j(x) \) would result in lower predictions for that class and vice versa.

To obtain an accurate estimation of \(\hat{p}_s(y|x) \), \(\mathcal{T}(x) \) can be optionally formulated as the output of a teacher model or an ensemble model. However, this would bring extra train-
ing costs. Besides, the output of another model may not well capture the highly predictive uncertainty of tail classes, leading to $T(x)$ being too far from the current prediction and producing large gradients during training. Motivated by [18, 20], we instead propose using the exponential moving average of historical predictions $H(x)$ for $T(x)$. By doing so, Eq. (2) learns to maintain consistency for each sample and constrain the prediction probability in an adaptive way.

To achieve this goal, we propose Predictive Consistent Learning (PCL), which optimizes the posterior prediction $\hat{p}_s(y|x)$ to enforce prediction consistency of training samples with historical predictions. PCL can be viewed as an iterative learning method of the $\hat{p}_s(y|x)$, similar to the expectation-maximization (EM) algorithm. In the E-step, it updates the expected prediction $T(x)$ based on historical predictions $H(x)$. In the M-step, it uses soft target cross-entropy to encourage the model’s prediction to be consistent with $T(x)$.

Given an input x and ground-truth label i, $T(x)$ in epoch e for the j-th class is defined as:

$$T_j^e(x) = (1 - \alpha_{e,i}) \cdot \delta_{i,j} + \alpha_{e,i} \cdot \hat{H}_j^e(x), \quad (3)$$

$$\hat{H}_j^e(x) = (1 - \beta) \cdot \hat{H}_j^{e-1}(x) + \beta \cdot \hat{H}_j^{e-1}(x), \quad (4)$$

$$\hat{H}_j^{e-1}(x) = \hat{p}_s(y = j|x; \theta^{e-1}), \quad (5)$$

where β is the EMA factor and $\delta_{i,j}$ is the Kronecker Delta function, representing the one-hot target. $\alpha_{e,i}$ is a parameter controlling the relative strength of one-hot and $\hat{H}(x)$, which will be introduced next.

During the early stages of training, the historical predictions may not be well learned and, consequently, may be less trustworthy in representing the hardness of the samples. Therefore, it is necessary to progressively increase the strength of $\hat{H}_j(x)$. PSKD [18] propose a simple solution to set the $\alpha_e = e/E$, where E represent the total number of epochs. However, due to the lack of sufficient gradient descent updates, the predictions for tail classes may be arbitrarily random and, therefore, less trustworthy than those for head classes. To tackle this, we propose Class-aware Weight Adjustment (CWA) for α_e. Specifically, we introduce a class-dependent factor:

$$\alpha_{e,i} = \alpha \cdot \left(\frac{e}{E}\right)^{\lambda \cdot (1 - q_i)}, \quad (6)$$

where $q_i = N_i/N$ is correlated with class frequencies. The hyper-parameter λ controls the exponential term. By using $1 - q_i$, the exponential term is designed to be negatively correlated with the number of samples per class.

PCL improves $\hat{p}_s(y|x)$ by regularizing the predictions of hard samples. To illustrate this, consider a toy example of binary classification. Let us assume that the one-hot target for input x is $[1, 0]$, and the predicted probability is $[p, 1 - p]$. According to Eq. (3), the weighted $T(x)$ would be $[1 - \alpha(1 - p), \alpha(1 - p)]$. When x is a hard sample, meaning that $1 - p$ is high, $T(x)$ is flatter than the one-hot target, thereby enforcing a flat prediction of x to match its true likelihood. Conversely, when x is an easy sample, meaning that $1 - p$ is low, $T(x)$ is close to the one-hot target, and the effect of PCL on them is much smaller.

3.3 Compressed PCL

Although effective, storing $H(x)$ requires $O(N \cdot K)$ additional memory cost, which can be expensive when the dataset is large. To address this issue, we propose Compressed PCL...
(ComPCL), which compresses the storage of \(\mathcal{H} \) via a compression function \(C \) and then performs a debias operation to alleviate the associate class bias caused by the class imbalance.

Compression. To compress the size of \(\mathcal{T}(x) \), the simplest solution is to set \(\beta = 0 \) and store only the top-\(k \) highest prediction scores, which reduces the memory cost to \(O(N \cdot k) \). However, this solution cannot ultimately maintain the information of the complete \(\mathcal{H}(x) \), since hard samples require a larger \(k \) to approximate the original one. Therefore, we propose *Adaptive Label Compression* (ALC) via the adaptive prediction set (APS) \([1]\) on conformal predictions to adaptively compress \(\mathcal{H}(x) \).

Denote by \(o(\cdot) \) the permutation function such that \(\mathcal{H}_{o(1)}(x) \geq \mathcal{H}_{o(2)}(x) \geq \cdots \geq \mathcal{H}_{o(K)}(x) \). Then, the size of the adaptive prediction set \(S(x; \mathcal{H}, \gamma) \) at the coverage level \(\gamma \) is defined as:

\[
S(x; \mathcal{H}, \gamma) = \min\{c \in [1, K]: \sum_{j=1}^{c} \mathcal{H}_{o(j)}(x) \geq \gamma\}. \tag{7}
\]

Then, the adaptive prediction set is defined as

\[
C_{\gamma}(x) = \{c: o(c) \leq S(x; \mathcal{H}, \gamma)\}. \tag{8}
\]

Based on \(C_{\gamma}(x) \), we keep the value of \(\mathcal{T}_j(x) \) if \(j \in C_{\gamma}(x) \) and set it to zero otherwise. In practice, \(\gamma = 0.95 \) is sufficient to compress the average size of CIFAR-100-LT to be less than 5, while maintaining 95% prediction information.

Debias. After compression, as the model prediction more prefers majority classes, the minority classes are more likely to be excluded by \(C_{\gamma} \). Thus, the compressed \(\mathcal{H}(x) \) would exhibit more bias towards the majority, leading to a higher \(\tau^* \) in Eq. (1). To tackle this issue, one option is solving the optimal transport (OT) \([10]\) on the predictions with the Sinkhorn-Knopp algorithm \([6]\), which is an effective debias operation when the balanced validation or test data is available \([10, 38]\). To avoid the computation of solving OT, following the distribution criterion of Fig. 1, a simplified alternative is to tune \(\tau \) to maximizing the entropy of the average class distribution (EntMax) to make it closer to uniform distribution. It is also an effective operation that can find nearly optimal values of \(\tau \). However, both approaches require an additional balanced set for tuning and can be computationally inefficient.

To make the debias operation more efficient and eliminate the dependence of an additional balanced set, we propose to compute the *Equivalent Class Number* of the training set, which is defined as the average prediction at the last epoch: \(\hat{N}_{ecn}(c) = \sum_x \hat{p}_s(y = c|x; \theta^F) \), \(\forall c \in [1, K] \). Then we replace \(p_s(y) \) in Eq. (1) with the *Equivalent Class Distribution* (ECD), which is defined as \(\hat{p}_{ecd}(y) = \hat{N}_{ecn}(y)/\sum_c \hat{N}_{ecn}(c) \). This adaptively eliminates the bias based solely on training logits. The introduction of \(\hat{p}_{ecd} \) decouples the class bias from the value of \(\tau \). Thus, for any strength of class bias, \(\tau \) only needs to be set to the default value of 1. Besides, the computation of \(\hat{N}_{ecd} \) can be performed online, incurring minimal computational overhead.

4 Experiments

4.1 Datasets

CIFAR-LT. CIFAR-10-LT and CIFAR-100-LT are long-tailed versions of CIFAR-10 and CIFAR-100 datasets \([19]\) with different imbalance ratios \(r = N_1/N_K \), where \(r \in \{10, 50, 100\} \).
Unless otherwise specified, we use 100 as the default ratio. To obtain more reliable results, we report the average and standard deviation of 5 different runs. We use ResNet-32 as the backbone following [2], which contains 0.47M parameters.

ImageNet-LT. ImageNet-LT is a long-tailed subset of ImageNet [7] with an imbalance ratio of 256. We train the ResNet-50 from scratch with 200 epochs with a cosine classifier.

Places-LT. Places-LT is a long-tailed subset of Places [40] with an imbalance ratio of 996. Following previous works, we fine-tune an ImageNet pre-trained ResNet-152 on Places-LT.

4.2 Comparisons to Prior Methods

We compare our method with prior methods in Tab. 1 and Tab. 2. Existing methods usually adopt two kinds of settings: weak setting, which involves using standard data augmentation and training techniques; and strong setting, which employs advanced techniques like stronger data augmentation or contrastive learning. Therefore, in order to have a fair comparison, we present the table in two segments: the upper segment corresponds to the weak setting, while the lower segment corresponds to the strong setting. In the strong settings, we use AutoAugment [3] for CIFAR-10-LT and CIFAR-100-LT, and use the the sharpness-aware optimization (SAM) [8] and RandAugment [4] for ImageNet-LT and Places-LT.

1) CIFAR-LT. The results for CIFAR-LT are presented in Tab. 1. Compared with the PC-Softmax baseline, our method shows impressive improvements for different imbalance ratios. For example, when the imbalance ratio is 100, our method achieves up to 4.4% and 3.9% improvements for CIFAR-10-LT and CIFAR-100-LT, respectively. **2) ImageNet-LT.** The results for ImageNet-LT are presented in Tab. 2. Our method achieves 55.8% top-1 accuracy without any additional modifications like strong data augmentation, mixup, or ensemble, which is a superior performance compared to previous methods. In the strong setting, we further incorporate the SAM and RandAugment into our method. By increasing the training epochs to 400 following [5], we achieve top-1 accuracy of 60.0%, as shown in the table. **3) Places-LT.** We evaluate our method on Places-LT, as presented in Tab. 2, and again achieve significant improvements over previous methods. Specifically, our methods produces more balanced predictions, where the accuracy for few-shot split is only around 5% lower than the many-shot split, showing the effective of PCL for dealing with long-tailed problem.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10-LT</th>
<th>CIFAR-100-LT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imbalance Ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Softmax</td>
<td>70.4</td>
<td>74.8</td>
</tr>
<tr>
<td>LDAM-DRW [2]</td>
<td>77.1</td>
<td>81.1</td>
</tr>
<tr>
<td>MiSLAS [39]</td>
<td>82.1</td>
<td>85.7</td>
</tr>
<tr>
<td>TSC [25]</td>
<td>79.7</td>
<td>82.9</td>
</tr>
<tr>
<td>MetaAug [24]</td>
<td>80.7</td>
<td>84.3</td>
</tr>
<tr>
<td>PC-Softmax [12]</td>
<td>79.4 ±0.5</td>
<td>82.8 ±0.3</td>
</tr>
<tr>
<td>PCL</td>
<td>83.8 ±0.42</td>
<td>86.1 ±0.21</td>
</tr>
<tr>
<td>BALMS [28]</td>
<td>81.5 ±0.0</td>
<td>-</td>
</tr>
<tr>
<td>PaCo [5]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC-SAM [41]</td>
<td>83.9</td>
<td>86.2</td>
</tr>
<tr>
<td>DCRNets [13]</td>
<td>85.0</td>
<td>-</td>
</tr>
<tr>
<td>PCL + AA</td>
<td>85.5 ±0.34</td>
<td>87.5 ±0.21</td>
</tr>
</tbody>
</table>
Table 2: Top-1 accuracy (%) on ImageNet-LT and Places-LT.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ImageNet-LT</th>
<th>Places-LT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Many Med. Few All</td>
<td>Many Med. Few All</td>
</tr>
<tr>
<td>Softmax</td>
<td>64.0 33.8 5.8 41.6</td>
<td>45.9 22.4 0.4 27.2</td>
</tr>
<tr>
<td>cRT [15]</td>
<td>58.8 44.0 26.1 47.3</td>
<td>42.0 37.6 24.9 36.7</td>
</tr>
<tr>
<td>OLTM [10]</td>
<td>- - - 52.4</td>
<td>- - - -</td>
</tr>
<tr>
<td>TSC [25]</td>
<td>63.5 49.7 30.4 52.4</td>
<td>- - - -</td>
</tr>
<tr>
<td>MiSLAS [39]</td>
<td>61.7 51.3 35.8 52.7</td>
<td>39.6 43.3 36.1 40.4</td>
</tr>
<tr>
<td>PC-Softmax [12]</td>
<td>64.1 48.4 32.4 52.2</td>
<td>43.1 39.7 33.9 39.8</td>
</tr>
<tr>
<td>PCL</td>
<td>66.2 53.0 36.1 55.8</td>
<td>43.5 42.6 38.0 42.0</td>
</tr>
</tbody>
</table>

4.3 Ablation Study

The value of α. In Fig. 2(a), we investigate the impact of α by varying its value from 0 to 1 on CIFAR-100-LT. When $\alpha = 0$, Eq. (2) reduces to CE loss. As α increases, we observe a consistent improvement in performance across different values. The optimal value of α varies depending on the dataset complexity and imbalance ratio. Specifically, we use α^* is 0.9 for CIFAR-10-LT and CIFAR-100-LT, 0.7 for ImageNet-LT, and 0.4 for Places-LT.

The value of λ. In Fig. 2(b), we study the influence of λ with different computations for q_i in the CWA. When $q_i = 0$, tuning λ is equivalent to tuning a class-agnostic exponential term in Eq. (6). As shown, the class-agnostic way cannot achieve as high a performance improvement as the class-aware way, where $q_i = N_i/N_1$. It verifies the effectiveness of class-aware weight adjustment, which allows for composing better $T(x)$ that depend on the class distribution.

Each component. In Tab. 3, we evaluate the influence of each component. As shown, each component contributes to its respective improvement on performance or efficiency. Compared with cross-entropy, PCL achieves significant improvement with all other settings being the same. By introducing the label compression and debias operation, ComPCL achieves similar performance with only much lower space complexity.

Compression and Debias. In Fig. 2(c), we examine the impact of compression and debias
Table 3: Ablation studies of the influence of each component on CIFAR-100-LT.

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>CWA</th>
<th>ALC</th>
<th>ECD</th>
<th>Memory Cost (×N)</th>
<th>Acc. (+PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>45.5</td>
</tr>
<tr>
<td>PCL</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>100</td>
<td>48.4 +2.9</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>top-5</td>
<td></td>
<td></td>
<td>100</td>
<td>49.2 +3.7</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>top-5</td>
<td>✓</td>
<td></td>
<td>5</td>
<td>46.1 +0.6</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>adaptive</td>
<td>✓</td>
<td></td>
<td>3.7</td>
<td>48.2 +2.7</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>adaptive</td>
<td>✓</td>
<td></td>
<td>3.7</td>
<td>48.6 +3.2</td>
</tr>
</tbody>
</table>

operations on ComPCL with different compression size. As depicted, the ALC outperforms the top-k compression when the size of \(\mathcal{H}(x)\) is small. Besides, we observe a significant decline in performance when compression is naively applied to \(\mathcal{H}(x)\) without debias. However, by introducing the equivalence class distribution for debias, the performance decline caused by label compression is greatly mitigated, with only slightly lower (sometimes even better) than that of the complete PCL. This indicates that ALC and ECD are inseparable.

In Tab. 4, we further compare different debias operations. For a better comparison, in addition to the operations discussed in , we also implemented OT-Train, which involves calculating bias solely from the training set using OT, and then compose an additional debias factor for debiasing. As shown, all operations yield positive effects on ComPCL and matched performance on the complete PCL. Notably, the EntMax and OT achieve the highest accuracy, which however utilize extra data thus perform better than OT-Train. In comparison, the proposed ECD achieves similarly effective debiasing without the need for extra data and incurs minimal computational overhead.

Table 4: Comparision of different debias operations.

<table>
<thead>
<tr>
<th>Debias Operation</th>
<th>extra data</th>
<th>compuation cost</th>
<th>ComPCL</th>
<th>PCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>low</td>
<td>46.4</td>
<td>49.2</td>
</tr>
<tr>
<td>EntMax</td>
<td>✓</td>
<td>high</td>
<td>48.8 +2.4</td>
<td>49.4 +0.2</td>
</tr>
<tr>
<td>OT</td>
<td>✓</td>
<td>high</td>
<td>49.2 +2.8</td>
<td>49.4 +0.2</td>
</tr>
<tr>
<td>OT-Train</td>
<td></td>
<td>high</td>
<td>48.7 +2.3</td>
<td>49.0 -0.2</td>
</tr>
<tr>
<td>Equiv.</td>
<td></td>
<td>low</td>
<td>48.6 +2.2</td>
<td>49.2 +0.0</td>
</tr>
<tr>
<td>Oracle (\tau)</td>
<td>-</td>
<td>-</td>
<td>48.9 +2.5</td>
<td>49.4 +0.2</td>
</tr>
</tbody>
</table>

4.4 Further Analysis

Optimal \(\tau\). For the PC-Softmax, \(\tau = 1\) has been proved to be optimal in theory [27]. However, the optimal \(\tau\) for the target distribution is often larger than 1, which indicates skewed predictions. In Fig. 3, we show that the \(\tau^*\) of PCL is much closer to 1 compared to CE, which means our method learns a better \(\hat{p}_s(y|x)\) that is more consistent with theory. Besides, we visualize the difference of introducing the ECD for ComPCL in Fig. 3(c). The results again indicate that relying solely on label compression can cause obvious \(\tau\) value shifts, but the debias operation effectively remove the bias without re-adjusting \(\tau\).

Results on various test label distribution shifts. To further verify the effectiveness of
Figure 3: (a) & (b) Accuracy on CIFAR-LT with varying τ. (c) Comparision of the debias operation for ComPCL on CIFAR-100-LT with varying τ.

Table 5: Comparison of recognition accuracy on test time shifted CIFAR-100-LT.

<table>
<thead>
<tr>
<th></th>
<th>Dataset</th>
<th>Forward</th>
<th>Uniform</th>
<th>Backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imbalance ratio</td>
<td></td>
<td>100</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>66.8</td>
<td>64.3</td>
<td>61.2</td>
</tr>
<tr>
<td></td>
<td>PCL</td>
<td>69.1</td>
<td>66.2</td>
<td>62.7</td>
</tr>
<tr>
<td></td>
<td>CE + PC</td>
<td>66.8</td>
<td>63.9</td>
<td>60.8</td>
</tr>
<tr>
<td></td>
<td>PCL + PC</td>
<td>69.1</td>
<td>66.3</td>
<td>63.3</td>
</tr>
</tbody>
</table>

our method under various test distributions with PC-Softmax in Tab. 5. Without the post-hoc correction, PCL actually performs slightly worse than CE, which is expected since PCL implicitly down-weights the tail classes to ensure calibration. However, we can observe that (1) before correction, PCL still performs better than CE when there is no distribution shift (Forward-100), (2) after correction, PCL consistently outperforms CE, especially under large distribution shifts (Backward regions). This indicates that PCL is beneficial on different settings.

5 Conclusion

In this work, we study the effect of $p_s(y|x)$ for post-hoc correction in long-tailed recognition. We show that $\hat{p}_s(y|x)$ learned from one-hot target cross-entropy loss fail to generalize to target distributions via post-hoc correction. To improve the learning of $\hat{p}(y|x)$, we propose Predictive Consistency Learning (PCL) to iteratively refine $\hat{p}_s(y|x)$. We also extend PCL to ComPCL that further reduces the computation cost. Our method achieves remarkable improvements on several long-tailed recognition benchmarks. We also conduct comprehensive experimental studies for further understanding our method. We hope that our method can contribute to a strong baseline and motivate more works for future research.

6 Acknowledgement

This work is partially supported by National Natural Science Foundation of China (NSFC): 61976203 and 62276246.
References

