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Abstract
We propose a novel gating mechanism, which can be applied to the MLP mixer-

based architecture for image restoration. In the proposed architecture, embedded tokens
are subjected to channel and token mixing, which are the primary data flow of the existing
MLP mixer. The token vectors are subsequently refined through the proposed intra-token
and cross-token gating. Intra-token gating determines the information that is to be prop-
agated or discarded by the interaction of information within each token. By contrast,
cross-token gating calculates the propagation weights of local information and recycles
information discarded from intra-token gating by comparing the information with adja-
cent tokens. The two gating paths result in third-order interaction because of cascaded
gating multiplication, which is similar to the self-attention of Transformer. However,
the proposed method is more efficient than Transformer because it does not involve the
quadratic cost of self-attention. The proposed network was applied to various spatially
variant deblurring tasks; it outperformed baselines in terms of restoration performance
and computational cost.

1 Introduction
Neural network (NN) blocks based on convolutional NNs (CNNs), including ResNet [16]
and DenseNet [19], have been widely adopted in image restoration and low-level computer
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Figure 1: An architecture of the proposed MG-MLP block is presented. The block consists of
intra-token gating and cross-token gating. Intra-token gating controls the flow of information
through the interaction of data in each token; cross-token gating updates the resulting token
from intra-token gating and simultaneously brings back the data discarded by intra-token
gating by referring to the adjacent tokens.

vision fields [16, 19, 36, 37, 52, 55]. Because network architectures inheriting that of Trans-
former [46] and MLP mixer [41] achieved excellent performance in high-level computer
vision tasks, such as classification [4, 12, 43], object detection [2, 49, 57, 60], and semantic
segmentation [54, 58], their use has been expanded to low-level computer vision [3, 45].
Multi-head self-attention (MHSA) of Vision Transformer (ViT) [12] and MLP mixer’s token
mixing, which models the relationships between image tokens, exhibit a weaker inductive
bias than CNNs. However, despite the high performance of these models, their excessive
computational costs have become a critical obstacle in adapting them to low-level vision.
Restormer [53] and MAXIM [45] have been proposed to address this inefficiency in image
restoration. Restormer uses channel-wise self-attention to reduce the quadratic cost of self-
attention, and MAXIM presents two parallel data paths with distinct receptive fields using
an efficient permutation technique, as in various token mixing methods [38, 40, 48, 57]. The
most recent NAFnet [6] uses simple gating without nonlinear activation and simplifies chan-
nel attention. From the perspective of the MLP mixer, this method is a form of gated MLP
(gMLP) [25].

Previous MLP-like methods rely on three components that considerably influence per-
formance: (1) a channel mixer [41], which is implemented using 1×1 convolution or MLP
along the channel direction, refines the tokens to have task-relevant features in latent space;
(2) the token mixer, in which depth-wise convolution or feature permutation followed by
MLP, enables information to be exchanged between tokens [7, 14, 18, 24, 39, 50]; (3) gating
units propagate only valuable information to efficiently use the capacity of NNs. [11, 25, 34].

This study focuses on the effectiveness of the gating mechanism. Existing gating meth-
ods, expressed as the product of two projections of input features, are used for information
flow control. Inspired by the multiple gatings in GRU [9] and LSTM [51], we propose a
novel MLP mixer-based NN block, namely, MG-MLP, that has two gating units. In this
block, update and reuse gating are added to propagation gating. The proposed gating con-
figuration comprises a cascade of two types of gating, namely intra-token gating and cross-
token gating. Intra-token gating is a soft weighting of the primary token pipeline to control
information flow. In cross-token gating, the attention score based on the correlation between
adjacent tokens is calculated. The added “reuse connection” in cross-token gating can re-
store the information discarded by intra-token gating: the masked features, by referring to
the context in a single token, can be recycled reconsidering this with the adjacent tokens.
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The proposed gating mechanism can result in third-order interactions, such as Transformer,
whereas vanilla gating relies on second-order interactions [25].

The contributions of the study can be summarized as follows:

• A novel NN architecture block utilizing a multi-gating mechanism based on an MLP
mixer for image restoration is proposed; this block improves the nonlinear interaction
capability [25].

• The two proposed gatings control the complementary information flows through intra-
token and cross-token interactions, and the information masked by intra-token gating
but necessary to reconstruct the object’s edge can be recycled based on the correlation
between tokens in cross-token gating.

• The superiority of the proposed method over existing state-of-the-art blocks is demon-
strated through various comparative experiments, including four motion deblurring
datasets. In particular, the results reveal that the proposed architecture can effectively
restore images with spatially variant degradation.

2 Related Work

2.1 Vision Transformer and MLP Mixer
ViT has attracted considerable research attention in image classification and segmentation
tasks [15], and studies have focused on the development of MLP mixer-like architecture [26]
to avoid the strong local inductive bias of CNNs. ViT and MLP mixers divide an image
into patches called “tokens,” and subsequently refine the token and model the relation be-
tween them. To understand the relationship between tokens, MHSA is used in ViT, which
includes the inner product of the token vectors as its primary operation. The vanilla MLP
mixer combines the elements of a specific order of tokens using fully connected weighting.
Representative variants based on ViT are as follows: DeiT [42], in which basic attention
and knowledge distillation for dataset efficiency are used; Swin Transformer [27] in which
hierarchical patch attention is used for computational efficiency; and CMT [13], which is
a hybrid network combining the advantages of local information collection of CNNs and
long-range dependency modeling of ViT. In MLP mixer-based architectures, token-mixing
methods have been developed for minimizing the number of parameters and floating-point
operations while gathering information from as many tokens as possible. ConvMixer [44]
implements the MLP mixing mechanism using CNNs, and ResMLP [43] uses two shortcut
connections and introduced affine normalization. In ViP [18], tokens in multiple directions
are mixed by swapping the feature axis, and S2MLP [50] widens the token receptive fields
through a feature map shift.

2.2 Image Restoration
Unlike high-level vision, low-level vision tasks, such as deblurring [21] and super resolu-
tion [47], require the following properties: modeling the low-level semantic is critical, that
is, the relationship between pixels rather than the abstract of the image is considered; a suf-
ficient receptive field is essential to search for similar patterns in the own-image; the NN
architecture used for image restoration should be “fully convolutional” [45] because the res-
olution of the input image is not fixed in most cases.
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Figure 2: Comparison of the convergence profiles on the three methods: (a) average PSNR on
GoPro testset [30], two baselines (NAFNet [6], Restormer [53]) are trained using the macro
architecture and learning hyperparameters proposed in the original paper, and average PSNR
on (b) GoPro [30], (c) REDS [31], and (d) RealBlur-J [32] test sets, which are all trained
using the unified framework.

CNN-based Blocks Most CNN-based restoration networks focus on hierarchical architec-
ture with multi-scale images or feature pyramids to widen the receptive field of the model [8].
Several methods have been proposed for novel connection, feature aggregation, and propaga-
tion to effectively transfer task-relevant features [8, 52, 59]. The residual dense network [56],
which directly transfers shallow features to the deep level, has been widely used in various
restoration tasks. However, the high memory usage of this method should be addressed. Par-
allel dilated convolution [5, 22] effectively obtains a wider receptive field by using multiple
dilation factors in the same level features; it is also efficient because of the use of depth-wise
convolution.

ViT and MLP Mixer-based Blocks To improve spatial inductive bias of CNNs and lim-
ited receptive field, architectures such as ViT and MLP mixer have been introduced in image
restoration. Restormer [53] introduces the channel-wise self-attention mechanism that im-
proves the quadratic computational complexity of MHSA. This mechanism has an invariant
architecture to the resolution of an input image; MAXIM [45] updates the tokens by con-
necting two branches with various receptive fields by using different feature permutations
and a gating mechanism; NAFnet [6] implements the gating operation using element-wise
multiplication without nonlinear activation. Channel mixing and token mixing are critical
components of these methods. Another component, the gating unit, was invented in the
natural language process and developed for vision tasks. gMLP [44] reveals that spatial
projection followed by gating can effectively improve the performance of the MLP mixer.
NAFnet [6] proposed a simple gating method for low-level vision. The gating unit is simple
to implement but can propagate important features well in the forward direction.

3 Method
The translation-invariant biases in CNN blocks may be suitable for high-level vision tasks
that extract abstract or high-level spatial features in the images. However, these may not be
appropriate for low-level vision tasks that model the relation of adjacent pixels or patches
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because the features extracted by the deep CNN blocks tend to include abstract, pattern, and
texture rather than fine-grained pixel arrangements [17, 23]. By contrast, the MLP mixer-
based block, which has fewer inductive biases, can be suitable for image restoration, which
requires understanding low-level features than abstracts and textures. However, the vanilla
MLP mixer cannot be applied to image restoration tasks because it is not fully convolutional,
the number of free parameters varies depending on the resolution of the input image, and it
is computationally expensive because of the token-wise fully connected scheme. These two
problems can be addressed by replacing the token-mixing MLP with depth-wise convolution.

3.1 Proposed Gated MLP Block
The multiple layers of gating blocks in existing methods [10, 11, 44] do not include the
marginal for the multiple gating component. Taking this into account, we propose a novel
network block, namely MG-MLP, with two gating components. In this method, multiple
gating allows the block to have an opportunity to model multi-modal distributions (see Sup-
plementary Material). Figure 1 reveals the proposed architecture of the MG-MLP. A network
block that receives a set of intermediate tokens Zt−1 ∈ Rh×v×c and outputs Zt ∈ Rh×v×c is
considered. Here, h and v are the horizontal and vertical lengths of the token arrays, respec-
tively, and c is the dimension of each token vector. The primary pipeline of the proposed
MG-MLP is a series of two projections, namely channel mixing and token-mixing behind
normalization, similar to the existing MLP mixer, and this can be formally expressed as
follows:

Ẑt = TokenMix(Wc(Norm(Zt−1))), (1)

where Ẑt is the resulting token from the primary pipeline, Wc ∈ Rc×c is a learnable matrix
for channel-mixing: Rc→Rc, and TokenMix(·) is the operation of token-mixing in which c
kernels with k× k size aggregate the k2 tokens in the same element group. Two gating oper-
ations, namely intra-token gating and cross-token gating, are added to the primary pipeline.
In intra-token gating, the token resulting from the primary pipeline Ẑt is multiplied by the
projected input token G1 by Wg ∈ Rc×c along the channel direction as follows:

G1 =Wg(Norm(Zt−1)),and

Z̃t = Ẑt �G1,
(2)

where Z̃t is the resulting token from the intra-token gating and � is the element-wise mul-
tiplication. In this procedure, only the important information in the token is propagated by
referring to the values of the intra-token. The rest is discarded. Next, another channel mixing
matrix Wp ∈ Rc×c rearranges and refines the gated token vector as follows:

Z̄t =Wp(Z̃t). (3)

Cross-token gating determines the values to be forgetten and values to be delivered
through an information exchange between the surrounding tokens. The operation for ob-
taining the cross-gating weight G2 can be expressed as follows:

G2 = TokenMix(Norm(Zt−1)). (4)

The cross-token gating weight G2 partially extracts the reusable features from the token in
the primary pipeline Ẑt . Simultaneously, the forgetting weight, that is, the complement of
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G2, is multiplied by the token from the intra-token gating Z̄t to softly erase irrelevant features
in Z̄t . The operation of cross-token gating can be expressed as follows:

Z̈t = Ẑt �G2 (reuse gating), (5)

and
Żt = Z̄t � (1−G2) (update gating), (6)

where Z̈t is the recycled token from the discarded feature by intra-token gating, and Żt is
the updated token by cross-token gating. This operation returns the values that can posi-
tively affect adjacent tokens among the values discarded by intra-token gating. This result
is consistent with the multi-gating strategies of the LSTM and GRU. However, this method
is unique such that two gating units estimate each gating weight differently based on the
interaction between values within the token or cross-tokens.

To improve the computational complexity of the original token mixing and MHSA and to
support any number of tokens, the proposed token-mixing method connects tokens within a
fixed range, implemented by depth-wise convolution. Finally, the resulting two gated outputs
are connected to the input token with a the residual connection as follows:

Zt = Zt−1⊕ Żt ⊕ Z̈t , (7)

where ⊕ expresses element-wise addition.
The proposed network blocks are integrated into the Unet as a macro architecture. The

token embedding procedure reduces the feature scale in the spatial direction corresponding
to the resolution and extends it in the channel direction (see Supplementary Material). There-
fore, the embedded token includes representations of multiple pixels in adjacent areas. After
repeating this encoding process, the information in a wide area is hierarchically embedded
into a token vector. Therefore, recently proposed MLP mixer-based network architectures
emphasize modeling the influence between surrounding tokens [7, 39] rather than develop-
ing a multi-scale strategy that widens the receptive field. Networks based on the transformer
and MLP mixers in which the Unet structure is used instead of a complex multi-resolution
design, exhibit competitive results [6, 53].

In our macro architecture, the input degradation image Y ∈ RH×V×3 is first expanded to
the feature dimension C through shallow convolution. The expanded features are then refined
with MG-MLP and downscaled through rearrangement followed by encoding (see Supple-
mentary Material). This process is performed three times to obtain a bottleneck feature map

Z0 ∈ R
H
23×

V
23×23C, as

Z0 = TokenEmb3(Conv(Y )), (8)

where H and V are the horizontal and vertical resolutions of the degraded input image Y ,
respectively. Here, Z0 passes through N MG-MLPs and becomes a refined features ZN .
After performing three inverse operations of the encoder, that is, decoder, the restored image
X ∈ RH×V×3 is obtained by output convolution as follows:

X = Conv(TokenDec3(ZN)). (9)

The detailed Unet used in our experiments is presented in Supplementary Material.
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Models Computational Budget GoPro [30] REDS [31] RealBlur-J [32] DVD [35]

C N MACs Params Mems PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer [53] 64 16 75.9G 54.3M 3.6G 31.96 0.9527 28.51 0.8570 28.87 0.9094 31.28 0.9367

NAFNet [6] 64 28 59.0G 54.5M 2.2G 32.34 0.9558 28.65 0.8588 28.99 0.9089 31.48 0.9393

MG-MLP (ours) 64 56 54.4G 46.7M 2.1G 32.87 0.9604 28.80 0.8613 29.14 0.9110 31.59 0.9409

Table 1: Blind deblurring performance on GoPro [30], REDS [31], RealBlur [32], and
DVD [35] datasets: PSNR and SSIM are averaged over the test image in each dataset. The
best results are printed in boldface.

RealBlur-J trained GoPro [30] HIDE [33] RealBlur-R [32] REDS [31] DVD [35] Throughput (img/s)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer [53] 24.29 0.8468 23.58 0.8197 35.02 0.9298 25.01 0.7700 25.79 0.8687 0.575

NAFNet [6] 24.17 0.8578 23.31 0.8241 35.31 0.9309 24.51 0.7757 25.20 0.8783 0.690

MG-MLP (ours) 24.54 0.8596 23.95 0.8298 35.46 0.9337 25.16 0.7745 26.20 0.8854 0.787

Table 2: Deblurring performance of the model trained with the RealBlur-J [32] dataset: the
trained model is evaluated on GoPro [30], HIDE [33], RealBlur-R [32], and DVD [35] test
sets. The throughput is tested using 1280x720 images.

4 Experiment
We trained the three networks, including two baselines, NAFnet [6], Restormer [53], and the
proposed MG-MLP, on four public spatially variant deblurring datasets, namely, GoPro [30],
REDS [33], RealBlur [32], and DVD [35], to compare image restoration performance. State-
of-the-art methods present unique components, including network structures and learning-
related hyperparameters, and finally suggest the optimal combination. However, in this case,
identifying where the superiority of restoration performance comes from is difficult. Indeed,
performance highly depends on learning hyperparameters such as the learning rate schedul-
ing and batch size. To determine the performance gains from the proposed architecture of
the NN block, we equalized all hyperparameters used in all comparative experiments, such
as macro architecture, learning-rate schedule, batch size, and patch size.

Unified Framework The simple Unet was used in the macro architecture as we discussed
in Section 3, in which the dimensions of the tokens of the three evaluated NN blocks were
the same as C = 64 and the number of blocks in the bottleneck layers N were set to 56
for our MG-MLP, 28 for NAFnet, and 16 for Restormer. These values were set to match
the number of parameters and floating-point operations. Therefore, the required number of
multiply-accumulate operations (MACs) when feeding a 256x256 image is 54.4G, 59.0G,
and 75.9G for MG-MLP, NAFNet, and Restormer, respectively. The computational cost
of the proposed block was 8.5% and 39.5% lower than those of NAFnet and Restormer,
respectively. The number of parameters in the proposed MG-MLP was 16% less than that
of the two baselines, and this configuration reduces memory usage during training by 42%
compared to the Restormer (see Table 1). We adopted cosine annealing [28] to decay the
learning rate from 1×103 to 1×107 for a total of 400k iterations. The batch size was set to
8 for all experiments. The training image size was 256 × 256, and the random horizontal and
vertical flips were applied to image pairs. We used AdamW [29] with β1 = 0.9, β2 = 0.9,
and optimized the models with peak signal-to-noise ratio (PSNR) loss

Motion Deblurring Before evaluating the restoration models using the unified framework,
we trained NAFnet and Restormer with the GoPro dataset using the optimal setup and learn-
ing methods suggested in each paper, except the batch size, which was changed to 8. These
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Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 3: Three example images from the GoPro dataset [30] restored by three different
networks are demonstrated. The first column contains the degraded input images. The next
three columns show the reconstructed images obtained using Restormer [53], NAFnet [6],
and our MG-MLP. The final column contains the ground truth images.

Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 4: Two example images from the RealBlur-J dataset [32] restored by three different
networks are presented.

two baselines were then compared with our MG-MLP trained using the unified framework.
The results are presented in Figure 2 (a) and Table 1 in the Supplementary Material. The val-
idation results during the training of the proposed block steadily outperformed the baselines.
The final PSNR result of MG-MLP improved by 0.64 dB compared with NAFNet and 0.80
dB higher than that of Restormer. The SSIM was improved by 0.0064 and 0.0091 compared
with NAFnet and Restormer, respectively.

Next, we replaced the NN blocks of the unified Unet with those of Restormer and
NAFNet and trained the models with four public spatially variant deblurring datasets, in-
cluding GoPro, REDS, RealBlur-J, and DVD. We then evaluated the learned models on each
test set. The comparative results are reported in Table 1 and the convergence characteristics
for the GoPro, REDS, and RealBlur-J datasets are displayed in Figure 2 (b), (c), and (d), re-
spectively. The proposed network block outperformed the baselines for all datasets, with the
smallest number of operations in a given computational budget. Figure 3, 4, and 5 display a
qualitative comparison of the images restored by the three networks.

A cross-dataset evaluation was conducted to compare the generalization performance of
the deblurring of models trained on a specific dataset. As a training dataset, we selected
the JPEG version of the RealBlur dataset, which is the most recent and known to be more
realistic than other synthetic datasets. Next, we evaluated the three trained models on four
other test sets (GoPro, REDS, RealBlur-J, and DVD). Finally, the results are presented in
Table 2. This result also revealed that the proposed MG-MLP has an outstanding general-
ization performance compared with the baselines. We evaluated the inference speeds of the
networks. The throughput of our MG-MLP, evaluated by the 1280 × 720 images, was 0.787
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Input Restormer NAFnet MG-MLP (ours) Ground truth

Figure 5: Two example images from the DVD dataset [35] restored by three different net-
works are presented.

G2G1Y Zt

..
Zt

.
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^

Figure 6: Visualizations of intermediate features in the MG-MLP block are demonstrated.
The first column contains the input images. The following three columns respectively show
the relative intensity of the primary pipeline, intra-token gating, and cross-token gating
weight. The final two columns contain the learned two residuals. The blue and red boxes
indicate the less blurry and more blurry region. Refer to the notations in Figure 1 and Eq.
(1)-(6).

images/s, which is 1.36 times faster than Restormer, which requires channel-wise attention
calculation.

Feature Visualization The intermediate token map was analyzed to investigate informa-
tion contained in the tokens of each node. We averaged and normalized each token of the
five nodes along the channel direction in the final MG-MLP block: Ẑt , which is the tokens
of the primary pipeline; G1 intra-token gating weights; G2 cross-token gating weights; Żt
updated the feature by (1−G2), and Z̈t , which is brought back from Ẑt by reuse gating. Fig-
ure 6 reveals that (1) the feature intensity refined by intra-token gating is concentrated in a
relatively less blurry region, and (2) the cross-token gating weight highlights blurry region.
This phenomenon can be attributed to the cross-token gating mechanism, which operates on
a blurry area that requires a wider receptive field. (3) The two residuals refined by the two
gating mechanisms contain complementary features. The two gating paths perform distinct
feature refinements by dividing a region into more blurry and less blurry regions.

Ablation The effectiveness of the proposed components was verified through an ablation
experiment. The ablation setup includes the projection methods used for generating the
two gating weights: the combination of channel mixing and token mixing, and the gating
connection, that is, the presence of reuse and update connections. The results are displayed
in Table 3.

Standard MLP-mixer The standard MLP is not fully convolutional, thus we implemented
it using 1024 to 1024 linear MLP after flattening the tokens (32x32 in our case), then com-
pared its performance with those of two full convolutional models with different kernel sizes
(3x3, 5x5) using center cropped 256x256 images. Even as its complexity increases, standard
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Ablation (C = 32) GoPro testset [30]

G1 G2 Reuse Update PSNR SSIM

Channel N/A 31.54 0.9465

Channel Token X 31.09 0.9433

Channel Token X 31.30 0.9452

Token Channel X X 31.36 0.9459

Channel Token X X 31.76 0.9500

Table 3: Results of the ablation study: the first row shows PSNR and SSIM values for
intra-token gating alone. This is then augmented by adding cross-token gating with reuse
connection (2nd row) and update connection (3rd row). The 4th row shows results when
swapping the projection method of G1 and G2. The final row shows the results of the pro-
posed architecture.

MLP performs worse than MG-MLP. This indicates that our token embedding has allowed a
single token to contain enough receptive fields. In addition, after careful analysis, we deter-
mined that padding is the source of the large kernel MG-MLP’s performance degradation.

GoPro MG-MLP 3x3 MG-MLP 5x5 Std. MLP

PSNR Macs(G) PSNR Macs(G) PSNR Macs(G)

RST./CPX. 32.65 53.45 32.45 56.12 32.44 84.70

Table 4: Comparison with standard MLP

5 Limitation and Conclusion
The proposed network can be applied to the image restoration of spatially uniform degrada-
tions such as denoising and deraining. The denoising and deraining MG-MLP trained with
the SIDD dataset [1] and Rain13 dataset [20] exhibited a lower performance than NAFnet.
These results empirically determined that the proposed method is appropriate for spatially
variant degradation. This can be attributed to the two gating paths, which can understand
the degradation level of regions. In the future, a new NN block that is applicable to various
restoration problems, including spatially uniform degradation, should be developed.
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