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Abstract

Low-resolution (LR) face recognition poses a significant challenge in embedding learn-
ing due to the severe loss of identity information. Recent softmax losses introduce a non-
static margin that assigns greater importance or a larger margin to recognizable examples
based on embedding norm as a measure of face recognizability. In this paper, we argue
that face recognizability is more than just the embedding norm, as it does not capture the
identity-level details that are important to embedding learning. We propose SlackedFace
to induce a relaxed margin aligned with face recognizability and the model’s confidence
based on both embedding norm and embedding proximity for empowered embedding
learning. We also put forward fast-hill climbing as an early calibration stage between
pre-trained and randomly initialized modules. We show that SlackedFace outperforms
the current best models on realistic LR face datasets when tested in practical open-set
evaluation scenarios.

1 Introduction
Face recognition has made significant strides in recent years, primarily attributed to advance-
ments in deep convolutional neural networks (CNNs) trained with powerful margin-based
loss functions designed particularly for open-set evaluation tasks. However, given poor-
quality face images contaminated with unrestricted noise and artifacts, e.g., low-resolution
(LR) face images detected from surveillance footage, the generalizability of a deep face
model trained on a million-scale face dataset, is not transferable to that of LR [18]. Com-
pared to high-resolution (HR), the primary problem with LR face images is that they tend to
be unrecognizable due to severe identity information vanishing. This impedes discriminative
embedding learning, even with margin-based losses, e.g., SphereFace [17], NormFace [27]
CosFace [28], ArcFace [8], to name a few.
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Figure 1: Scatter plots comparing face recognizability index to model predictions. The plot
shows that embedding norm does not correlate with model predictions, especially for hard
examples with low norm indexes (a), which is corrected by P-Norm (b).

Figure 2: A conceptual diagram, where (a) is a geometrical interpretation of embedding
space defined by SlackedFace with a predetermined static margin m, a positive margin m+,
and a negative margin m−, given that m− < m < m+. The goal is to push (b) unrecognizable
hard examples to m−, recognizable hard examples close to m, and easy examples to m+,
based on a sigmoidal function in (c).

An alternative to the traditional static margin-based softmax loss is a non-static margin
that attributes greater importance to easily recognizable examples based on the embedding
norm as a proxy of face recognizability. Two leading works in this domain are, namely
MagFace [21] and AdaFace [14]. Since these two margin-based softmax classifiers render
a scale-invariant Cosine space, the embedding norm may not directly reflect face recogniz-
ability. Moreover, the embedding norm lacks correlation with the model prediction (see
Figure 1(a)), which makes the margin elicited from the embedding norm susceptible to two
drawbacks: (1) when an unrecognizable hard example is encoded with a large embedding
norm (inducing a large margin), it may collapse towards its identity prototype; and (2) when
a recognizable hard example is associated with a relatively poor embedding norm (resulting
in a small margin), the model inclines to de-emphasize it, leading to limited learning from
such examples. These scenarios are particularly detrimental to the ultimate generalization
performance. We therefore hypothesize that the embedding norm alone may not capture
all the essential information to distinguish between recognizable and unrecognizable faces,
especially in the context of LR face images. To address this limitation, the margin defini-
tion should be aligned with the model’s confidence in classifying a face image correctly for
improved generalization (see Figure 1(b)).

This paper presents SlackedFace, a new non-static margin-based softmax loss with the
following properties. We extend the concept of face recognizability by incorporating both
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embedding norms and embedding proximity, known as the powered-embedding norm (P-
Norm). We leverage P-Norm to enhance margin definition, resulting in the first relaxed
margin strongly aligned with the model’s confidence. We show that SlackedFace renders a
dual-role face model that empowers embedding learning with face recognizability and serves
face recognizability prediction for any unseen LR face images. We further introduce an early
network calibration stage, dubbed fast hill-climbing (fast-HC), for compatibility learning be-
tween pre-trained modules (with prior knowledge) and other random initializations (without
prior knowledge) to improve convergence.

We illustrate the high-level conceptual diagram in Figure 2. Our learning objective is to
emphasize the importance of recognizable hard and easy examples by inducing a relatively
large margin, close to or larger than the pre-determined static margin, using a sigmoidal
function for empowered embedding learning. On the contrary, other unrecognizable hard
examples are de-emphasized with a diminished margin to prevent learning noisy patterns
from these examples.

2 Related Work
We revisit static and non-static margin-based softmax losses, followed by several represen-
tative face image quality assessment (FIQA) models for face recognition.

2.1 Static Margin-Based Softmax Loss
Different from the typical softmax loss, margin-based softmax losses [8, 17, 27, 28] intro-
duce a margin penalty term to learn decision boundaries that maximize intra-class compact-
ness and inter-class separation of face embeddings. This leads to enhanced model general-
izability to tackle face recognition problems that involve a relatively large identity set in the
underlying problem space.

Let zi denote the face embedding for an arbitrary example (zi,yi), where yi is the ground-
truth identity label. The generic margin-based softmax function is defined in terms of cross-
entropy loss as follows:

Li =− log
exp(T (θyi , s, m))

exp(T (θyi , s, m))+∑ j ̸=yi scosθ j
(1)

where T (.) is a margin function with three entities: the angle θyi between the L2-normalized
face embedding ẑi = zi/∥zi∥ and its corresponding L2-normalized identity prototype ŵyi =
wyi/

∥∥wyi

∥∥, a scaling term s, and a static margin term m. As a whole, the most representative
instances are CosFace [28] and ArcFace [8] with the following margin functions:

T (θ j,s,m)CosFace = s(cosθy j −m) , T (θ j,s,m)ArcFace = scos(θyi +m) (2)

2.2 Non-Static Margin-Based Softmax Loss
MagFace [21] and AdaFace [14] showed that the face models learned concerning a static
margin are susceptible to overfitting when trained on noisy data, including LR face images.
Hence, the notion of a non-static margin was proposed to relax the margin constraint based on
face recognizability encoded by the embedding norm. However, MagFace and AdaFace are
susceptible to the reliability of the embedding norm, a model-dependent quantity that various
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factors can influence. Another two non-static margin-based losses are ElasticFace [2] and
AdaptiveFace [16]. However, these variants are not intended to confront the challenges of
LR face recognition.

2.3 Face Image Quality Assessment
There are two generic face image quality assessment (FIQA) models: (1) learning a typical
regression problem concerning pre-annotated FIQA indexes, e.g., human ratings or pair-wise
distance scores [1, 11, 22, 29], and (2) leveraging the intrinsic properties of embedding space,
which have been shown to be correlated with face image quality, e.g., embedding variance,
embedding norm, and embedding proximity [3, 5, 14, 21, 25, 26]. However, harnessing
either of these model-dependent quantities as a sole indicator may not be reliable, especially
when dealing with LR face images.

For clarity, we adopt "face recognizability" as the default term throughout this paper, as
opposed to "face quality" which primarily refers to the visual appearance of face images.
The important reason is that our focus is on face recognizability that pertains specifically to
the ability to identify individuals based on discriminative face embeddings.

3 The SlackedFace Model
We disclose our proposed SlackedFace model in this section, which covers the mathematical
formulation and principles of our slacked margin and how it differs from other relevant loss
functions designated for face recognition.

3.1 Preliminaries
The key components of SlackedFace, depicted in Figure 3, comprise (1) a CNN backbone
with a projection network and an embedding multilayer perceptron (MLP) for targeted em-
bedding learning, denoted by f (.); (2) a regression MLP attached to the projection network
for learning face recognizability, collectively represented by g(.); and (3) a softmax classifier
learned with a set of c identity prototypes {w j}c

j=1, where w j ∈ Rd . Provided with a face
example xi with its identity label yi, we encode (xi) into a face embedding zi = f (xi) ∈ Rd ,
alongside a learned face recognizability index σ ′i = g(xi). Our goal is to induce a relaxed
margin based on σ ′i for empowered embedding learning.

3.2 Powered Embedding Norm (P-Norm)
We reinterpret the notion of face recognizability based on two important properties: the
embedding norm as the basis, and the embedding proximity learned in the latent space. For
any given arbitrary face embedding zi, we compute the embedding proximity ρi as follows:

ρi = Φ(cosθyi(cosθyi − max
jmax∈{1,...,C}≠yi

cosθ jmax)) (3)

where θyi is the positive angle between zi and its corresponding ground-truth identity (ID)
prototype wyi ; θ jmax is the hard-negative angle between zi and its closest negative ID proto-
type w jmax . On the other hand, Φ(.;Λ) is a Sigmoid function with a steep slope parameter Λ.
This is to enforce the constraint ρi ∈ (0,1) for our slacked margin definition in (8) such that
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Figure 3: Generic network construction for SlackedFace includes a CNN backbone with
(1) an embedding MLP for face representation learning based on a relaxed margin softmax
classifier, and (2) a regression MLP for learning face recognizability for unseen examples.

Figure 4: A collection of 8 hardest examples in TinyFace, indexed by Norm (left) and P-
Norm (right), which demonstrate that P-Norm encodes meaningful indexes that reflect face
recognizability.

ρi ≈ 1.0 is induced for easy examples, ρi ≈ 0.5 for recognizable hard examples, and ρi ≈ 0.0
for unrecognizable hard examples (refer to Figure 2 for a schematic diagram).

As the embedding norm∥zi∥ is positive and unbounded such that∥zi∥ ∈R+, we constrain
its range to the interval (0,1) by imposing an upper bound τ for simple handling as follows:

σi = max(0.0, min( ∥zi∥/τ, 1.0 )) (4)

We empirically set τ = 1e2 to the default, which is generally applicable to a range of CNN
backbones. Accordingly, we compute face recognizabilityRi in terms of powered-embedding
norm (P-Norm) by raising σi to the power of ρ i as follows:

Ri = σ
(1.0 − ρi)
i ∈ (0,1) (5)

Intuitions. P-Norm redefines embedding norm as follows: (1) P-Norm indexes remain small
for unrecognizable hard examples characterized by low embedding norms; (2) P-Norm com-
putes a relatively large index for the recognizable hard example with a low σi but a high ρi;
and (3) P-Norm assigns easy examples, i.e., high for both σi and ρi, with large indexes, unless
ρi and σi are not consistent with one another, e.g., mislabeled examples and under-sampled
subject.

Properties of P-Norm. By our definition in (5), P-Norm outperforms Norm as a new proxy
of face recognizability. We illustrate the hardest LR face images in the TinyFace dataset [7]
ranked by embedding norm and P-Norm in Figure 4. It is shown that P-Norm singles out the
unrecognizable examples with the lowest indexes and vice versa. Another useful property of
the P-Norm is that it is strongly correlated to the model’s predictions, resulting from inclu-
sion (3) in our P-Norm definition, whereas the embedding norm has no such correspondence.
Our theoretical analyses in our supplementary materials demonstrate that these properties are
crucial for inducing a meaningful slacked margin that reflects face recognizability.
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3.3 Slacked Margin Function
To increase the interpretability ofRi for our slacked margin definition (as both σi and ρ i are
model-dependent), we normalize it into a unit Gaussian, referred to as R̂i in the succeeding
sections, using batch statistics as follows:

R̂i =


1 if α(Ri)≥ 1
α(Ri) if −1 < α(Ri)< 1
−1 otherwise

, α(Ri) =
Ri−µR

ΣR
(6)

where µR and ΣR indicate the exponential moving average (EMA) batch mean and standard
deviation, respectively. To this end, µR and ΣR are computed over κ iterations (within each
mini batch) as follows:

µR = β µ
(κ)
R +(1−β ) µ

(κ−1)
R , ΣR = β Σ

(κ)
R +(1−β ) Σ

(κ−1)
R (7)

where β is a scalar momentum set to 0.99 in our experiments for all κ > 0. Note that we let
β = 1.0 at the initial state, i.e., when κ = 0.

Given the normalized P-Norm indexes R̂i defined for each face embedding face embed-
ding zi, the slacked margin function for ArcFace (2) is defined as follows:

T (θ j,s,m)SlackedFace = scos(θyi +δ (m)) , δ (m) = m+η R̂i (8)

Provided that R̂i ∈ [−1,1] based on (6), we define each positive and negative slacked mar-
gin by m+

i = m + η |R̂i| and m−i = m− η |R̂i|, respectively, where η indicates the de-
gree of margin relaxation to be determined in our experiments. This induces m+

i > m
to only recognizable easy and hard examples to emphasize them more during embedding
learning. On the contrary, the unrecognizable hard examples are de-emphasized by in-
ducing m−i < m to discourage learning from noisy patterns that may result in performance
degradation. The rule of thumb is to set η to be sufficiently significant such that δ (m)
does not estimate an overly large m+ ≈ 2m that hinders convergence, or an insignificantly
small m− ≈ 0 that collapses to the typical non-margin softmax configuration. We examine
η = {0.025,0.05,0.10,0.15,0.20} in our analyses provided in the supplementary materials.
Aside from that of ArcFace, it is trivial to impose a slacked margin to the CosFace loss by
substituting the static margin m in (2) with δ (m).

3.4 SlackedFace Losses
Softmax Loss. Accordingly, the SlackedFace loss is optimized in conjunction with Ri as a
regularization term as follows:

LSlackedFace =
1
N

N

∑
i=1
− log

exp(scos(θyi +δ (m)))

exp(scos(θyi +δ (m)))+∑ j ̸=yi scosθ j
+ λ LR (9)

where LSlackedFace = Lδ (m)+λ LR, LR = ∑i− log(Ri) is a regularization term, and λ is an
empirical weighting factor. By optimizing Ri as regularization, our objective is to enhance
the robustness of SlackedFace from two perspectives: (1) rectifying misclassified examples
resulting from the overly relaxed margin by pushing them within their respective class (iden-
tity) boundary, and (2) standardizing embedding norm to ensure our learning stage is more
robust to variations of the norm in both normalized and pre-normalized spaces [24]. These
are supported by our theoretical analysis in the supplementary section.
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Regression Loss. With the estimated embedding proximity ρi in (3), we define the learned
embedding proximity ρ̂i = Φ(g(xi)), where g(·) is the regression MLP responsible for learn-
ing the embedding proximity for unseen examples. We resolve this regression problem using
Huber loss [13] as follows:

LHuber =
1
N

N

∑
i=1

{
1
2 (ρi− ρ̂i)

2, for |ρi− ρ̂i |< γ

γ(|ρi− ρ̂i |− 1
2 γ), otherwise

(10)

In principle, γ serves as a hyperparameter that governs the transitions from a quadratic func-
tion to a linear function. This is to address outliers and noises which are often prevalent in
the LR face datasets, as in our particular case.

Overall Training Loss. In accordance with (9) and (10), we learn a SlackedFace model that
empowers embedding learning based on the estimated face recognizability as follows:

LTotal = LSlackedFace +LHuber (11)

Compared to other static margin-based losses, the proposed SlackedFace requires tuning two
additional hyperparameters, namely η in (8), and λ in (9). Other hyperparameters configured
to the pre-determined default setting are Λ = 6.0 in (3), τ = 1e2 in (4) and γ = 0.5 in (10).
We provide a comprehensive hyperparameter analysis in our supplementary materials.

3.5 Fast Hill-Climbing Optimization

Learning on a pre-trained HR face model alongside randomly initialized modules for a new
downstream task often leads to a poor local optimum. To facilitate knowledge transfer, the
pre-learned backbone is typically frozen for network calibration with other random modules.
However, we observe that setting the backbone to the warm-up state (i.e., with a learning rate
of 1e−06) converges to a better minimum.

Inspired by the linear probing proposed in [15] in conjunction with our empirical obser-
vations, we present a fast hill-climbing (fast-HC) search for network calibration prior to end-
to-end learning. More specifically, during the calibration stage, we re-learn only pre-trained
batch normalization parameters for several initial training epochs with the random regression
MLP and softmax classifier. This is to adapt the prior knowledge marginally, while incre-
mentally improving both regression MLP and softmax classifier from random initialization.
We disclose in our experiments that a fast-HC calibration stage not only improves gener-
alization performance by a remarkable margin but also offers a relatively stable calibration
stage, compared to the one involving no calibration, and the two alternatives calibrated with
a frozen and a warm-up backbone.

4 Experiments and Discussions
This section summarizes our experimental results, including ablation analyses, performance
comparisons, and discussions. We compile in our supplementary materials 1 with additional
details on benchmarking datasets, hyperparameter settings, and relevant analyses, along with
our implementation materials for reproducibility.

1https://github.com/chengyawlow/SlackedFace
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4.1 Benchmarking Datasets
We evaluate open-set face identification tasks with disjoint training and testing identities
in the presence of unknown face images in the gallery set, referred to as distractors. This
introduces additional challenges to the problem search space, simulating a more realistic de-
ployment scenario. In a nutshell, our experiments involve three real-world LR face datasets,
i.e., surveillance camera faces (SCFace) [10], TinyFace [7], and DroneFace [12].
SCFace, TinyFace, DroneFace. SCFace includes a gallery set with only a single high-
resolution (HR) mugshot and three low-resolution (LR) probe sets, i.e., dubbed D1, D2,
and D3, for an HR-LR identification task. On the contrary, TinyFace is a large-scale LR
face repository with an LR gallery, and an LR probe set for an LR-LR identification task
alongside 153,428 distractors. DroneFace, on the other hand, is only a test set for the HR-
LR identification task. We, therefore, evaluate the generalization performance on DroneFace
using the SCFace-learned models without additional fine-tuning.
Ad-Hoc Distractor Set. Since SCFace and DroneFace contain no distractors, we extend
these datasets with an ad-hoc distractor set of 20,000 examples sampled from that of Tiny-
Face in our experiments. We provide the random distractor set as supplementary materials.

4.2 Implementation
Experimental Setup. We employ MobileFaceNet [6] and ResNet50[20] as the backbone
embedding encoders, which are pre-trained on a million-scale HR face dataset, known as
VGGFace2 [4]. To instantiate a SlackedFace model, each pre-learned CNN backbone (with
an embedding MLP) is stacked with a randomly initialized softmax classifier alongside a
regression MLP. We perform a fast hill-climbing (fast-HC) search to re-learn only the batch
normalization parameters in the CNN backbone for 8 initial training epochs, while incremen-
tally improving both the random regression MLP and softmax classifier. This is followed by
end-to-end fine-tuning for 32 epochs using the Adam optimizer.
Performance Metric. We evaluate the generalization performance in terms of rank-1 (R1)
identification rate (%) for analyses and comparisons. To investigate the effectiveness of P-
Norm as a metric of face recognizability, we provide the error rejection curves (ERC) [3, 11,
23] based on false non-matched rates (FNMR) and false matched rates (FMR), alongside the
area under the ERC (AUERC) metric.

4.3 Performance Analysis
The complete configuration of SlackedFace is de-generalized into several baselines for our
ablation analyses. We summarize our observations as follows:
Effect of Slacked Margin. We explore whether a slacked margin improves generalization
performance in baseline I, II, and III, regardless of face recognizability metrics. Our find-
ings disclose that a slacked margin, induced by Norm and P-Norm, elevates the average
performance by de-emphasizing unrecognizable hard examples.
Effect of Norm vs. P-Norm. Based on our comparison between baseline II and III, we dis-
close that our proposed P-Norm is a better metric to encode face recognizability for slacked
margin definition, particularly for hard examples. With P-Norm, the R1 identification rate is
increased by 2% with MobileFaceNet and 1.25% with ResNet50 in the most challenging D1
probe set in terms of distortion severity level.
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Baselines # Backbone Reg.Metric Network Config. Extended SCFace
fast-HC Lδ (m) LR D1 D2 D3 Mean

I MobileFaceNet - 50.00 89.75 89.00 76.25
II MobileFaceNet Norm / 49.75 91.00 90.00 76.92
III MobileFaceNet P-Norm / 51.75 91.50 89.75 77.67
IV MobileFaceNet P-Norm / / 59.75 93.00 90.25 81.00

SlackedFace MobileFaceNet P-Norm / / / 60.75 92.50 90.75 81.33
I ResNet50 - 71.25 93.75 97.25 87.42
II ResNet50 Norm / 72.00 94.75 97.50 88.08
III ResNet50 P-Norm / 73.25 94.50 98.25 88.67
IV ResNet50 P-Norm / / 79.50 95.25 99.00 91.25

SlackedFace ResNet50 P-Norm / / / 80.00 95.00 99.00 91.33
SlackedFace* ResNet50 P-Norm / / / 77.75 94.75 98.25 90.25
SlackedFace** ResNet50 P-Norm / / / 79.25 95.00 98.25 90.83

Table 1: Performance analysis on extended SCFace for SlackedFace and other baseline mod-
els built on pre-trained MobileFaceNet and ResNet50 in terms of rank-1 identification rate
(%). Notably, the SlackedFace variants marked with "*" and "**" are respectively trained
with a frozen and a warm-up CNN backbone during network calibration in place of the
proposed fast-HC.

Effect of Fast Hill-Climbing. In comparison to both baseline III and IV, we reveal that our
proposed fast-HC improves the average R1 identification rate by at least 3%. This demon-
strates that an early network calibration by the fast-HC enables convergence to a better local
minimum when learning on pre-trained models along with randomly initialized modules.

Complete Configuration. We disclose that the SlackedFace model with its complete con-
figuration, which includes (1) P-Norm as an objective metric of face recognizability, (2) the
regularized slacked margin function, and (3) the fast-HC calibration, jointly empowers em-
bedding learning by means of inducing a meaningful slacked margin to tackle the open-set
LR face identification tasks. Moreover, we also demonstrate that the proposed fast-HC cal-
ibration enhances other common alternatives at reduced computation cost, particularly the
warm-up strategy that requires fine-tuning on the entire backbone.

4.4 Performance Comparison and Discussions
For a fair comparison, we train the most relevant state-of-the-art (SoTA) models based on
the respective non-static margin softmax functions derived from ArcFace [8], using the same
pre-trained ResNet50 with the proposed fast-HC calibration stage.

LR Face Identification Tasks. Based on Table 2, the SlackedFace-trained models consis-
tently perform well on all LR face datasets, demonstrating robustness to large-scale distrac-
tors. Our observations are as follows: (1) AdaptiveFace [16] induces the class margin based
on class distribution rather than face recognizability, leading to poorer performance in our
target tasks. (2) With a random Gaussian margin, ElasticFace [2] achieves an overall perfor-
mance close to that of MagFace [21] and AdaFace [14] with a norm margin. However, the
standard deviation parameter must be set to an insignificantly small value. (3) SlackedFace
prevails over the recently proposed MagFace and AdaFace with a norm margin that may
overly emphasize or de-emphasize the hard examples. Notably, SlackedFace is the first to
combine embedding norm with embedding proximity (model’s prediction) to encode face
recognizability. Furthermore, SlackedFace achieves a new baseline performance on SCFace
and TinyFace, suggesting that SlackedFace can serve as a new standard for future compar-
ison. This potentially triggers further advances in the field, e.g., security surveillance and
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Face
Models

Ori. / Ext. SCFace TinyFace Ori. / Ext.
DroneFaceD1 D2 D3 Mean

AdaptiveFace [CVPR’19] [16] 93.95 / 76.75 99.00 / 94.25 99.75 / 97.25 97.33 / 89.42 75.80 / 71.93 - / -
ElasticFace [CVPRW’22] [2] 95.25 / 78.50 99.25 / 96.50 99.50 / 97.50 98.00 / 90.83 76.56 / 72.92 - / -

MagFace [CVPR’21] [21] 94.75 / 77.75 99.00 / 94.50 99.50 / 98.00 97.75 / 90.08 76.15 / 72.13 95.45 / 65.15
AdaFace [CVPR’22] [14] 95.75 / 78.75 99.00 / 96.00 99.50 / 97.75 98.08 / 90.83 77.71 / 73.20 95.60 / 66.79

SlackedFace 97.00 / 80.00 99.25 / 95.00 100.00 / 99.00 98.75 / 91.33 78.43 / 73.87 96.41 / 68.48

Table 2: Performance comparison with recent models by rank-1 identification rate (%).

Figure 5: ERC in terms of FNMR at varying FMR rates discloses that SlackedFace encodes
more reliable face recognizability indexes (P-Norm), compared to other existing metrics for
face image quality assessments.

monitoring, forensic investigations, and mobile authentication.

Predicting Face Recognizability on Unseen Examples. To assess the reliability of P-Norm
as a face recognizability index for unseen instances, we neglect the hard examples (by ratio)
from the TinyFace test set with respect to the learned P-Norm to estimate FNMR and FMR
from random positive and negative pairs. We observe from the ERC in Figure 5 that P-Norm
reports the lowest FNMR at three pre-determined FMRs, indicating its superior performance
in encoding face recognizability. This contributes to another observation that the proposed
SlackedFace, with the learned P-Norm, achieves the lowest AUERC compared to other So-
TAs, including SER-FIQ [26], CR-FIQA [3], PFE [25], ERS [9], MagFace, and AdaFace.

5 Conclusion
We proposed a new variant of the non-static margin-based softmax loss to tackle open-set
low-resolution (LR) face identification tasks by empowered embedding learning. Our model
stands out from other novel instances in two perspectives, marking several contributions. We
are the first to introduce the notion of powered-embedding norm, which incorporates em-
bedding norm and embedding proximity to reliably capture face recognizability. We are also
the first to induce a slacked margin that is strongly correlated with modeling prediction. Our
experiments demonstrated that the proposed model outperforms the existing best models in
open-set LR face identification tasks and face recognizability prediction against unseen ex-
amples. We believe our findings are to trigger more advanced face applications that benefit
humanity. In the future, we intend to integrate this model with supervised metric learning.
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Supplementary Materials
We offer additional resources in this section to enhance the understanding and reproducibility
of this work. To summarize, our supplementary materials are presented as follows:

A. Theoretical Analysis

B. Benchmarking Datasets

C. Hyperparameter Analysis and Configuration

D. Stability Analysis

E. Model Extension

A. Theoretical Analysis
We provide the mathematical proofs for the conceptual principles that underlie SlackedFace,
including the role of (1) slacked margin, and (2) regularization term. To simplify our analy-
sis, we omit normalization procedures and subscript indexes.

A1. Slacked Margin

Assumption. A face example, either easy or hard, is ranked recognizable, if and only if two
conditions are satisfied: (1) its embedding magnitude ∥z∥> τ norm, and the Cosine similarity
between z and its true identity prototype cosθ y > τ cosine.

Therefore, a high recognizability example has a large embedding magnitude and a large
similarity score, while an unrecognizable example is deficient at both. We first show that the
SlackedFace margin is proportional to these recognizability factors.

Proposition 1. (Slacked margin) The slacked margin m = σ1.0−ρ is monotonically strictly
increasing with respect to ∥z∥ and cosθy, if ∥z∥< τ and θy +m < π/2.

SlackedFace, hence, can accurately induce a margin that corresponds to recognizability, re-
sulting in a model that produces a significantly large gradient update on recognizable exam-
ples and a small gradient update on unrecognizable examples during training.

Corollary. (Gradient of SlackedFace Loss) The magnitude of SlackedFace loss gradient ∂L
∂θy

on the target similarity angle θy is monotonically and strictly increasing with respect to ∥z∥
and cosθy, if ∥z∥< τ and θy +m < π/2.

Proof. Let L=− logexp(cos(θy +m))/[∑k ̸=y exp(θk)+ exp(θy +m)]. Then,

∂L
∂θy

= [1− (∑
k ̸=y

exp(cosθk− cos(θy +m)))−1]sin(θy +m). (12)

Given θy +m < π/2, sin(θy +m) and ∑k ̸=y exp(cosθk− cos(θy +m)) are strictly increasing
with m. Similarly, the derivative of ∂L

∂θy
with respect to m is also strictly increasing. There-

fore, by the previous proposition, the gradient is also strictly increasing with embedding
magnitude and cosine similarity.
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The above corollary demonstrates that the SlackedFace margin is highly correlated with
the recognizability of a face. This means that SlackedFace induces a smaller margin for
unrecognizable examples, and otherwise. As a result, SlackedFace can effectively promote
empowered embedding learning based on face recognizability.

A2. Regularization Term
In accordance with (9), the SlackedFace loss incorporates a regularization term LR to max-
imize the embedding norm to an upper bound. We demonstrate that this improves learning
stability and convergence by enforcing the model to focus on minimizing the relative angle
between a face embedding and its true identity prototype.

Since SlackedFace is updated by a gradient-based optimizer, the gradient update for the
embedding vector is performed by z← z−α

∂Lclass
∂z at a certain learning rate. Therefore,

learning of embedding vector is determined by the gradient ∂Lclass
∂z in (13). We analyze this

gradient as follows:

Proposition 2. For the classification loss Lclass,

∂Lclass

∂z
=

1
∥z∥
·∑

k

∂Lclass

∂ cosθk
(ŵk− cosθk ẑ) (13)

where ŵk and ẑ are obtained by normalizing wk and z, respectively.

The proposition indicates that the gradient ∂Lclass
∂z for an embedding update is disentangled to

two terms, specifically, ∥z∥−1 and ∑k
∂Lclass
∂ cosθk

(ŵk−cosθk ẑ), where the former depends on the
embedding norm and the latter does not. Since the regularization term reduces the reciprocal
of embedding magnitude, the regularizer makes the gradient less variant to the magnitude:

Corollary. MinimizingLr reduces the magnitude of the embedding gradient, thereby making
the embedding gradient invariant to embedding magnitude.

Overall, the regularization term serves two important roles: (1) preventing the overly
large gradient update, which helps to stabilize the training stage. (2) marking the embed-
ding learning more depend on the relative angle between face embeddings and true identity
prototypes. Increasing the angle-dependency of the embedding learning improves the gener-
alization of the corresponding cosine similarity metric for open-set applications [24].

B. Benchmarking Datasets
We further elaborate on our benchmarking datasets, including SCFace, TinyFace, and Drone-
Face, for performance evaluation under the open-set deployment scenario.

SCFace. Real-world face recognition systems enroll individuals using high-resolution (HR)
mugshots, leaving unseen (test) face images unrestricted. Hence, SCFace includes a gallery
set with a high-resolution (HR) mugshot per identity (ID), and three low-resolution (LR)
probe sets, namely D1, D2, and D3, to simulate a real-world HR (gallery)-LR (probe) iden-
tification task. As a whole, these probe sets are compiled with examples captured at standoff
distances of 4.20m, 2.60m, and 1.00m, respectively. In compliance with [19], we allocate
the first 50 subjects (from ID 01 to 050) for training, while the other 80 subjects (from ID
051 to 130) are reserved for testing.

Citation
Citation
{Park, Low, and Teoh} 2021

Citation
Citation
{Low and Teoh} 2022



LOW ET AL.: SLACKEDFACE 15

TinyFace. Contrary to SCFace, TinyFace is a large-scale LR face dataset with both an LR
gallery and an LR probe set for an LR-LR identification task. Overall, it is a composition of
7,804 / 8,171 face images annotated with 2,570 / 2,569 ID labels in each training and testing
set, respectively. On average, the pixel resolution of these examples is limited to only 20×16
pixels. It is worth noting that its gallery search space is interfered with 153,428 distractors
of unknown identities to simulate a more challenging real-world scenario.

DroneFace. DroneFace, on the other hand, is only a test set for an HR-to-LR identification
task (similar to SCFace). As a whole, it consists of 11 subjects with 1,364 examples detected
from drone footage (at 1.5m to 5m high, and 2m to 17m away from the subjects) in the probe
set and 2 frontal mugshots per ID as the enrolled templates in the gallery set. We evaluate
the generalization performance on DroneFace using the SCFace-learned models.

Ad-Hoc Distractor Set. As both SCFace and DroneFace contain no distractors, we extend
these datasets with an ad-hoc distractor set of 20,000 unknown examples randomly sampled
from that of TinyFace.

We summarize the data distribution for each dataset in Table 3. On the other hand, we portray
10 hardest and easiest examples indexed by Norm and P-Norm in Figure 6.

Datasets Desc. Train. Set Test. Set Eval. ProtocolGallery Probe Distract.

SCFace # IDs 50 80 80 - HR-to-LR# Imgs. 800 80 1,200 20,000*

TinyFace # IDs 2,570 2,569 2,569 - LR-to-LR# Imgs. 7,804 4,443 3,728 153,428

DroneFace # IDs - 11 11 - HR-to-LR# Imgs. - 22 1,364 20,000*

Table 3: Data distribution for our benchmarking datasets, including TinyFace, SCFace, and
DroneFace. Note that "*" refers to a random distractor set of 20,000 LR face images sampled
from that of TinyFace.

C. Hyperparameter Analysis and Configuration
Compared to other static margin-based softmax losses that involve two primary hyperparam-
eters, i.e., the scaling factor s and the margin term m, training a SlackedFace model requires
tuning two additional hyperparameters, specifically the degree of margin relaxation η in (8),
and the regularization weighting factor λ in (9). Other default hyperparameters are the Sig-
moid steep slope Λ = 6.0 in (3), the generic upper bound for the embedding norm τ = 102

in (4), and the regression transition parameter γ = 0.5 in (10). Accordingly, we analyze
in Table 4 the effect of η and λ , in addition to m. These are the key parameters to deter-
mine the generalization power of the SlackedFace models, achieving optimal performance
with and without distractors in the most difficult SCFace D1 probe set. We summarize our
hyperparameter configuration in Table 5.

D. Stability Analysis

To assess the model’s stability against random initializations, we train the SlackedFace mod-
els and the comparing instances using 5 random seeds, i.e., 0, 1, 42, 1234, and 2023. Our
experimental results in Table 6 reveal that the SlackedFace models exhibit the ideal robust-
ness to multiple random initializations, underlining that SlackedFace is a reliable alternative
to other non-static margin-based softmax losses.
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Hyperparams. Setting Ori. / Ext. SCFace
D1 D2 D3 Mean

Effects of η

(m = 0.5 ; λ = 0.1)

0.025 89.25 / 59.25 98.50 / 92.50 98.75 / 90.25 95.50 / 80.67
0.05 89.50 / 60.25 98.25 / 93.00 98.25 / 90.25 95.33 / 81.17
0.10 90.00 / 60.75 98.25 / 92.50 98.25 / 90.75 95.50 / 81.33
0.15 89.25 / 61.00 98.00 / 92.25 98.25 / 89.50 95.17 / 80.92
0.20 88.50 / 58.00 98.00 / 92.00 98.25 / 90.25 94.92 / 80.08

Effects of λ

(m = 0.5 ; η = 0.1)

0.0 88.75 / 59.75 98.50 / 93.00 97.75 / 90.25 95.00 / 81.00
0.05 89.75 / 61.00 98.25 / 92.25 98.50 / 90.00 95.55 / 81.08
0.10 90.00 / 60.75 98.25 / 92.50 98.25 / 90.75 95.50 / 81.33
0.20 89.25 / 62.25 98.25 / 93.00 98.75 / 89.75 95.42 / 81.67
0.50 88.25 / 61.50 98.50 / 92.25 98.25 / 90.00 95.00 / 81.25

Effects of m
(η = 0.1 ; λ = 0.1)

0.40 90.00 / 59.75 98.25 / 90.75 98.50 / 89.25 95.58 / 79.92
0.45 90.00 / 60.00 98.50 / 92.00 98.50 / 89.75 95.67 / 80.58
0.50 90.00 / 60.75 98.25 / 92.50 98.25 / 90.75 95.50 / 81.33
0.55 89.00 / 60.75 98.25 / 92.50 98.50 / 90.50 95.25 / 81.25
0.60 88.75 / 61.00 98.50 / 93.25 98.50 / 89.75 95.25 / 81.33

Table 4: Hyperparameter analyses for SlackedFace (using pre-trained MobileFaceNet as the
embedding encoder).

Hyperparameters SCFace TinyFace
MobileFaceNet ResNet50 ResNet50

Basic

Mini Batch Size 32 32 32
# Epochs ( Fast-HC + End-to-End ) 8 + 32 8 + 32 8 + 32
Learning Rate 1e−03 1e−03 1e−03

Learning Rate Decay 0.1 / 8 epochs 0.1 / 4 epochs 0.1 / 6 epochs
Weight Decay 1e−04 1e−04 1e−04

Dropout Rate 0.6 0.8 0.8

SlackedFace
( Default )

Sigmoid Steep Slope Λ in (3) 6.0
Upper Bound for Norm τ in (4) 100
Regress. Transition Parameter. γ in (10) 0.5

SlackedFace
( Fine-Tuned )

Scaling s, Margin m in (8) 60, 0.50
Slacked Margin Degree η in (8) 0.10
Reg. Weighting Factor λ in (9) 0.10

Table 5: Overall hyperparameter configuration in our experiments. We set the learning rate
for the pre-trained backbone (inclusive of the embedding MLP) to 0.1x of the softmax clas-
sifier to prevent the prior knowledge from being distorted with noises in LR face examples.

Face
Models

Ori. / Ext. SCFace
D1 D2 D3 Mean

ElasticFace 95.75±0.35 / 78.45±0.97 99.50±0.25 / 94.95±0.62 99.55±0.27 / 97.90±0.45 98.27±0.11 / 90.43±0.41
MagFace 95.80±0.62 / 77.65±1.24 99.50±0.18 / 94.65±0.58 99.60±0.22 / 98.10±0.38 98.30±0.24 / 90.13±0.59
AdaFace 95.90±0.55 / 77.95±0.65 99.55±0.11 / 95.75±0.40 99.95±0.11 / 97.95±0.27 98.47±0.14 / 90.55±0.10

SlackedFace 96.50±0.50 / 79.30±0.48 99.50±0.18 / 96.00±0.59 100.0±0.00 / 98.65±0.29 98.67±0.12 / 91.32±0.15
SlackedCosFace 96.20±0.21 / 78.45±1.05 99.40±0.22 / 96.10±0.74 100.0±0.00 / 98.55±0.37 98.53±0.13 / 91.03±0.55

Table 6: Performance comparison for SlackedFace and SoTAs (using pre-trained ResNet50
as the embedding encoder) over 5 random initializations, in terms of averaged rank-1 identi-
fication rate (%) and standard deviation. Note that SlackedCosFace is an extended variant to
be disclosed in Section E of this supplementary material.

E. Extension of SlackedFace
Aside from ArcFace (reported in our manuscript), we extend SlackedFace based on CosFace,
termed SlackedCosFace in this section, for further exploration. Likewise, we substitute the
static margin m in T (θ j,s,m)CosFace (2) with a slacked margin term δ (m) as follows:

T (θ j,s,m)SlackedCosFace = s(cosθyi −δ (m)) , δ (m) = m+η σ̂i (14)

We also disclose in Table 6 that SlackedCosFace performs on a par with the ArcFace-learned
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Figure 6: A collection of 10 hardest and easiest (unseen) test examples indexed by Norm and
proposed P-Norm for each benchmarking dataset.

counterpart. More importantly, we demonstrate that the overall performance of the proposed
SlackedFace models (both learned with ArcFace and CosFace) surpass other SoTAs by a
significant margin in resolving open-set LR face identification tasks, especially in the most
challenging D1 probe set with distractors.


