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Abstract

Image enhancement aims at enhancing the overall contrast (low frequency) while
reconstructing details (high frequency). Existing studies typically achieve these two ob-
jectives with a heuristically constructed complex architecture (i.e., two-stage or two-
branch). In contrast, we attempt to perform the image enhancement task within a single-
stage and single-branch network. However, directly employing a single plain network to
optimize the two objectives simultaneously will lead to an optimization conflict between
contrast enhancement and texture restoration, resulting in suboptimal performances. To
alleviate this problem, we construct a frequency-independent feature space for maintain-
ing optimization consistency. Specifically, we propose a Frequency Decorrelation and In-
tegration (FDI) module with two core insights: 1) formulating a frequency-independent
space via decorrelation normalization to bridge the frequency discrimination; 2) integrat-
ing the initial frequency-dependent features with a channel shuffle operation for informa-
tion complement and reducing the sensitivity to frequency during optimization. There-
fore, these two designs encourage networks to learn along the optimization direction of
frequency consistency. In addition, the proposed FDI is a plug-and-play module that can
be incorporated into the existing methods with negligible parameters. Extensive exper-
iments on various image enhancement benchmarks demonstrate consistent performance

gains by utilizing our proposed module.

1 Introduction

The rapid advancement of smartphones has facilitated access to photography. However, the
captured photographs will inevitably suffer from low contrast and serious noise pollution
due to insufficient illumination, imaging equipment, and other factors. These degradations
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Figure 1: The motivation of our method. (a) We point out that there is an optimization in-
consistency between contrast enhancement and details restoration in the image enhancement
task. To alleviate it, we formulate a frequency-independent feature space with the proposed
Frequency Decorrelation and Integration (FDI) module; and (b) compared to the baseline,
incorporating our proposed FDI mitigates the ratio of negative correlation while maintaining
that of positive correlation.

not only reduce the visual quality but also burden the performance in the downstream recog-
nition tasks (e.g., classification, image detection, and segmentation). Therefore, image en-
hancement is urgently required to improve the visual quality of photos by enhancing contrast,
correcting color, and reconstructing details. The current image enhancement methods can be
coarsely divided into two categories: conventional methods and learning-based methods.

Conventional enhancement methods rely on hand-crafted priors to constrain the solution
space of latent high-quality images. For example, Dong et al. [6] developed a bright channel
prior, and Guo et al. [8] designed a structure prior to refine the illumination map. However,
these manually designed priors have limited generalization ability, hindering the practical
application of the corresponding algorithms.

Recently, deep learning-based methods have achieved remarkable progress in the im-
age enhancement community. The representative approach is attributed to the Retinex the-
ory [16], which assumes that the observed image can be decomposed into illumination
and reflectance components. Following this, various works propose to enhance contrast
(low frequency) and reconstruct details (high frequency) in these two terms, respectively.
RetinexNet [23] develops a two-stage training framework to decompose the low-light im-
age and enhance the illumination component sequentially. KinD [31] further introduces a
sub-network to recover the reflectance component for detail reconstruction. RUAS [19] first
designs a bi-level optimization model adhering to the Retinex theory and then establishes
a holistic propagation structure by unrolling the optimization process. Undeniably, with
the advanced design of the training strategies and architectures, recent methodologies have
achieved significant success in the image enhancement task. However, the complex and
specific designs result in unsatisfactory flexibility and transferability of these algorithms.
Furthermore, employing two-stage methodologies contributes to the accumulation of errors,
subsequently leading to suboptimal outcomes.

In this paper, we attempt to explore the potential of a simple single-stage and single-
branch network on contrast enhancement and detail reconstruction simultaneously. Unfor-
tunately, since the optimization of contrast enhancement (low frequency) and details recon-
struction (high frequency) is inconsistent (see Fig. 1) during the training process [25], di-
rectly employing a single plain network to achieve the above two objectives simultaneously
will lead to suboptimal performances. We therefore wonder, “Is it possible to alleviate the
adverse effects of such optimization inconsistency within a straightforward network?”
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To achieve this goal, as described in Fig. 1, we formulate a frequency-independent fea-
ture space where the optimization inconsistency between frequencies will be eliminated. To
this end, we design a Frequency Decorrelation and Integration (FDI) module, as shown in
Fig. 2. It includes a frequency decorrelation part and an integration part. Specifically, the
frequency decorrelation component initially produces a high-frequency counterpart from the
original features, and then removes the correlation between two features with distinct fre-
quencies via a decorrelation normalization for generating the target feature space. Since the
normalization operation will result in the loss of the image discriminative features for image
enhancement, we introduce an integration component to aggregate the normalized features
with the original frequency-dependent features for information complement. To further re-
duce the network sensitivity to frequency during optimization, a channel shuffle operation
is employed to randomly disturb the relationship between the frequency-independent and
-dependent features. Such designs guarantee that networks are optimized in a frequency-
consistent manner.

To highlight, the proposed FDI can be used as a plug-and-play module for existing en-
hancement networks with negligible parameters. Extensive experiments on diverse image
enhancement datasets have demonstrated the flexibility and effectiveness of our proposed
approach. Our contributions are summarized as follows:

* We point out the optimization inconsistency between contrast enhancement and texture
restoration in image enhancement. To this end, we construct a frequency-independent
feature space with a Frequency Decorrelation and Integration (FDI) module.

* Within the FDI module, we design a frequency decorrelation part for mapping features
to a frequency-independent space, and an integration part for reducing the sensitivity
to the frequency during the optimization process.

e Our FDI module is general and can be integrated into the existing image enhancement
methods with negligible parameters. Extensive experiments demonstrate consistent
performance gains by introducing our proposed module.

2 Related Work

2.1 Conventional Methods

Image enhancement has been studied for a long time. The earliest methods mainly rely on
hand-crafted operations or filters to enhance images. Histogram Equalization-based meth-
ods [13, 17] enhance the light by expanding the dynamic range of an image. Gamma Correc-
tion uses the non-linear function to enhance contrast [2]. However, these methods ignore the
connection between pixels and tend to yield unnatural results. In addition, several methods
leverage prior knowledge to assist enhancement. Dong et al. [6] proposed an enhancement
algorithm using a bright channel prior. Guo ef al. [8] refined the initial coarse illumination
map by imposing a structure prior. Nevertheless, these methods have limited the representa-
tion capacity in complex real-world scenes, hindering their practical applications.

2.2 Learning-based Methods

Recently, with the emergence and development of deep learning, image enhancement task
has benefited from the deep learning models. Inspired by the Retinex theory [16] that as-
sumes that images can be decomposed into illumination and reflectance, RetinexNet [23]
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Figure 2: The overview of our proposed FDI module, which formulates a frequency-
independent feature space with (a) a frequency decorrelation part and (b) an integration part.
The frequency decorrelation part maps frequency-dependent features Fj, to the frequency-
independent features F,. The integration part compensates for the information loss caused by
decorrelation normalization, which introduces a random channel shuffle operator to reduce
the sensitivity to frequency during the training process.

develops a two-stage training framework to sequentially decompose the inputs and restore
the illumination (low frequency). KinD [31] further introduces an additional sub-network for
reflectance recovery (high frequency). RUAS [19] first designs optimization models based on
the Retinex rule and then establishes the holistic propagation structure by unrolling the op-
timization process. As another form of component decomposition, DRBN [26] decomposes
features into different bands in the first stage and then recomposes them towards fitting visual
properties in the second stage. More recently, Zhao et al. [33] employed the invertible neural
network to perform bidirectional feature learning between the low-light and normal-light im-
ages. Xu et al. [24] proposed a signal-to-noise-aware framework that simultaneously adopts
a transformer structure and a convolutional model for achieving spatial-varying enhance-
ment with an SNR prior. Undeniably, these algorithms have achieved significant success in
image enhancement. However, they rely on the complicated designs of the training strategy
or architecture and do not explore the potential of simpler architecture. As opposed to them,
we hope to achieve image enhancement within a more straightforward architecture.

3 Method

3.1 Overview

Images captured in underexposure scenes inevitably suffer from degradation, including low
contrast and loss of details. Since the optimization of contrast enhancement (i.e., low fre-
quency) and details reconstruction (i.e., high frequency) is inconsistent during the training
process, directly employing a plain network to simultaneously achieve these two objectives
will result in suboptimal performance. To eliminate the inconsistency between different fre-
quencies, we design a Frequency Decorrelation and Integration (FDI) module to formulate
a frequency-independent feature space for consistent optimization across frequencies. As
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described in Fig. 2, we implement our FDI module with two parts: a frequency decorrelation
part maps distinct frequency features to frequency-independent space, and an integration part
is introduced to assimilate the original unprocessed features for compensating the loss of im-
age discriminative information caused by decorrelation. To highlight, the FDI module can
be used as a plug-and-play module with negligible parameters to assist existing approaches
training within a frequency-consistent optimization.

3.2 Frequency Decorrelation Part

Given an input feature F;, € RE#*W (C denotes the number of channels, H,W denotes the
feature height, width.), the frequency decorrelation part first employ a 1 x 1 convolution to
reduce the channel number of F;, to %, which can be formulated as:

FA;'n:COI’Wlxl(En). (1)

Then we extract the high-frequency related feature from the F;,. Specifically, we ex-
pand the initial resolution feature to a higher resolution with 2H x 2W spatial dimension by
a transposed convolution with 2 strides and 3 x 3 kernel. Then, we employ a vanilla con-
volution (stride is 2 and kernel size is 3) to project the high-resolution feature to the same
spatial dimension as F;,, and the difference between the projected feature Fljown and initial

F;, is the high-frequency related feature for details reconstruction. Every convolution layer
is followed by a nonlinear ReL.U. The above operations can be expressed as follows:

Fup = fup (F;y) = ReLU (TransConv(Ey,)),
Fd(}wn = fdown (Etp) = ReLU(COHV(ﬁup)), (2)
Fderails = Fdown - ﬁim

where F, D> Eowns and Fyeais denote the expanded feature, projected feature, and high-
frequency related feature for details reconstruction, respectively. TansConv(-) denotes the
transposed convolution and Conv(+) denotes the vanilla convolution. Note that we can expand
the resolution to N x times by simply repeating fi,(-), i.e., be\,’, = ;\,’,(ﬁm) = fup(fup (- ().
Experiments in Sec. 4.4 indicate that it works well with just 2 x resolution.

Inspired by the decorrelation property of the whitening operation (discussed in detail in
Sec. 3.5), we introduce the Decorrelation Normalization (DN) based on ZCA-whitening [11].
Formally, given the low-frequency feature £, which is relevant to contrast enhancement and
the high-frequency feature Forails that is relevant to details reconstruction, we concatenate
them and then employ the DN in the channel dimension to eliminate the correlation of fea-
tures across different frequencies, thus formulating a frequency-independent feature space.
The frequency-independent feature F, € RE*#*W can be formulated by:

F, = DN(Concat[Ey, Egeraits)), )

where DN(+) denotes the Decorrelation Normalization which will be discussed in detail in
Sec. 3.5, and Concat indicates the concatenation operation.

3.3 Integration Part

As normalization inevitably erases the discriminative information, which is crucial to im-
age restoration, we propose an integration part to compensate the original features unpro-
cessed by the DN to ensure the information completeness [9]. Specifically, as illustrated
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in Fig. 2, we first employ a 1 x 1 convolution to reduce the channel number of F, to %:
F, = Convix1(F,). Considering that directly concatenating F,, and F, would trigger the
network to tend to derive knowledge from simpler features, we introduce a random shuffle
operation across the channel dimension after concatenation. It prevents the network from
excessively relying on a subset of the frequency-dependent or -independent features and
reduces the sensitivity to the frequency during optimization. The final output is written by:

Fpu = RandomShuf fle(Concat [Fy,, E,)). )

Since features are randomly shuffled on the channel dimension throughout the training pro-
cess, the network will be not biased to features of a particular frequency. However, we find
that randomly shuffling all channels will result in unstable training. To this end, we investi-
gate the influence of the shuffle ratio on performance in Sec. 4.4, and we empirically set the
shuffle ratio as 20% in all experiments. Note that the shuffle operation is not applied during
the testing phase to ensure reproducible results without affecting performance.

3.4 Plugging into Existing Networks

As a plug-and-play module, the proposed FDI can be flexibly integrated into existing net-
works. We choose two representative baseline networks, SID [3] and MPRNet [27], as the
backbones. They are U-Net-like architectures with an encoder and a decoder. As described
in Fig. 3, we present three distinct strategies for the incorporation of the FDI module: (i)
at the head of the encoder, (ii) between the encoder and decoder, and (iii) at the rear of
the decoder. All of them achieve performance progress compared to the plain network, and
strategy (ii) has the best performance (refer to Sec. 4.4 for details).

3.5 Decorrelation Normalization . »@
Whitening operation is a data processing technique L“ ,,,,,,,, R
commonly used in machine learning for decorrelat- | E i ﬁ :
ing the data [12]. In this paper, we employ the . g *E g »@
whitening operation as the decorrelation normaliza- ---------- S LR S
tion to remove the correlation of features between . g B - g*ai
different channels. Specifically, given the input fea- ! 5 . °
tures X € REHW we perform Decorrelation Nor- ===~ oo P oo
malization by: i-* E 5 *ai

X=DN(X)=2 2(X—pu-17), I R /

where U = ﬁX -1 is the mean on each row of X, Figure 3: The proposed plug-in
L= (X—p-17)(X— p-1")T + el is the covari- strategies. (a) The initial plain net-
ance matrix of the zero-centered X, 1 is a column work; and (b)-(d) the networks ob-
vector of all ones, and € > 0 is a small positive num- tained by plugging the FDI module
ber for numerical stability. It is easy to verify that X into (a), respectively.
is the whitened features, i.e., XX” =L

However, the above whitening transformation is not unique due to T3 is defined up
to rotation. In this paper, we adopt the widely used ZCA whitening, which preserves the
original distribution of each feature. The formulation of ZCA whitening is:

A

XK= 2(X—p-17) =UA 20" (X —p-17), (6)
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(h) EnlightenGAN (i) SID (j) M-SID(Ours) (k) MPRNet (I) MPRNet-L  (m) M-MPRNet(Ours)  (n) GT

Figure 4: Visual comparison on LOL dataset. M-SID and M-MPRNet denote SID and MPR-
Net incorporated with the proposed FDI module by strategy (ii) mentioned in Sec. 3.4.

where A = diag(o,-++,0¢) and U = [uy, - - - ,uc] are the eigenvalues and eigenvectors of X,
ie. ¥ =UAU’. As illustrated in Eq. 6, classical ZCA whitening heavily relies on eigen-
decomposition, resulting in poor efficiency. Therefore, we employ the Iterative Normal-
ization proposed in [11] for efficient ZCA whitening, which calculates T3 by Newton’s
Iteration.

3.6 Loss Function

In this paper, we focus on providing an efficient plug-and-play module to assist existing
methods to be optimized in a frequency consistency feature space for better performance,
thus, we simply utilize L loss and perceptual loss [15], which are widely-used loss functions
in the image enhancement community. We employ the pre-trained VGG19 [21] as the feature
extractor of the perceptual loss. The total loss function is expressed as:

Etoml = Ll +A- Epv (7

where A denotes the coefficient to balance the £; loss and the perceptual loss £,.

4 Experiments and Results
4.1 Settings

We evaluate the proposed module on two typical image enhancement tasks: Low-light Image
Enhancement (LLIE) and Underwater Image Enhancement (UIE).

Datasets and baseline. Low-light Image Enhancement: We construct LLIE experi-
ments on the LOL [23] dataset. The LOL dataset is a real captured dataset containing 485
low/normal light image pairs for training and 15 for testing. For performance comparison,
we compare our method with the baseline networks and the most representative methods,
including Retinex-Net [23], KinD [31], KinD++ [32], RUAS [19], DRBN [26], Enlighten-
GAN [14], SCI [20]. Due to the introduction of more parameters in FDI, we expand our
baseline networks by increasing the number of channels for a fair comparison, which is de-
noted as SID-L and MPRNet-L. We further compare our method with SOTA methods for
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Table 1: Quantitative results on LOL dataset. The best results are highlighted in bold.

Method RetinexNet KinD KinD++ RUAS DRBN EnlightenGAN SCI
PSNR(T) 16.77 20.87 18.97 18.23 19.86 17.48 14.78
SSIM(1) 0.5671 0.7988 0.8441 0.7170 0.8342 0.7330 0.6350
LPIPS(]) 0.474 0.207 0.175 0.257 0.155 0.306 0.3334
#Param 0.62M 8.03M 9.63M 45K 221M 8.64M 43k
Method SID SID-L M-SID MPRNet  MPRNet-L M-MPRNet LEDNet
PSNR(T) 19.16 18.99 21.07(+1.91) 20.13 20.22 21.59(+1.46) 20.94
SSIM(1) 0.7862 0.8242  0.8360(+0.0498) 0.8170 0.8095 0.8512(+0.0342) 0.8506
LPIPS({) 0.440 0.258 0.227(+0.213)  0.266 0.261 0.154(+0.112) 0.2609
#Param 29.6M 118M 35.1M 17.5M 34.3M 18.2M 28.4M
Method | LEDNet-FDI Restormer Restormer-FDI NAFNet NAFNet-FDI IAT TAT-FDI
PSNR(1)| 21.59(+0.65) 20.67 20.79(+0.12) 22.44 22.79(+0.35) 23.38 23.59(+0.21)
SSIM(1)|0.8618(+0.0112)  0.8193  0.8212(+0.0019) 0.8608 0.8620(+0.0012) 0.8675 0.8704(+0.0029)
LPIPS({)|0.2484(+0.0125) 0.2145 0.2107(+0.0038) 0.1482 0.1467(+0.0015) 0.2158 0.2049(+0.0109)
#Param 28.7M 99.8M 102.9M 65.5M 71.0M 0.41M 0.43M

image enhancement, including LEDNet [34], Restormer [28], NAFNet [4], IATNet [5], to
demonstrate the superiority of our method. Underwater Image Enhancement: We select
UIEB [18] to conduct UIE experiments. The UIEB dataset includes 950 real-world under-
water images, 890 of which have the corresponding reference images. 800 paired images
are randomly selected for training, while the remaining images are allocated for testing.
We choose MPRNet and UIEC”2 [22] as the baseline networks. We compare our method
against baseline networks and four representative UIE methods: Fusion [1], Water-Net [18],
PUIE-Net [7], MLLE [30].

ol
(e) MLLE

(HUIEC™2  (g) M-UIEC"2(Ours) (h) MPRNet (i) M-MPRNet(Ours) G GT
Figure 5: Visual comparison on UIEB dataset.

Table 2: Quantitative comparison on UIEB dataset. The best results are highlighted in bold.

Method | Fusion Water-Net PUIE-Net(tMC) MLLE UIEC2 M-UIEC"2 MPRNet M-MPRNet
PSNR(T) | 21.47 18.92 22.09 18.58 21.41 22.27(+0.86) 21.33 23.39(+2.06)
SSIM(1) | 0.8739  0.8533 0.8441 0.7706  0.9357 0.9433(+0.0076)  0.9154  0.9387(+0.0233)
LPIPS(]) | 0.158 0.158 0.156 0.312 0.128 0.125(+0.003) 0.178 0.147(+0.031)

#Param N/A 4.16M 61.5M N/A 2.05M 2.32M 17.5M 18.2M

Implementation details. Our experiments are implemented in PyTorch, and the training
is carried out on a single NVIDIA 3070 GPU. Specifically, our SID-based architectures
are trained with a batch size of 8, while the MPRNet-based and UIECA2 architectures are
trained with a batch size of 4 and patch size of 256 x 256. During training, we adopt the
Adam optimizer with f; = 0.9, B, = 0.99 for a total of 200 epochs. The coefficient A is
set to 0.01 empirically. The initial learning rate is set to 1 x 10~* and the cosine-annealing
strategy gradually reduces the learning rate to 1 x 10~ in the total training epochs.
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4.2 Quantitative Evaluation

We employ three metrics: Peak Signal-to- Table 3: Ablation study for investigating
Noise Ratio (PSNR), Structural Similarity the components of the FDI module. DN,
(SSIM), and Learned Perceptual Image Patch DE, and RS stand for Decorrelation Nor-
Similarity (LPIPS) [29] as numerical evalua- malization, Details Expanding, and Ran-
tion metrics. The evaluation results on the dom Shuffle, respectively.

LOL dataset are reported in Table 1. As can DN DE RS | PSNR (7) | SSIM(T) | LPIPS())
be seen, with the assistance of our FDI mod- o %8;; g-zi;g 8»528
ule, the M-SID, M-MPRNet, LDENCt—FDI, v v 20:82 0:8202 0:243
Restormer-FDI, NAFNet-FDI, IAT-FDI net- v o v 20.61 | 0.8243 | 0.244

v v v | 2159 | 08512 | 0.154

works all achieve better performance. What’s
more, the performance of the M-MPRNet surpasses the baseline MPRNet significantly, ex-
hibiting an improvement of 1.47 dB in PSNR, 0.0342 in SSIM, and 0.112 in LPIPS, while
incurring a mere 4% increase in size. Table 2 describes the results on the UIEB dataset, which
indicates our methods achieve the best performance with 23.39dB PSNR, 0.9433 SSIM, and
0.154 LPIPS.

4.3 Qualitative Evaluation

We present the visual comparison of the LOL and UIEB datasets in Fig. 4 and 5, respectively.
With the employment of our FDI, the baseline networks achieve superior ability in both
contrast enhancement and details recovery compared to other methods. Other competitive
baselines suffer from either color distortion or details loss. In contrast, our module can
assist the networks in generating more consistent color and natural details. Specifically, our
FDI module corrects the unnatural color introduced by SID, reduces the artifact caused by
MPRNet, and mitigates the color shift created by IAT. More visualization results are provided
in the supplementary material.

4.4 Ablation Studies

Table 4: Quantitative results on LOL dataset. H-, R-
, and M- denote incorporating the FDI module at the
head, rear, and middle of networks, respectively.

To demonstrate the rationality of
the core components of our de-
sign, we conduct ablation studies
on the LOL dataset with MPRNet. Method PSNR(1) SSIM(1) LPIPS(]) |#Param(M)

. . SID 19.16 0.7862 0.439 29.6
As illustrated in .Tat?le 3, the per- H-SID | 19.24(+0.08)| 0.7846(-0.0016) | 0.288(+0.218)|  29.6
formance drops significantly with- R-SID  |20.18(+1.02) |0.8330(+0.0468) | 0.221(+0.218)|  29.6
out decorrelation normalization, M-SID  |21.07(+1.91) |0.8360(+0.0498) |0.227(+0.212)|  35.1
demonstrating the effectiveness of ~ MPRNet 20.13 0.8170 0.266 17.5

mapping different features to the H-MPRNet |20.72(+0.59) | 0.8040(-0.0130) | 0.259(+0.007) 17.6
R-MPRNet |20.63(+0.50) | 0.8192(+0.0022) | 0.231(+0.035) 17.6

frequency-independent space. The M-MPRNet [21.59(+1.46) | 0.8512(+0.0342) | 0.154(+0.112)|  18.2

random shuffle operation in the in-
tegration part can also improve performance since it reduces the networks’ sensitivity to
different frequencies. Additionally, Table 4 presents the impact of the incorporation position
on performance. Incorporating into the head of the network causes performance degradation
in the SSIM metric, while performance gains on all metrics are obtained in both the middle
and the rear, with the best performance in the middle. We believe that this is because the
strongest correlation between high and low frequency occurred in the middle of the network.
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We further investigate the influence of Table 5: Ablation study with decorrelation
the expanding resolution in the frequency normalization on LOL dataset.
decorrelation part and shuffle ratio in the ~enoa[ PsNR(H SSIM() LPIPS(])
integration part. As illustrated in Fig. 6, Tbaseline| 20.13 0.8170 0.266
since higher resolution expansion may be LN |21.14(+1.01)| 0.8281(+0.0111) | 0.204(+0.062)
detrimental to convergence, expanding to a IN"121.10(+0.97) | 0.8330(+0.0208)] 0.208(+0.058)

. . . ; PCA | 19.51(-0.62) [0.8241(+0.0071) |0.191(+0.075)
higher resolution will not improve perfor- 7, |21.50(+1.91)|0.8360(+0.0498) | 0.154(+0.112)
mance. Moreover, a small shuffle ratio will
alleviate the frequency bias of networks, while a large shuffle ratio will result in unstable
training and performance degradation. To demonstrate the superiority of the ZCA-whitening
normalization, we present layer normalization (LN), instance normalization (IN), and PCA-
whitening normalization substitute in Tab. 5. The ZCA-whitening normalization outper-
forms both LN and IN, emphasizing the importance of the correlation capacity introduced
by ZCA-whitening in the optimization process. For PCA-whitening, it causes severe stochas-
tic axis swapping [10], resulting in performance degradation. More results are provided in
supplementary materials.

5 Conclusions

In this paper, we point
out that the optimiza-
tion of different frequen-
cies in the image en-
hancement task is incon-
sistent within a single
neural network. Thus,
we develop a Frequency E—
Decorrelation and Inte- PSR w Freramty i

gration (FDI) module to Figure 6: Ablation studies on LOL dataset. (a) Performance ver-

facilitate the network to gy expanding resolution; (b) performance versus shuffle ratio.
be optimized along a

frequency-consistent direction. In particular, our method constructs a frequency-independent
feature space to reduce the correlation between different frequencies and introduces a chan-
nel shuffle operation to encourage the network to leverage diverse features for avoiding par-
ticular frequency bias. Our frequency decorrelation design can be integrated into existing
image enhancement approaches with high flexibility. Extensive experiments demonstrate
that our approach achieves consistent performance improvement on various image enhance-
ment tasks. However, our method lacks a specific design for handling severe noise that
typically arises in extremely dark conditions, which can be explored in the future.

e~ M-MPRNEL(PSNR) —o— MMPRNet(SSIM)
- 1PSNR) === MPRNet(SSIM)

(ssiM)
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