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Abstract

Traditional adversarial attacks concentrate on manipulating clean examples in the
pixel space by adding adversarial perturbations. By contrast, semantic adversarial attacks
focus on changing semantic attributes of clean examples, such as color, context, and fea-
tures, which are more feasible in the real world. In this paper, we propose a framework
to quickly generate a semantic adversarial attack by leveraging recent diffusion models
since semantic information is included in the latent space of well-trained diffusion mod-
els. Then there are two variants of this framework: 1) the Semantic Transformation (ST)
approach fine-tunes the latent space of the generated image and/or the diffusion model
itself; 2) the Latent Masking (LM) approach masks the latent space with another target
image and local backpropagation-based interpretation methods. Additionally, the ST ap-
proach can be applied in either white-box or black-box settings. Extensive experiments
are conducted on CelebA-HQ and AFHQ datasets, and our framework demonstrates great
fidelity, generalizability, and transferability compared to other baselines. Our approaches
achieve ∼100% attack success rate in multiple settings with the best FID as 36.61. Code
is available at https://github.com/steven202/semantic_adv_via_dm.

1 Introduction
Deep neural networks have achieved breakthroughs in many domains [1, 13, 40, 41], how-
ever, their intrinsic vulnerabilities to adversarial examples raise security concerns [5, 38, 43,
45]. Most of the literature on adversarial machine learning has been generalized to adversar-
ial perturbations within a ℓp norm ball with a small radius ε around the clean input example.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Bau, Zhu, Strobelt, Lapedriza, Zhou, and Torralba} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Yuan and Moghaddam} 2020

Citation
Citation
{Yuan, Duan, Tustison, Xu, Hubbard, and Linn} 2023

Citation
Citation
{Carlini and Wagner} 2017

Citation
Citation
{Xu, Zhang, Liu, Fan, Sun, Chen, Chen, Wang, and Lin} 2020{}

Citation
Citation
{Zhang, Wang, Xu, Wang, Jana, Hsieh, and Kolter} 2022

Citation
Citation
{Zhao, Xu, Liu, Wang, and Lin} 2019

https://github.com/steven202/semantic_adv_via_dm


2 WANG ET AL.: SEMANTIC ADVERSARIAL ATTACKS VIA DIFFUSION MODELS

Vanilla-trained models achieve high accuracy in classifying benign examples, while mis-
classifying inputs with such imperceptible perturbations. Instead of globally attacking input
images on pixel space, [16, 30] proposed semantic adversarial attacks gaining insight into
real-world robustness by manipulating semantically meaningful visual attributes. Seman-
tic attacks may be perceptible; however, such attacks are semantically meaningful and thus
hard to detect. Following the concept of semantic adversarial attacks, there is a growing
literature on this topic [2, 17, 24, 27, 35, 39]. In the real world, adversarial attacks in ℓp-
norm based constraint rarely happen due to fragile perturbations. Compared with ℓp-norm
adversarial attacks in the pixel space, semantic adversarial images are more feasible since
they are unrestricted in the magnitude of perturbation while preserving perceptual similarity
and realism. Such attacks include changes in texture or any semantic attribute that lead to
misclassification.
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Figure 1: Top two rows: our framework with ST
approach under white-box and black-box settings
with small semantic changes. Bottom two rows:
our framework with LM approach masking by
Grad-CAM and saliency maps to transplant fea-
tures from the target image.

Currently, there are two existing
approaches to implement semantic at-
tacks on clean images: transforma-
tions in color or texture [2, 16], or by
performing manipulation in the latent
space of a generative model [17, 24],
such as Generative Adversarial Net-
works (GANs) [12]. The former lever-
ages various techniques to gather color
and texture information, while the latter
relies upon attribute annotations to gen-
erate semantic adversarial images with
generative models such as GANs. Most
previous works on semantic adversar-
ial attacks utilize generative models to
change attributes, relying on attribute
annotations [17, 24], color or texture in-
formation [2, 16, 27].

While previous approaches have
demonstrated the feasibility of semantic
attacks, images that have been attacked
using these algorithms can often be eas-
ily spotted by the human eye. In order
for a semantic attack to be successful,
the attacked image should not only fool the classifier but also appear convincingly realistic.
Furthermore, existing approaches take a significant time to generate a single attacked image.
As a result, it is not feasible to launch these attacks at scale. To address these problems,
we develop our framework by leveraging diffusion models (DMs) without any other anno-
tations. Recently, DMs have drawn significant attention in the image generation area with
higher fidelity [15, 31] over GANs on image synthesis [8]. Also, the latent space in a DM
intrinsically contains semantic information. Similar to other generative models, DMs also
provide a latent space, but because it is in the same dimensions as input and output, attack
methods can easily map the features from the latent space to the generated image.

With exploiting DMs, in this paper, we propose the Semantic Transformation (ST) ap-
proach, which requires gradient information from the target classifier in the white box setting
or leverages a surrogate model in the black box setting to generate minimal semantic changes
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on the original inputs. Also, we provide another variant, the Latent Masking (LM) approach,
that can transplant auto-selected features by different masking methods from a target image.
Some visual examples are shown in Figure 1. We summarize our main contributions as
follows:

• We propose the Semantic Transformation (ST) approach, either white-box or black-
box, a generalized way to generate semantic adversarial attacks via fine-tuning a latent
space and/or a diffusion model.

• We propose the Latent Masking (LM) approach to fast generate semantic adversarial
attacks. Two interpretation methods (Grad-CAM or saliency map) are used to mask a
latent space by transplanting another target image.

• Our framework with ST and LM approaches is the first systematic way to generate
semantic adversarial attacks leveraging diffusion models.

Related Work Unlike ℓp-norm based attacks with pixel-wise perturbations, [4, 9, 37] pro-
posed unrestricted adversarial attacks with other techniques such as spatial transformations.
At the same time, [16] generate adversarial examples by manipulating the colors of a clean
image in the HSV color space, such as randomly shifting the hue and saturation components.
Concurrently, [30] proposed a non ℓp-norm based attack, generated with conditional gener-
ative models. Even the concept of semantic attack was not mentioned in this work, since
the attacks are generated with semantic information, it proposed the prototype of semantic
attack: a kind of unrestricted perturbations with ℓp-norm by manipulating semantic infor-
mation while keeping perceptual similarity realism. As aforementioned, changing color or
texture as in [2, 16], and manipulating attributes by generative models are both considered
semantic attacks, and many studies [2, 17, 24, 27, 35, 39] built on top of them. Most of
such attacks are visible; such as [24], where it proposed a human face-based semantic attack
algorithm by slightly changing the attributes (e.g., with the additional annotation. Though
some [22, 35, 39] of them are not visible, it is still a semantic attack, as long as it uses se-
mantic information to modify a clean image. For example, [35] crafted invisible semantic
adversarial perturbations by manipulating semantic information with Perceptual Similarity
(PS), and [22] generate targeted unrestricted adversarial attacks with a decision-based attack-
ing algorithm in a latent space of an adversarial generative model (GAN). However, when
generating semantic adversarial attacks with generative models, previous studies either rely
on a dataset with attribute annotations [24] or require thousands of queries [22]. Traditional
image generation techniques usually require adversarial generative networks (GANs); re-
cently diffusion models (DMs) [10, 15, 31] achieved superior image quality to GANs on
image synthesis [8].

2 Methodology

2.1 Preliminary: Diffusion Models

Diffusion models [15, 31] include a diffusion process (forward process) and a sampling pro-
cess (reverse process). The diffusion process transforms data to a simple noise distribution
while the sampling process reverses this process. Either of the two steps is a Markov chain
and consists of a sequence of steps, where every step can be approximated to a Gaussian
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distribution. The diffusion and sampling processes can be defined as follows:

qθ (x1:T |x0) =
T

∏
t=1

qθ (xt |xt−1), q(xt |xt−1) =N (xt ;
√

1−βtxt−1,βtI), (1)

pθ (x0:T ) = p(xT )
T

∏
t=1

pθ (xt−1|xt), pθ (xt−1|xt) =N (xt−1; µθ (xt , t),Σθ (xt , t)), (2)

where xt is the latent space for t = 1, · · · ,T . The latent space xt in diffusion process can be
expressed as:

xt =
√

ᾱtx0 +
√

1− ᾱtw, w ∼N (0,I), (3)

where αt = 1− βt and ᾱt = ∏
t
s=1 αs. In the forward process, the parameter {βt}T

t=0 can
be either a learnable parameter by reparameterization [15] or fixed constant. In the reverse
process, µθ (xt , t) can be expressed as µθ (xt , t) = 1√

αt
(xt − βt√

1−ᾱt
εθ (xt , t)), where εθ (xt , t)

is a noise approximation model, which predicts ε from a latent space xt and a time step t.
This model can be trained by minimizing the following loss function over model parameters
θ as Lsimple(θ) = Ex0∼q(x0),w∼N (0,I),t∥w− εθ (xt , t)∥2

2. After the model is trained, data can
be sampled with the sampling process as xt−1 =

1√
αt
(xt − 1−αt√

1−ᾱt
εθ (xt , t))+σtz, where z ∼

N (0,I). Meantime, [29] proposed a non-Markovian diffusion process that leverages the
same DDPM in the forward process as they share the same forward marginals, and it has a
distinct sampling process:

xt−1 =
√

ᾱt−1fθ (xt , t)+
√

1− āt−1 −σ2
t εθ (xt , t)+σ

2
t z, (4)

where z ∼N (0,I) and fθ (xt , t) is a estimation of x0 at t given xt and εθ (xt , t), as fθ (xt , t) =
xt−

√
1−ᾱt εθ (xt ,t)√

ᾱt
.

2.2 The Semantic Transformation (ST) approach
One crude way of using a diffusion model to perform a semantic adversarial attack is to
directly manipulate the latent space through an attack loss as shown in Figure 2. Given
a clean image x0, we use Eq.(3) to obtain its latent space xT with a diffusion process as in
Eq. (1). The generated semantic adversarial image is denoted as x̂0(θ̂ , x̂T ) with the fine-tuned
diffusion model parameter θ̂ and the fine-tuned latent space x̂T . We fine-tune the latent space
and/or the diffusion model to transform semantic information during the fine-tuning process
until the generated image x̂0(θ̂ , x̂T ) mislead the classifier. After the fine-tuning process,
we evaluate our attacks with a sampling process as in Eq. (2). For diffusion and sampling
processes, we use DDIM [29] as it is a deterministic process. The fine-tuning process is
performed until the target classifier can be fooled by generated image x̂0(θ̂ , x̂T ). As shown
in [20], we believe manipulating a latent space xT at step T affects the generated image after
sampling, since xT contains semantic information of the original image x0. The algorithm is
in the supplementary material.
Loss Function in the Finetuning Process. There are many perceptual metrics for assessing
the perceptual similarity between two images, such as Peak signal to noise ratio (PSNR)
and structural index similarity (SSIM); however, these metrics fail to capture the nuances of
human perceptions [44]. Evaluated on BAPPS dataset, [44] proposed the Learned Perceptual
Image Patch Similarity (LPIPS) metric, which recognizes similarities well even with various
distortions for a pair of images. Hence, we minimize the LPIPS metric in our loss function, to
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Figure 2: Pipelines of generating semantic adversarial images via a fine-tuning process by
ST and LM approach.

maximize the perceptual similarity between the original image and the generated semantic
adversarial image. Inspired by the TRADES loss [42], we maximize the KL divergence
between the prediction logits on the original image and the prediction logits on the semantic
adversarial image. Our loss function in the fine-tuning process is defined as:

LST = min
θ̂ ,x̂T

λDLPIPS(x0, x̂0(θ̂ , x̂T ))−DKL( f (x0), f (x̂0(θ̂ , x̂T ))), (5)

where DLPIPS captures the perceptual similarities of the original image x0 and the generated
adversarial image x̂0(θ̂ , x̂T )), and minimizing this loss term keeps perceptual features of the
pair of images remain same during fine-tuning. By contrast, maximizing DKL encourages the
generated image x̂0(θ̂ , x̂T )) to enlarge the logits distance with x0 with respect to a classifier
f , either a known classifier or a random pre-trained classifier. Thus, there is a trade-off
between these two terms: while maintaining the global perceptual similarities, we expect
to change the local attributes misleading the classifier f . The relative strengths of two loss
terms DLPIPS and DKL can be adjusted by the scalar λ .
Nuance between White-box and Black-box Attacks. The difference between a white-box
and black-box attack is whether the malicious knows the target model parameters of f . In
Eq. (5), when calculating DKL, the prediction logits from the target classifier are used for a
white-box attack, and the outputs from a pre-trained InceptionV3 model [33] are used for a
black-box attack.

2.3 The Latent Masking (LM) Approach
Fine-tuning a latent space or diffusion model requires calculating the gradients on the la-
tent space or diffusion model parameters, resulting in huge computation expenses. In this
subsection, we introduce an alternative approach to modify the generated image, that is,
by masking the latent space with feature significance from a target image. The mask area
is the most significant in a feature map and is intended to contain important, semantically
meaningful features with respect to the target classifier. We transplant the masked area as in
Figure 2. Let m be an interpretation map, it can be calculated as m = g(x0,y), where x0 is
a clean image, and y is its label. We use Grad-CAM [11, 26] and saliency maps [28, 32] for
interpretation maps in this paper.
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Original Enlarged Enlarged Attack Original Enlarged Enlarged Attack

White-box Attack Black-box Attack

Figure 3: ST approach under different fine-tuning. First row: only fine-tuning a latent space.
Second row: only fine-tuning a diffusion model. Third row: fine-tuning both a latent space
and a diffusion model. First column: original image. Second column: enlarged local area
from the original image. Third column: enlarged local area from the adversarial image.
Fourth column: adversarial image.

Transplanting Features with Mask. We denote a pair of source and target images as xs
0 and

xt
0, and their latent spaces as xs

T and xt
T respectively. Here, xs

0 is used as the victim image,
and most features in xs

0 are kept; xt
0 is used as the target image, and a small portion of masked

features in xt
0 are transplanted to xs

0 when generating a semantic adversarial attack. We use
Grad-CAM or saliency map to generate the mask. The significance maps are calculated on
xs

0 and xt
0, denoted as ms and mt . We have three strategies to generate a mask m̂ and we

denoted them as m̂s(δ ), m̂t(δ ) and m̂s+t(δ ), respectively:

m̂s(δ ) = TopK(|ms|,δ ), m̂t(δ ) = TopK(|mt |,δ ), m̂s+t(δ ) = TopK(|ms|+ |mt |,δ ), (6)

where δ is a percentage threshold of TopK function, ranging from 0 to 99, and TopK function
would only keep a given input with the δ% largest and set other elements in the mask as zero.
We design a heuristic to control the decremental speed of δ :

δ = δ −max(γ
zy −maxi ̸=y zi

zy
,1), (7)

where zy is the target class confidence logit, maxi̸=y zi is the second highest confidence logit,
and γ is a constant. With the mask m̂t0(δ ) created, the original latent space is modified as:

x̂T (δ ) =(1− m̂(δ ))∗xs
T + m̂(δ )∗xt

T (8)

With modified latent space x̂T (δ ), we generated a semantic adversarial image without fine-
tuning a latent space or diffusion model following Eq.(4). The whole process of the LM
approach is shown in Figure 2. The algorithm is in the supplementary material.

3 Experiments
3.1 Datasets
We evaluate our white-box and black-box attacks on two tasks: human facial identity recog-
nition and animal category recognition. For all experiments, we use 500 images with the size
of 256 × 256.
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Human Facial Identity Recognition and Gender Classification. We use Celeb-HQ Facial
Identity Recognition Dataset, which is a subset of the CelebAMask-HQ dataset [21], adopted
from [22]. The original CelebAMask-HQ dataset contains 30,000 face images at 512 x 512
resolution. It has 6,217 unique identities. For the target classifier, we use a subset of it as
in [22], which contains 307 unique identities, 4,263 images for training, and 1,215 images
for testing. A ResNet18 [13] classifier is trained for 30 epochs with 89.05% accuracy on this
dataset. For the diffusion model, we used the model pretrained on CelebA-HQ [18] dataset,
which contains 30,000 images at 1024 x 1024 resolution. The evaluation is in Section 3.4 and
the supplementary material. Besides facial identity recognition, we also adopt the Celeb-HQ
Face Gender Recognition Dataset from [22], which contains 11,057 male and 18,943 female
images, and the evaluation is in the supplementary material.

Animal Category Recognition. We use the AFHQ [6] dataset, a dataset of animal faces
consisting of 15,000 images at 512 x 512 resolution. The dataset contains three categories,
cat, dog, and wildlife, and the evaluation is in the supplementary material.

3.2 Attack Details

Fine-tuning Process and Evaluation. In Eq. (5), we set λ to 1. We denote the number
of iteration steps in a diffusion process, a fine-tuning process, and a sampling process as
sdf,sft, and ssp, which are set to 40,15 and 40 respectively. For sft, according to [19], even
6 steps would satisfy the fine-tuning purpose. In our experiments, we set it to 15 due to the
VRAM limitation on our GPUs. However, the semantic adversarial images would demon-
strate a smoother modification with higher image quality by increasing the fine-tuning step.
To ensure the adversary of our generated image, we initially verify the target classifier output
throughout the fine-tuning process, and if the label remains unchanged, we will conduct ad-
ditional 15 steps of the fine-tuning process based on the last run iteratively until the attack is
successful. The procedure of sampling will then be carried out to improve the image quality.

Constructing Mask and Evaluation. Every pair of source and target images, xs
0 and

Setting strategy ASR (%)↑ FID↓ KID↓ average
query↓

average
time (s)↓

clean images - - 30.67 0.000 - -

LatentHSJA - 100.0 83.52 0.046 1000† 45.87
AttAttack - 71.80 48.92 0.018 146.82 49.71

ST approach

fine-tune
latent space

white-box 100.0 37.93 0.014 7.72 37.10
black-box 59.18 114.99 0.098 43.15 206.13

fine-tune
diffusion model

white-box 99.2 36.61 0.006 4.98 30.78
black-box 100.0 96.88 0.068 11.73 66.57

fine-tune both white-box 99.4 36.66 0.006 4.96 30.78
black-box 100.0 94.36 0.066 11.672 64.97

LM approach

GradCAM
m̂s(δ ) 98.8 65.84 0.015 15.33 20.96
m̂t(δ ) 99.2 64.38 0.014 15.21 18.89

m̂s+t(δ ) 99.0 65.47 0.014 14.65 20.81

SimpleFullGrad
m̂s(δ ) 99.6 67.10 0.016 16.17 24.03
m̂t(δ ) 99.6 65.21 0.016 15.32 27.48

m̂s+t(δ ) 99.8 65.67 0.015 14.73 23.77
† Elapsed time varies, depending on the query steps, which is preset by the user.

Table 1: Performance of our framework with the
ST and the LM approach on CelebA-HQ dataset
compared with other two baselines.

xt
0, is randomly sampled as long as they

have different class labels and can be
classified correctly by the target clas-
sifier. When applying Grad-CAM or
saliency map to an image, we com-
bine m0 and m1 from the RGB chan-
nels into one channel and then filter by
TopK in order to better observe how
features are transplanted from the tar-
get image to the original clean image.
For the saliency map, we adopt Sim-
pleFullGrad from [32]. For the Grad-
CAM [25], we directly use the original
implementation.
After integrating the generated mask
from Eq. (6) and Eq. (8), the diffusion
process does not always generate adver-
sarial examples, and we need to decre-
ment hyper-parameter δ in every itera-
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tion with Eq. (7).
In this approach, semantic adversarial images are generated using only the mask and a

target image without the fine-tuning process. We set both sdf and ssp to 40. During each
iteration, with decremental δ , we check if the generated image from the sampling process
is an adversarial example against the targeted classifier f , and we stop the attack when an
adversarial example is generated.

3.3 Evaluation Metrics and Benchmarks
We quantify the attack success rate (ASR), Fréchet Inception Distance (FID) [14] and Kernel
Inception Distance (KID) [3] in the fidelity of semantic adversarial attacks. FID measures the
Fréchet distance between two data distributions, and KID measures the dissimilarity between
two distributions. For both measurements, lower is better. In addition, for the ST method, we
measure the average number of fine-tuning iterations, denoted as δavg; for the LM method,
we measure the average threshold for successful semantic adversarial attacks, denoted as
ηavg. We also measure the average elapsed time for generating a semantic adversarial attack
to evaluate efficiency.

3.4 Results
LM approach with Grad-CAM

m̂s(δ )

m̂t(δ )

m̂s+t(δ )

LM approach with SimpleFullGrad

m̂s(δ )

m̂t(δ )

m̂s+t(δ )

Figure 4: LM approach with three strategies
m̂s(δ ), m̂t(δ ) and m̂s+t(δ ). From left to right:
source images, target images, constructed masks
with given strategies and generated semantic ad-
versarial images.

The results and analysis focus on
CelebA-HQ identity dataset, for which
the results with the ST and the LM ap-
proach of our framework are shown in
Table 1. For baselines, we use two
groups of clean images to calculate FID
and KID, each group with 500 images.
For comparison, we use recent seman-
tic adversarial attacks LatentHSJA [22]
and AttAttack [17] as benchmarks. For
LatentHSJA, we run experiments with
default fixed 1,000 queries. The num-
ber of queries is preset by the user, and
the default is 20,000. We use 1,000
as a trade-off between quality and effi-
ciency. For AttAttack, we run several
benchmarks of it and choose AttGAN
to perturb the Age attribute, since this
setting balances quality and ASR. In ad-
dition, we use the same target model in
AttAttack as in our attacks. Both base-
lines are evaluated on Celeb-HQ Facial
Identity Recognition Dataset as men-
tioned in Section 3.1. For all experi-
ments, we focus on untargeted attacks,
that is, as long as the predicted label is
different from the original one, the at-
tack will be counted as a success.
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Analysis for the ST Approach. Table 1 represents the performance of our framework on
CelebA-HQ dataset. The top half shows the statistics of our framework with the ST approach
under white-box and black-box settings. Our attack achieves almost 100% ASR in all cases.
For the ST approach, from FID and KID, we can clearly observe that our framework under
white-box settings obtains higher-quality images than black-box settings. Under black-box
settings, our framework creates more deformation than white-box settings and makes the
generated images unrealistic and dissimilar to the original image. Visual examples generated
with the ST approach are in Figure 3.
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Figure 5: The relationship between FID/KID
and δ in the LM approach of our framework.

From these generated images with the
ST approach, we find that our frame-
work under white-box settings tends to
achieve a minimal amount of modifica-
tion concentrated in a small area of the
original image. Under black-box set-
tings, our framework tends to randomly
modify details on a relatively large scale.
This can be explained by the classifier f
in the KL divergence loss term DKL of
Eq. (5). Under white-box settings, f is our
targeted classifier in ResNet18, whereas un-
der black-box settings, f is a pretrained In-
ceptionV3 network on ImageNet [7]. Thus, f could not efficiently capture the most important
area with respect to a face identity under black-box settings. In addition, we find that fine-
tuning both a latent space and a diffusion model achieves the best balance between quality
and efficiency.

LatentHSJA AttAttack ST black-box LM SimpleFullGrad0
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MNasNet1.0
DenseNet121

Figure 6: Transfer attack results on LatentH-
SJA, AttAttack, our ST and LM approach.

Analysis for the LM Approach. We found
that constructing masks using GradCAM or
SimpleFullGrad saliency maps yields simi-
lar results like nearly 100% ASR and sim-
ilar FIDs and KIDs. In most human faces,
the features related to a face’s identity usu-
ally come to be in a similar area on an im-
age (e.g. nose, eyes, chin, and forehead).
Hence, we can transplant features by di-
rectly applying masks to source and target
images.

Visual examples are shown in Figure 4. Note that the mask may not exactly correspond
to the area being modified since the generative process is performed via a diffusion model,
the Gaussian noise added during the sampling process cannot precisely only modify a speci-
fied area without special techniques such as image inpainting. However, the most significant
modifications occur in the mask areas overall. We also investigate the sensitivity of mask-
ing threshold δ , as shown in Figure 5, and we find that the LM approach with Grad-CAM
achieves better fidelity and quality than SimpleFullGrad in the same δ , This implies that
Grad-CAM has a better ability to expose attackable areas than SimpleFullGrad.

Comparison with Benchmarks. Visual examples for comparison are shown in Figure 7,
and more of them can be found in the supplementary material. In terms of FID and KID,
our framework with the ST approach under white-box settings achieves comparable perfor-
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mance. For average elapsed time per generated image, our framework with the LM approach
shows the best performance compared to other methods. LatentHSJA starts

Figure 7: Comparison of semantic adversar-
ial attacks between ours and others. From left
to right: original image, LatentHSJA, AttAt-
tack, our ST black-box approach, and LM with
Grad-CAM approach.

from the target image and iteratively tries
to transplant pixels in latent space, with a
fixed number of queries, but with a low
similarity compared with the original im-
age. AttAttack greatly improves perfor-
mance by utilizing manual attribute anno-
tations, yet it is challenging to generalize
to other datasets. In addition, we eval-
uate the transferability in Figure 6. All
methods targeted their attack on Resnet18
(except for ST Black-box) and generated
500 adversarial images. We test these
on three additional classifiers, ResNet101,
MNasNet1.0, and DenseNet121 to calcu-
late the ASR. Our ST black-box approach
performs the best among the others as ex-
pected, since it does not require exact infor-
mation from the target model. Compared
with the ST approach, the generated adver-
sarial attacks should be harder to denoise
by diffusion-based purification algorithms
such as [23, 34, 36]. We further evalu-
ate the robustness of our semantic attack
under natural perturbations, such as JPEG,
Gaussian Blur, Defocus Blur, and Bright-
ness transformation in the supplementary material. The results demonstrate that our semantic
adversarial perturbations are still preserved after natural perturbations.

4 Conclusion
In this paper, we first proposed a framework for semantic adversarial attacks by leveraging
Diffusion Models with the ST approach and LM approach. The ST approach manipulates
the latent space of a benign image or the parameters of a diffusion model via fine-tuning,
whereas the LM approach manipulates the latent space via masking of significance maps
in a more direct way. In our empirical study, the proposed framework achieves excellent
performance for both approaches, under different settings. In total, our framework shows
great generalizability, efficiency, and transferability compared to other baselines and exposes
a novel usage of Diffusion Models in the semantic adversarial attack domain. However, there
are limitations to our framework. For the ST approach, the quality of adversarial images
under the black-box setting is not as good as the white-box setting; for the LM approach, it
cannot precisely control the masked area to be modified compared to a clean image.
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