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Abstract

Due to the high similarity in color and texture between camouflaged objects and
noise backgrounds, existing single-step detection methods often fail especially when
the camouflage level of objects is high. However, with prior knowledge of the envi-
ronment, humans can effectively distinguish camouflaged objects, for example, when
humans see snowy ground, they spontaneously associate that white rabbits might be con-
cealed there. In this paper, we propose an Environmental Knowledge-guided Multi-step
Network (EKNet) to simulate this mechanism. To extract prior knowledge of the back-
ground, we construct a knowledge graph with information extracted from the image and
generate a relevance score matrix (RS) for prior knowledge and the camouflaged object
with GCN as the correlation scoring matrix generation module (CSM). After that, we
fuse the RS with Canny edge-enhanced features, which guides the model to detect cam-
ouflaged objects more accurately by observing the background information with edge
semantics as the knowledge integration module (KIM). To our knowledge, this work is
the first to introduce environmental knowledge to guiding camouflaged object detection
(COD). Extensive experiments on three benchmark datasets show that our EKNet out-
performs 15 existing state-of-the-art methods under four widely-used evaluation metrics.

1 Introduction
Camouflage is a unique method of concealment. A camouflaged object may disguise itself
by mimicking the color or texture of another object, such as imitating the appearance of
the surrounding environment or using disruptive coloring [27]. In the natural world, some
animals utilize camouflage for predation or predator avoidance, which makes them blend in
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seamlessly with the surroundings. In the medical field, detecting certain viruses, polyps, or
tumors can be challenging because they blend in with the surrounding normal organ tissue.
Research on camouflage object detection has the potential to advance developments in a
wide range of fields, including species discovery and conservation [26], polyp segmentation
[4], COVID-19 segmentation [5, 34], defect detection in the industrial field [10, 19], locust
invasion detection, fruit ripeness detection in the agricultural field, as well as art collaging
and body painting in the art field. Overall, research on camouflage object detection can
significantly impact various tasks and has captured the attention of many researchers.

However, there are several challenges in camouflaged object detection (COD). One of
these lies in the high consistency between the color and texture of the camouflaged object
and its background, which makes it difficult to distinguish the foreground from the back-
ground and significantly increases the difficulty of the task. Recognizing and segmenting the
camouflaged object simply in the visual feature space can lead to visual "traps" and often
result in missed or false detections. Moreover, the high complexity resulting from the prop-
erties of camouflaged objects, such as the diversity of species, sizes, and shapes, often leads
to instability in the results of methods that rely on single-step direct recognition. Overall,
three major difficulty problems exist in camouflaged object detection: the wide variety of
camouflaged objects, the obscured boundaries, and the obstruction in front of objects.

Image GT Ours SINet[3] PFNet[23] C2FNet[30]
Figure 1: From top to bottom, three challenging camouflage scenarios with multiple objects,
indefinable boundaries, and occluded objects are listed. Our model outperforms SINet[3]
,PFNet[23] and CF2Net[30] under these challenging scenarios.

Recently, various solutions have been proposed by researchers to address these difficul-
ties, including the application of visual attention. These methods can be broadly classified
into four categories. The first category designs networks by simulating biological charac-
teristics and human visual observation, such as SINet [3], SINet-V2 [6], PFNet [23], and
C2FNet [30]. The second category is based on edge texture, with methods such as BGNet
[31], TANet [29], and BASNet [39] enhancing segmentation by refining edge textures. The
third category is based on multi-scale feature extraction networks, including ZoomNet[24].
The fourth category is based on a joint learning framework, such as JCSOD [18] and MGL
[37], which can explore additional clues from shared features to enhance the feature rep-
resentation of COD. Figure 1 provides a visualization result of our model and SINet[3],
PFNet[23], and C2FNet[30] on these three types of problems. It can be seen that the above-
mentioned challenges cannot be solved completely by these single-step recognition methods,
thus, we mine semantic knowledge of the background and fuse it into a multi-step network.
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In this paper, we propose an Environmental Knowledge-guided Multi-step Network(EK-
Net), which leverages the inherent similarity between camouflaged objects and their back-
grounds (e.g., the probability of an object appearing in a snowy scene is higher when it has
similar color and texture to snow). Our model utilizes the multi-dimensional feature fusion of
environmental knowledge and edge feature enhancement. The contributions are as follows:

(1) We propose the correlation score matrix (CSM) generation module to simulate how
the human brain utilizes background semantic knowledge to detect camouflaged objects. We
construct a knowledge graph with explored semantic information and use a Graph Convo-
lutional Network (GCN)[15] to generate a relevance score matrix (RS). To the best of our
knowledge, this is the first study to introduce knowledge graphs to assist in recognizing
camouflaged objects.

(2)We propose the knowledge integration module (KIM), which integrates environmen-
tal knowledge and Canny edge enhancement to capture visual feature clues. This module
achieves multi-dimensional integration in both the knowledge space and visual feature space.

(3)We compare our proposed method with 15 state-of-the-art methods using three widely
used datasets. Our method outperforms all others on four evaluation metrics, demonstrating
its superior performance.

2 Related Work

2.1 Traditional Camouflaged Object detection.
Artifact object detection methods based on hand-crafted features primarily rely on color,
texture, and optical features to distinguish between foreground and background and detect
artifact targets. Galun et al [8] proposed a bottom-up aggregation framework called the B-
to-Top model to detect objects by combining texture features with filter responses to identify
the shape of camouflaged objects adaptively. Kavitha et al [13] proposed a UCT model that
utilizes a local HSV (hue, saturation, value) color model and gray-level co-occurrence ma-
trix(GLCM) features to identify camouflaged objects in images. Liu et al [20] proposed a
model that integrates spatial, top-down, and spectral features of images to detect camou-
flaged objects. The detection accuracy of conventional methods is not stable in that these
methods could be greatly affected by illumination changes.

2.2 Deep Learning-based Camouflaged Object Detection.
In recent years, methods for detecting camouflaged objects have advanced significantly.
These methods can be broadly categorized into four aspects.

The first category is based on biological characteristics which simulate the human
visual observation process. Representative works include SINet proposed by Fan [3], which
gradually locates and searches for camouflaged objects by imitating the detection and recog-
nition phases of predation. Mei [23] et al. proposed the PFNet[23] network consisting of a
localization module and a focus module, which mimic the corresponding phase of predation.
Sun et al [30] proposed C2FNet, which integrates cross-layer features and considers rich
global contextual information.

The second category of approach is based on edge texture. Representative works
include BGNet proposed by Sun [31] et al., which focuses on edge details when localizing
the target region and uses edges to enhance detection accuracy. TANet, proposed by Ren[29]
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et al., improves the accuracy of detection by amplifying the texture difference between the
object and its background.

The third category is characterized by networks based on multi-scale feature ex-
traction. The representative works include ZoomNet, a mixed-scale triad network proposed
by Pang [24] et al., which constructs and unifies scale-specific features on different levels to
reliably capture objects in complex scenes.

The fourth one, represented by JCSOD[18], is based on joint learning frameworks,
Li[18] et al.’s purposed this network to enhance the detection of both salient targets and
camouflaged objects by using contradictory information. Parts of simple positive samples
are trained as hard positive samples of SOD to enhance the detection of both tasks. Zhai[37]
et al.’s MGL network decomposes an image into two task-specific feature maps, one for lo-
cating the target roughly while another for precisely capturing its boundary details, inferring
the higher-order relationships between them by graph theory.

However, the aforementioned methods are all limited by their reliance on single-step
visual feature recognition approaches. To break through these limitations, we propose our
own model.

3 Method

The overall model architecture of the proposed EKNet is shown in Figure 3. Firstly, in
the correlation score matrix(CSM) module, with small-scale manual annotations, we extract
the environmental knowledge by fine-tuning the object detection network. The information
is leveraged to construct a knowledge graph. Then, we generate the relevance score(RS)
matrix using GCN[15]. Secondly, in the knowledge integration module(KIM), the RS matrix
is fused with Canny edge features to generate a more complete and detailed segmentation
result. Each module will be described in later sections in more detail.

3.1 Correlation scoring matrix generation module(CSM)

Most of the existing research work chooses to feed images into the network directly, ignor-
ing the semantic information contained in the pictures thriftlessly. However, this background
prior knowledge is often leveraged by humans to capture clues about camouflaged objects.
With the idea of simulating the human recognition process, we decide to treasure this over-
looked information. Thus, in the pre-trained stage, extensive work is done to build a visual
knowledge graph that illustrates the semantic relationship between environmental knowledge
and camouflaged objects unambiguously.

Since camouflage roots in the similarity of edges, colors, and textures, which means there
exist certain correlations between background attributes and camouflaged objects. This is the
motivation behind our method. Taking Figure 2 as an example, the camouflaged object is
a rabbit. With the object detection network, the background can be detected as the snowy
ground and other visual semantic entities like reefs. A knowledge graph representing cam-
ouflage knowledge will be constructed for each image in the dataset. The relevance can be
measured by the number of node interactions, that is, the more edge appearing between the
two entities or feature attribute nodes in these graphs, the stronger the relevance is. Since
the attribute nodes in the knowledge graph are entities extracted from visual image data, we
name this graph an environment-based visual knowledge graph (EVKG).
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Figure 2: Correlation scoring matrix generation module (CSM). Firstly, extract the knowl-
edge in the graph by the object detection algorithm. Secondly, construct the environment-
based visual knowledge graph (EVKG) and generate the relevance score matrix (RS) by the
graph convolution network embedding

The details are as follows. Firstly, a visual object detection method is used to detect
semantic entities in the images. In this paper, YOLO[28] is applied to extract the semantic
information of the objects and backgrounds in the dataset. To ensure that these object de-
tection methods can effectively extract the features needed, we trained the object detection
model using public datasets. However, directly transferring the model to camouflage scenes
will result in low accuracy, as the information in camouflage scenes has not been annotated in
previous training. Therefore, we manually labeled a small subset of the COD10K[3] dataset
(A total of 14 scenes labeled in background categories, background colors, camouflaged
object categories, etc.) and used these annotated datasets to fine-tune the object detection
model above-mentioned so that it can effectively adapt to camouflage object detection tasks.
Then, the fine-tuned object detection model is used to detect semantic entities in the images,
these entities and their relationships are used to construct the EVKG.

After that, we need to incorporate the knowledge information in EVKG into the segmen-
tation stage as prior knowledge. We use GCN[15] to generate vector representations of each
node in the knowledge graph, which can be divided into three stages: node initialization,
correlation information propagation, and network stacking. Firstly, during the node initial-
ization process, the vector representations of each node in the visual hidden knowledge graph
are initialized according to the normal distribution. Secondly, a message-passing mechanism
is used to aggregate the relevant information of neighboring nodes for each node. Finally,
relevant information propagation is executed through network stacking. The final vector
representations of all nodes are output by the last layer of the network. Using these node
vector representations and interaction frequency information, the parameters of models are
updated.

We embedded the feature vectors of the camouflaged objects and backgrounds separately.
After that, they are embedded and propagated layer by layer through the GCN network.

Fn+1 = ReLU(AFnW ) (1)
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Where Fn represents the n-th layer of feature data, Fn+1 represents the feature data of
layer n+1, A is the Adjacency matrix, and W is the network parameter matrix.

The optimized model can output a relevance score matrix between any background in-
formation and camouflage object category to assist subsequent segmentation tasks.

3.2 Knowledge Integration Module (KIM)
In the segmentation stage, the RS is fused with the feature maps f1, f2, f3, f4, and f5 ob-
tained by convolving the backbone network. The network is constantly reasoning based on
the knowledge information to consciously search for potential camouflage objects. The edge
feature information of the ground truth is extracted using the canny operator[1]. Since f5
loses some information near the edges, fusing the edge information extracted by the canny
operator with f5 features can help the network generate more complete and detailed segmen-
tation results, which are then sent to the Knowledge Integration Module (KIM).

Figure 3: Complete model architecture(EKNet). The complete network design and the de-
tailed design of the KIM module are shown here.

The design of KIM is shown in Figure 3. This module aims to integrate edge cue in-
formation and RS into representation learning to enhance the implicit knowledge reasoning
ability and object-structured semantic feature representation. Therefore, we introduce a cor-
relation attention mechanism to guide the network to explore key clues based on correlation
information to search for the target disguised object. We fuse the relevance scores with the
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features by element-wise multiplication and add the edge information to f5 by element-wise
addition. Then we perform 3×3 convolution to obtain the initial fused feature fm, which can
be represented as:

fm = Fconv3×3(( fi ⊗ frate)⊗ (D( fedge)⊕ f5)) (2)

where D denotes downsampling, Fconv3×3 is a 3x3 convolution, ⊗ represents element-wise
multiplication, ⊕ represents element-wise addition, and frate is the knowledge feature infor-
mation for correlation score. Inspired by the work of Wang [32]et al., we utilize channel-
wise global average pooling (GAP) to aggregate the convolutional feature fm, and then obtain
corresponding channel attention weights, i.e., weight information, through one-dimensional
convolution followed by the Sigmoid function, exploring local cross-channel interactions
and learning background knowledge attention information. Afterward, we reduce the num-
ber of channels through 1× 1 convolution and obtain fk, i.e., the feature map with reduced
channels.

fk = Fconv1×1(Sigmoid( f a
1K(G( fm)))⊗ fm (3)

Where Fconv1×1 is a 1× 1 convolution, f a
1K represents 1K convolution with kernel size a,

where k is proportional to the channel size. Clearly, the KIM module can highlight key
channel information rather than suppress noise or redundant channel information, thereby
enhancing semantic representation.

3.3 Loss Function
Our model’s loss function consists of two major parts: the knowledge score matrix generated
loss LG and the segmentation task loss LS. In the segmentation task part, we introduce two
types of supervision, namely, the camouflaged object mask Sm and the camouflaged object
edge Se. For Sm, we use weighted binary cross-entropy loss (Lω

BCE ) and weighted IOU loss
(Lω

IOU ) [33], which focus more on hard pixels. For Se, we use dice loss (Ldice) [35] to handle
the strong imbalance between positive and negative samples. Since mask supervision is
applied to the five KIM modules, the total loss function Lsum is defined as follows:

Lsum = ∑
5
i=1(LG +Lω

BCE(Ri,Sm)+Lω
IOU (Ri,Sm))+ εLdice(Re,Se) (4)

where Ri and Re are the predictions for the overall model and camouflaged object edges,
respectively. ε is a trade-off parameter, which is set to 5 in our experiments.

4 Experiments

4.1 Experimental Setup
Implemental Details. We employ GCN[15] pre-trained as the knowledge imformation
model and Res2Net50[9] pre-trained on ImageNet as our backbone. Once the correlation
score matrix is obtained, we resize all the input images to 416× 416 and enhance them with
random horizontal flipping. During the training stage, the batch size is set to 12, and the
Adam optimizer[14] is adopted. The learning rate is initialized to 1e-4 and adjusted by poly
strategy with the power of 0.9. Accelerated by an RTX2080Ti 12G GPU, the whole training
takes about 2.5 hours with 25 epochs.

Datasets. We evaluate our method on three public benchmark datasets: CAMO[17],
COD10K[3] and NC4K[21]. We follow the previous works[3], which use the training set of
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CAMO and COD10K as our training set, and use their testing set and NC4K as our testing
sets.

Evaluation Metrics. We utilize four widely used metrics to evaluate our method,i.e.,
mean absolute error (MAE, M) [25], weighted F-measure (Fω

β
) [22], structure-measure

(Sα ) [2] and mean E-measure (Eω ) [7].

4.2 Comparative Studies

We compare EKNet with 15 state-of-the-art methods. The backbone of PraNet is also
Res2Net50. Table 1 shows the comparison results. For a fair comparison, all the predic-
tions of these methods are either provided by the authors or produced by models retrained
with open-source codes. Our method outperforms all other models on three datasets under
four evaluation metrics.

However, We also have some images that don’t detect very well. There exist some cam-
ouflaged objects with a very high degree of camouflage and bad detection of the image. In
these cases, detection results will have deletions, which indicates that the network is not
enough to learn the local details. Therefore, we consider that for these special cases, we
need the network to amplify these local texture details, and then apply these details in the
segmentation.

Recently the latest SAM model in the field of CV segmentation has advanced the great
progress of general-purpose segmentation, and we have also evaluated the SAM model on
the task of camouflaged object detection, which can be seen from the experimental data
record in Table 1 that it does not perform too well, due to this task having high requirements
for the edge, semantic inference, etc. So it is very necessary to study the camouflaged object
task as a specialized task.

Method Pub./Year
CAMO-Test COD10K-Test NC4K

Sα ↑ Eφ ↑ Fω

β
↑ M ↓ Sα ↑ Eφ ↑ Fω

β
↑ M ↓ Sα ↑ Eφ ↑ Fω

β
↑ M ↓

EGNet[38] ICCV2019 0.732 0.796 0.601 0.107 0.736 0.802 0.515 0.059 0.777 0.842 0.639 0.078

PraNet[4] MICCAI2020 0.769 0.824 0.676 0.094 0.784 0.863 0.642 0.056 0.797 0.889 0.685 0.073

F3Net[33] AAAI2020 0.711 0.741 0.564 0.109 0.739 0.795 0.544 0.051 0.780 0.824 0.656 0.070

SINet[3] CVPR2020 0.745 0.804 0.704 0.092 0.776 0.864 0.645 0.043 0.809 0.872 0.753 0.058

PFNet[23] CVPR2021 0.782 0.841 0.695 0.085 0.800 0.868 0.660 0.040 0.829 0.887 0.745 0.053

R-MGL[37] CVPR2021 0.775 0.812 0.673 0.088 0.814 0.851 0.666 0.035 0.833 0.867 0.739 0.053

TANet[40] AAAI2021 0.781 0.847 0.678 0.087 0.793 0.848 0.635 0.043 - - - -

C2FNet[30] IJCAI2021 0.796 0.857 0.730 0.078 0.813 0.889 0.691 0.036 0.840 0.896 0.771 0.048

UGTR[36] ICCV2021 0.785 0.822 0.685 0.086 0.818 0.852 0.667 0.035 0.839 0.876 0.746 0.052

JCSOD[18] CVPR2021 0.800 0.859 0.728 0.073 0.809 0.884 0.684 0.035 0.841 0.898 0.771 0.047

OCENet[36] WACV2022 0.807 0.866 0.744 0.075 0.829 0.890 0.721 0.034 0.848 0.899 0.785 0.046

SegMaR[12] CVPR2022 0.811 0.868 0.749 0.073 0.831 0.899 0.722 0.033 0.841 0.896 0.781 0.046

CubeNet[41] PR2022 0.788 0.838 0.682 0.085 0.795 0.865 0.643 0.041 - - - -

ERRNet[11] PR2022 0.779 0.842 0.679 0.085 0.786 0.867 0.630 0.043 0.827 0.887 0.737 0.054

SAM[16] arXiv2023 0.684 0.687 0.606 0.132 0.783 0.798 0.701 0.050 0.767 0.776 0.696 0.078

EKNet(Ours) 0.821 0.879 0.749 0.073 0.833 0.900 0.727 0.032 0.850 0.904 0.785 0.044

Table 1: Quantitative comparison with state-of-the-art methods for COD on three bench-
marks using four widely used evaluation metrics (i.e., Sα , Eφ , Fω

β
, M). "↑" / "↓" indicates

that larger/smaller is better. The top three results are highlighted in red, green, and blue.
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Figure 4: Visual comparison of the proposed model with five state-of-the-art COD methods.
Obviously, our method is capable of accurately segmenting various camouflaged objects with
more clear boundaries.

Figure 4 shows the qualitative comparisons of different COD methods on several typ-
ical samples from the COD10K dataset. It is obvious that our method provides accurate
camouflaged object predictions with finer and more complete object structure and boundary
details.

4.3 Ablation Study

In order to validate the effectiveness of each key component and make our analysis clear, we
design several ablation experiments. For baseline model(B), we remove all the additional
models (i.e., CSM, KIM), and all the results are shown in Table 2.

Method
CAMO-Test COD10K-Test NC4K

Sα ↑ Eφ ↑ Fω

β
↑ M ↓ Sα ↑ Eφ ↑ Fω

β
↑ M ↓ Sα ↑ Eφ ↑ Fω

β
↑ M ↓

B 0.799 0.858 0.726 0.080 0.823 0.893 0.702 0.035 0.845 0.897 0.773 0.048

B+CSM 0.807 0.864 0.739 0.075 0.830 0.896 0.715 0.034 0.848 0.902 0.781 0.046

B+KIM 0.809 0.868 0.742 0.073 0.833 0.898 0.718 0.033 0.850 0.903 0.783 0.044

Ours 0.821 0.879 0.749 0.073 0.833 0.900 0.727 0.032 0.850 0.904 0.785 0.044
Table 2: Quantitative evaluation for ablation studies on three datasets. The best results are
highlighted in Bold. B: baseline.

Effectiveness of CSM. As can be seen in Table 2, compared with B model, the B+CSM
model has more vantages on the metrics Fω

β
that shows 1.30% performance increases aver-

agely.
Effectiveness of KIM. From Table 2, compared with B model, the B+KIM model pro-

vides better performance. Especially, the average performance gain with 1.08% on the met-
rics Fω

β
of our model for all datasets. Thus, the KIM is beneficial to boost detection perfor-

mance.



10 WANG ET AL.: A MULTI-STEP FUSION NETWORK BASED ON ENVIRONMENTAL

Effectiveness of CSM and KIM. We also test the effectiveness of all the components.
As shown in Table 2, the B+CSM+KIM model achieves obvious performance improvements
and is also the best on all datasets, with the performance gains of 1.06%, 1.10% and 2.59%
on average in terms of Sα , Eφ and Fω

β
, respectively.

5 Conclusion
In this paper, we address the limitations of visual feature single-step recognition methods
by leveraging environmental knowledge relevance to camouflaged objects to enhance cam-
ouflaged object detection performance. We propose an effective Environmental Knowledge-
guided Multi-step Network (EKNet), which includes a correlation scoring matrix generation
module (CSM) and a knowledge integration module (KIM), to explore intrinsic semantic
relevance between background and objects, guiding and improving representation learning
for COD. We are the first to introduce knowledge atlas auxiliary information in camouflage
object recognition and achieve multi-dimensional unification of knowledge space and visual
feature space. Extensive experiments demonstrate that our approach outperforms 15 existing
state-of-the-art methods on three benchmarks.
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