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Abstract

Recent advancements in Single Image Super Resolution (SISR) have been achieved
by utilizing deep neural networks with a high number of layers. Incorporating multi-
scale information is crucial in designing advanced super-resolution networks. In this
paper, we present a novel feature upscaling method for SISR tasks which enhances the
multi-scale information of images through multi-mode interaction. The multi-scale block
design introduces more abundant image information, and the designed feature extraction
module works in tandem with the multi-scale module to restore details in low-resolution
images, thus enhancing image clarity. The static features and dynamic information in
different scales of the image are fused and interacted through the local channel atten-
tion module to adjust the importance of different modes in recognizing different actions,
thereby improving the final performance of the model. Numerous experiments confirm
that our model achieves higher accuracy on Set5, Set14, B100, and Urban100 datasets
compared to other state-of-the-art methods, while requiring relatively low computational
and memory resources.

1 Introduction
The task of Super-Resolution (SR) involves reconstructing a low-resolution (LR) image into
a high-resolution (HR) image. However, obtaining HR images from LR is an ill-posed prob-
lem, and therefore, the model needs to learn the raw data distribution to produce the most
likely solution.

Convolutional neural networks (CNNs) have emerged as a dominant technique for solv-
ing SISR problems due to their increased depth and width, which results in improved per-
formance. Despite their excellence, most deep networks suffer from certain limitations.
Firstly, deep super resolution networks rely on a large number of model parameters, which
lead to increased computing requirements and memory consumption during network train-
ing. Secondly, as the depth of the network increases, a significant amount of characteristic
information is lost during the continuous nonlinear operations that produce the output.

Apart from the previously mentioned issues, most conventional upsampling modules
utilize single-layer PixelShuffle [3] or Bicubic, which leads to a loss of feature information
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Figure 1: Comparison of model perfor-
mance and complexity on Urban100 [14]
with SR×4.

Figure 2: Comparison of model perfor-
mance and latency on Urban100 [14] with
SR×2.

from other scales. However, the missing information is also crucial for reconstructing high-
quality image networks.

To address these issues, we propose a novel lightweight SISR method, dubbed Scale-
wise Network (SwiseNet), which utilizes low-level feature information and explores the rep-
resentational capabilities of deep networks. SwiseNet consists of two main components:
lightweight feature extractor and Scale-wise Upsample Module (SUM) for image upsam-
pling. SUM is a novel induction bias that generates accurate SR images by internally con-
structing multi-scale intermediate representations of output features. The feature extractor
follows a new recursive framework of skip and dense connections to reduce low-level feature
degradation. To further simplify the baseline, we reveal that nonlinear activation functions,
such as the Rectifiers Linear Unit (RELU) [23] and Gaussian Error Linear Unit (GELU) [12],
etc. are unnecessary: they can be replaced by simple multiplication or removed. SwiseNet is
superior to the state-of-the-art lightweight SR models as shown in Figure 1 and Figure 2, we
compare SwiseNet against various benchmark algorithms in terms of network parameters,
latency and reconstruction PSNR, using the Urban100 dataset with a scale of ×4 and ×2.
Our key contributions are summarized as follows:

• A lightweight recursive feature extractor that improves performance even in the most
advanced models, including those with an order of magnitude more parameters.

• A Scale-wise Upsample module (SUM) to retain multi-scale information that helps
restore HR images accurately. The module improves reconstruction accuracy effec-
tively according to the number of parameters. Additionally, we demonstrate how the
module can be integrated into an existing state-of-the-art model to improve its original
performance.

• SUM favors lightweight model design. Based on this, we construct a lightweight
SwiseNet, using the multi-scale information fusion strategy to extract multi-scale con-
text information.

• Replacing the upsampling operation with our SUM produces better SR results for the
baseline model. Compared to state-of-the-art methods, SwiseNet achieved excellent
performance on several benchmark datasets while maintaining relatively low model
scale and computational complexity.
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Figure 3: The overall structure of our proposed SwiseNet model. As the maximum scaling
factor in this example is set to N = 4, the required scaling-factors are ×4, ×5 and ×0.5.

2 Realated Works

2.1 Image Super-Resolution with Deep Learning

SRCNN is recognized as the first deep learning-based method for solving the SISR task [8],
which has led to the development of numerous deep SISR models that achieve remarkable
performance. Dong et al. [8] utilizes a three-layer convolutional neural network for SISR,
and subsequent models have improved upon it in various ways. For instance, Anwar S
and Barnes N. [4] employs cascading residual on the residual structure to allow the flow
of low-frequency information to focus on learning high and mid-level features. Liang et
al. [19] leverages the Swin Transformer for SR quest. Chen et al. [6] proposes a hybrid
attention planning and pre-training strategies. Despite their impressive results, these deep
SISR models are often limited by high memory storage and computational complexity.

2.2 Lightweight Image Super-Resolution Models

The significance of lightweight models in saving computing resources has prompted discus-
sions on how to reduce the number of parameters and operations required for deep learn-
based SR to improve its effectiveness in mobile applications. To this end, researchers have
proposed various models with improved efficiency and reduced complexity. For instance,
Kim, J et al. [15] implements a recursive neural network that reuses parameters multiple
times to reduce the number of parameters in SISR. Ahn et al. [2] uses a recursive cascade
mechanism and combines group convolution with 1 × 1 convolution. Similarly, Li et al.
[18] replaces standard convolution with depth-separable convolution. Zhou et al. [39] sig-
nificantly reduces the number of model parameters by introducing pixel normalization and
increasing the receptive field of attention branches. Despite the significant progress made in
the research of lightweight SR models, they are still in the early stages and require further
discussions.
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2.3 Upsampling Strategies
Upsampling is a critical step in SISR that involves generating high-resolution (HR) images
based on high-level features extracted from a low-dimensional space. Interpolation is a
widely used upsampling method in SR networks, such as [8, 16, 26]. In this method, the
low-resolution (LR) image is first adjusted to the target size and then used as input for the
CNN model to reconstruct the HR image. However, this increases the computation load due
to the large input image size. Therefore, some networks such as [9] and [27] use the LR im-
age directly as input and add a transposed convolution layer to perform the final upsampling
reconstruction. This approach significantly reduces unnecessary computing overhead. Fur-
thermore, Shi et al. [25] introduced Pixelshuffle as a method to overcome the checkerboard
effect problem that arises in transposed convolution. Pixelshuffle [3] has been widely used
in recent SR models, including [21, 32, 37]. However, traditional upsampling methods only
use a single scale information for upsampling, which may result in the loss of a significant
amount of detail and lead to fuzzy outputs.

3 Proposed Method
This section begins with an introduction of the overall network architecture, which is illus-
trated in Figure 3. The grid structure consists of two main components: feature extraction
and Scale-wise Upsampling. We then present the loss function used to optimize the model.
Finally, we compare our method with existing approaches to highlight the differences.

3.1 Network Architecture
Given a set of HR images and their reduced version IHR and ILR, the goal of SISR is to find
a function F that maps the LR image to its original HR image. This problem is untenable
because there are multiple possible HR images for one LR image. However, it is possible to
learn the most likely reconstruction L by parameterizing F over a set of parameters θ and
finding the most likely θ given the conditions:

θ
∗ = argmin

θ
∑L

(
F(ILR,θ

)
, IHR) (1)

We chose L to be the L1 distance, since we empirically obtained superior PSNR results
compared to L2. In this work F is composed of two parts: (i) a feature extractor H:

h =H
(
ILR,θh

)
(2)

with parameters θh, and (ii) the Scale-wise Upsample Module S:

ÎHR = S(h,θs) (3)

with θs the parameters used in this operation, and ÎHR the reconstructed image. They are
described in detail below.

3.2 Feature Extractor
The feature extractor is responsible for computing the LR patch that contains valid informa-
tion for recovering the HR image. Our proposed approach utilizes a recursive structure called
ChunkGate Blocks (CGBs), which is based on ChunkGate (CG) and incorporates channel
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Figure 4: Diagram of ChunkGate unit (CG). The intermediate feature is evenly divided into
2 sub-features along the channel direction, which are fused together by simple element-wise
product ⊙. The operation halves the number of channels for the feature.

attention along with several convolutional layers. Figure 3 provides a schematic diagram of
this structure.
Normalization. Normalization techniques have become popular in advanced computer vi-
sion tasks. Two types of normalization techniques are commonly used in deep learning
neural networks: layer normalization and batch normalization [30]. In SISR tasks, layer
normalization is often performs better than batch normalization for several reasons. Small
batches can be unstable with batch normalization, while layer normalization is better suited
for small batches. Additionally, layer normalization preserves spatial information better than
batch normalization, which may damage spatial information in images. Layer normalization
also reduces the model’s dependence on initialization, while batch normalization may in-
crease dependence on initial weights. Our findings suggest that layer normalization may
be critical to feature extractors. Therefore, we added layer normalization to the ChunkGate
Block, improving the training process and allowing for higher learning rates, resulting in
significant performance improvements.
Nonlinear Activation Function. While GeLU [12] has gained popularity in computer vi-
sion, we aim to investigate whether its performance can be enhanced while retaining the
same number of parameters, or if it can be simplified without compromising its performance.
To answer these questions, we examine some of the latest state-of-the-art (SOTA) methods,
such as [13, 20, 28, 33]. Our analysis reveals that all of these methods use gated linear units
(GLU) [7]. Building on these observations, we propose a simplified version of GLU, called
ChunkGate, which directly divides the feature map into two parts along the channel dimen-
sion and multiplies them, as illustrated in Figure 4 and more detailed analyse are given in
supplementary material.
ChunkBlock and ChunkGroup. The feature extractors are organized into groups named
ChunkGate Groups (CGGs). Each ChunkGate-Block (CGB) takes the input concatenated
with the output of all preceding CGBs in the group and merges it with a 1×1 convolution.
This process is repeated for all CGBs in the CGG, thus aggregating all local information
through the 1x1 convolution layer step by step.

Besides, we introduce a 1×1 convolutional layer to adaptively merge the output infor-
mation, as using the features of these connections directly would greatly increase the com-
putational complexity. The output of these hierarchical features can be expressed as:

fD = Conv1×1([f0, . . . , fD−1]) (4)

where [f0, . . . , fD−1] refers to the concatenation of feature maps produced by CGGs.
To preserve all the important information before the reconstruction step, Anwar et al.

[4] used a structure of Residual In Residual (RIR) and Dense Residual Laplacian Module
(DRLM).However, feature concatenation is widely-used in network design for enhancing
the representation capacity of deep models, especially in low-level vision tasks. In general,
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our SwiseNet differentiates with Anwar’s work mainly in two aspects: (i) for the backbone
of the networks, Anwar et al. used a structure of residual in residual (RIR) with the output
of cascading blocks coming from residual connections. However, the output of feature ex-
traction in our model is the channel concatenation of 1×1 convolutions after each CGG; (ii)
for building blocks, the DRLM in Anwar’s model adopted feature concatenation in a densely
connected manner, while feature concatenation in our CGG is not densely connected.

We access the original information by adding a remote skip connection and facilitates
gradient propagation from the output of the feature extractor back to the first 3×3 convo-
lutional layer. Additionally, we have included a global average pooling layer and a 1×1
convolutional layer to fully capture the channel dependencies of the aggregated information.
The final output just before the reconstruction step can be expressed as:

h = β1fD +β2σ
(
Conv1×1

(
GAP

(
Conv3×3

(
ILR)))) (5)

where σ denotes the ReLU activation, GAP denotes global average pooling, and β1 and β2
are learned parameters.

3.3 Scale-wise Upsample Module
In this study, we propose a novel inductive bias for SISR that produces higher quality images
with fewer artifacts. The traditional upsampling method employs a single scale information
for upsampling, which may result in information loss and ambiguity. However, our pro-
posed method, called multi-scale fusion, utilizes feature information from multiple scales
simultaneously for up-sampling. This approach has the advantage of integrating information
from different scales to provide a more comprehensive understanding of the image features,
leading to improved performance and network robustness.

We propose that utilizing multiple scales can provide additional information for the same
pixel, effectively acting as integrations and improving the SR performance by fusing these
information. We hypothesize that the maximum scale factor N during network training can
impact this process. To implement this idea, we first generate an intermediate representation
of the final image using a multi-scale structure called HSR, which comprises three different
multiples (N1, N2 and N3) of multi-scale coefficients. We then extract the feature vector
h from the low-resolution image ILR and map it to different scale channels using a 3×3
convolution layer. Finally, we apply the strided sub-pixel convolution proposed in [3] to
obtain the HR image: 

HSR1 = PixelShuffle(Conv3×3(h),N1)

HSR2 = PixelShuffle(Conv3×3(h),N2)

HSR3 = PixelShuffle(Conv3×3(h),N3)

(6)

In order to produce the ultimate outcome of the multi-scale module, we employ a long-
range skip connection from the initial ILR image. To achieve the final HR image, we adjust
the multi-scale images and combine them into the upsampling of the original LR image.

IHR1 = Bicubic
(
HSR1 ,N

)
IHR2 = Bicubic

(
HSR2 ,N

)
IHR3 = Bicubic

(
HSR3 ,N

) (7)

ÎHR =
3

∑
i=1

λi ·Conv3×3
(
IHRi

)
+Bicubic↑

(
ILR) (8)
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Table 1: Average PSNR/SSIM for 2×, 3×, 4× SR. The best results are highlighted in red
color and the second best is in blue.

Method Scale #Params[K] #FLOPs[G] Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic - - 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403
SRCNN[8] 57 52.7 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946

FSRCNN[9] 12 6.0 37.05 / 0.9560 32.66 / 0.9090 931.53 / 0.8920 29.88 / 0.9020
VDSR[16] 665 612.6 37.53 / 0.9590 33.05 / 0.9130 31.90 / 0.8960 30.77 / 0.9140

LAPAR-A[15] 1774 9788.7 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133
EDSR-baseline[21] ×2 1370 316.2 37.91 / 0.9602 33.53 / 0.9172 32.15 / 0.8995 31.99 / 0.9270

CARN[2] 1592 222.8 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256
SMSR[29] 985 224.1 38.00 / 0.9601 33.64 / 0.9179 32.17 / 0.8990 32.19 / 0.9284

LBNET[11] 731 153.2 38.05 / 0.9607 33.65 / 0.9177 32.16 / 0.8994 32.30 / 0.9291
FMEN[10] 748 172.0 38.10 / 0.9609 33.75 / 0.9192 32.26 / 0.9007 32.41 / 0.9311
SwinIR[19] 878 195.6 38.14 / 0.9610 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9338

SwiseNet(w/o SUM) 1035 212.7 38.10 / 0.9605 33.85 / 0.9207 32.22 / 0.9008 32.64 / 0.9326
SwiseNet 1077 236.5 38.18 / 0.9610 33.94 / 0.9217 32.28 / 0.9012 32.79 / 0.9339
Bicubic - - 33.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349

SRCNN[8] 57 52.7 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989
FSRCNN[9] 13 5.0 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080
VDSR[16] 666 612.6 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279
DRCN[15] 1774 9788.7 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15 / 0.8276

EDSR-baseline[21] ×3 1554 160.4 34.28 / 0.9263 30.24 / 0.8405 29.06 / 0.8044 28.00 / 0.8493
CARN[2] 1592 118.8 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493
SMSR[29] 993 100.5 34.40 / 0.9270 30.33 / 0.8412 29.10 / 0.8050 28.25 / 0.8536

LBNET[11] 736 68.4 34.47 / 0.9277 30.38 / 0.8417 29.13 / 0.8061 28.42 / 0.8559
FMEN[10] 757 77.2 34.45 / 0.9275 30.40 / 0.8435 29.17 / 0.8063 28.33 / 0.8562
SwinIR[19] 886 87.2 34.60 / 0.9289 30.54 / 0.8463 29.19 / 0.8082 28.66 / 0.8624

SwiseNet(w/o SUM) 1044 112.8 34.43 / 0.9268 30.44 / 0.8442 29.11 / 0.8066 28.45 / 0.8590
SwiseNet(Ours) 1068 128.0 34.61 / 0.9289 30.52 / 0.8453 29.20 / 0.8079 28.63 / 0.8615

Bicubic - - 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577
SRCNN[8] 57 52.7 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221

FSRCNN[9] 12 4.6 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280
VDSR[16] 665 612.6 31.35 / 0.8830 28.02 / 0.7680 27.29 / 0.7260 25.18 / 0.7540
DRCN[15] 1774 9288.7 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510

EDSR-baseline[21] ×4 1518 114.2 31.98 / 0.8927 28.55 / 0.7805 27.54 / 0.7348 25.90 / 0.7809
CARN[2] 1592 90.9 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837
SMSR[29] 1006 57.2 32.12 / 0.8932 28.55 / 0.7808 27.55 / 0.7351 26.11 / 0.7868

LBNET[11] 742 38.9 32.29 / 0.8960 28.68 / 0.7832 27.62 / 0.7382 26.27 / 0.7906
FMEN[10] 769 44.2 32.24 / 0.8955 28.70 / 0.7839 27.63 / 0.7379 26.28 / 0.7908
SwinIR[19] 897 49.6 32.42 / 0.8976 28.77 / 0.7858 27.68 / 0.7406 26.47 / 0.7980

SwiseNet(w/o SUM) 1056 75.3 32.31 / 0.8955 28.65 / 0.7829 27.57 / 0.7363 26.35 / 0.7928
SwiseNet(Ours) 1227 88.6 32.43 / 0.8979 28.72 / 0.7844 27.68 / 0.7396 26.48 / 0.7969

Where, λ1, λ2 and λ3 are the weights corresponding to IHR1 , IHR2 and IHR3 .
The whole network can be regarded as a tool for improving or modifying the bicubic

upsampling of LR input. To enhance the SR performance, multi-scale weighted summation
can be used. This approach enables the integration of information from different scales,
improving the model’s ability to understand image features comprehensively. As a result,
the model becomes more accurate and adaptable to various image scenes, producing images
that closely resemble the actual HR image.

4 Experiments

Datasets. The model is trained with a high-quality dataset DIV2K [1], which is widely used
for SISR task. It includes 800 training images and 100 validation images with rich textures.
In addition, we used several baseline datasets for testing, including Set5 [5], Set14 [34],
B100 [22], and Urban100 [14]. To evaluate the super resolution results, we used two com-
monly used indicators: PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity)
on the Y channel of the YCbCr color space.
Degradation model. To demonstrate the effectiveness of the proposed method, we em-

Citation
Citation
{Dong, Loy, He, and Tang} 2014

Citation
Citation
{Dong, Loy, and Tang} 2016

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Ahn, Kang, and Sohn} 2018

Citation
Citation
{Wang, Dong, Wang, Ying, Lin, An, and Guo} 2021

Citation
Citation
{Gao, Wang, Li, Li, Yu, and Zeng} 

Citation
Citation
{Du, Liu, Liu, Tang, Wu, and Fu} 2022

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Dong, Loy, He, and Tang} 2014

Citation
Citation
{Dong, Loy, and Tang} 2016

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Ahn, Kang, and Sohn} 2018

Citation
Citation
{Wang, Dong, Wang, Ying, Lin, An, and Guo} 2021

Citation
Citation
{Gao, Wang, Li, Li, Yu, and Zeng} 

Citation
Citation
{Du, Liu, Liu, Tang, Wu, and Fu} 2022

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Dong, Loy, He, and Tang} 2014

Citation
Citation
{Dong, Loy, and Tang} 2016

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Kim, Lee, and Lee} 2016{}

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Ahn, Kang, and Sohn} 2018

Citation
Citation
{Wang, Dong, Wang, Ying, Lin, An, and Guo} 2021

Citation
Citation
{Gao, Wang, Li, Li, Yu, and Zeng} 

Citation
Citation
{Du, Liu, Liu, Tang, Wu, and Fu} 2022

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{Bevilacqua, Roumy, Guillemot, and Alberi-Morel} 2012

Citation
Citation
{Zeyde, Elad, and Protter} 2012

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Huang, Singh, and Ahuja} 2015



8 ZHAO, WU: LIGHTWEIGHT SISR WITH SCALE-WISE NETWORK

Table 2: Quantitative comparison of different SR models with and without SUM on Set5
dataset for different scaling factors.

DataSet Scale CARN[2] CARN-SUM Margin EDSR[21] EDSR-SUM Margin RCAN[37] RCAN-SUM Margin RDN[38] RDN-SUM Margin

Set5
×2 37.76 37.85 +0.09 38.20 38.26 +0.06 38.27 38.38 +0.11 38.24 38.34 +0.10
×3 34.29 34.36 +0.07 34.76 34.83 +0.07 34.74 34.81 +0.07 34.71 34.79 +0.08
×4 32.13 32.18 +0.05 32.62 32.65 +0.03 32.63 32.68 +0.05 32.47 32.56 +0.09

Set14
×2 33.52 33.59 +0.07 34.02 34.07 +0.05 34.12 34.16 +0.04 34.01 34.08 +0.07
×3 30.29 30.36 +0.07 30.66 30.73 +0.07 30.65 30.69 +0.04 30.57 30.66 +0.09
×4 28.60 28.69 +0.09 28.94 29.00 +0.06 28.87 28.96 +0.09 28.81 28.89 +0.08

Urban100
×2 31.92 32.01 +0.09 33.10 33.13 +0.03 33.34 33.41 +0.07 32.89 32.95 +0.06
×3 28.06 28.11 +0.05 29.02 29.07 +0.05 29.09 29.15 +0.06 28.80 28.87 +0.07
×4 26.07 26.12 +0.05 26.86 26.93 +0.07 26.82 26.95 +0.13 26.61 26.69 +0.08

Table 3: The effectiveness of Layer Normalization (LN), ChunkGate (CG), and Squeeze and
Excitation (SE) was verified with SR×2 on Set5 and Set14 datasets.

Config LN GeLU→CG SE Set5 Set14
PSNR SSIM PSNR SSIM

× × × 37.99 0.9596 33.69 0.9190
✓ × × 38.04 0.9598 33.82 0.9198

CGB ✓ ✓ × 38.10 0.9602 33.89 0.9208
✓ ✓ ✓ 38.18 0.9611 33.94 0.9217

Table 4: Comparisons between several typical lightweight models in terms of performance
and efficiency indicators. The results are collected on Urban100 with SR×2, with PyTorch
1.11.0, CUDA 11.3 and NVIDIA Tesla V100 (32G). The latency and throughput are aver-
aged over the entire Urban100.

SR Models Parameters Latency (ms) Throughput (req/s) PSNR (dB)
CARN 1592K 72 880 31.92

EDSR-baseline 1370K 71 905 31.98
IMDN 694K 54 1172 32.17

SwinIR-light 878K 1007 63 32.76
SwiseNet (ours) 1077K 147 440 32.79

ployed three degradation models to simulate LR images, as previously described in [35,
36, 38]. The first model, BI, involved generating LR images by bicubic-downsampling the
ground truth HR image (×2, ×3, ×4). Details and more visual results on the other two mod-
els, DB and DN, can be found in the supplementary material.
Implementation details. We call the original model SwiseNet and further introduce SwiseNet
without SUM. For training, we used 64 × 64 RGB input patches sampled from the LR im-
age, with the LR patches randomly flipped and rotated by 90 degrees. In all experiments,
we set the number of CGGs and CGBs to 3. We employed the ADAM optimizer [17] and
applied weight normalization to all convolutional layers [31]. The mini-batch size was set
to 64 and the learning rate was initialized to 10−3. The learning rate was halved with each
iteration of backpropagation. We implemented our network using the PyTorch framework
[24] and trained it on the Tesla V100.

4.1 Comparison with State-of-the-art Methods

We compared our proposed SwiseNet with ten lightweight state-of-the-art SISR methods
[2, 8, 9, 10, 11, 15, 16, 19, 21, 29]. We also trained SwiseNet without Scale-wise Upsample
Module by using a typical sample on pixelshuffle (SwiseNet w/o SUM). To ensure a fair
comparison, we trained the model separately for each scaling factor, including ×2, ×3, and
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img012 from
Urban100

HR
PSNR/SSIM

CARN
23.48/0.6985

Bicubic
21.10/0.5470

SMSR
23.82/0.7263

SRCNN
23.21/0.6719

LBNET
23.86/0.7329

FSRCNN
23.28/0.6771

FMEN
23.83/0.7288

VDSR
23.44/0.6961

SwinIR
23.91/0.7338

DRCN
23.49/0.6987

SwiseNet
24.00/0.7345

img092 from
Urban100

HR
PSNR/SSIM

CARN
18.43/0.6078

Bicubic
15.96/0.4001

SMSR
18.55/0.6503

SRCNN
17.56/0.5413

LBNET
18.86/0.6592

FSRCNN
17.70/0.5528

FMEN
19.01/0.6588

VDSR
18.13/0.6004

SwinIR
19.14/0.6636

DRCN
18.20/0.6069

SwiseNet
19.20/0.6652

Figure 5: Visual comparisons of the state-of-the-art lightweight methods and our SwiseNet
Urban100 for 4× SR. Zoom in for best view.

HR Bicubic SwinIR w/o SUM SwiseNet

HR Bicubic SwinIR w/o SUM SwiseNet

Figure 6: Qualitative comparison of SwiseNet (w/o SUM) for ×4 upscaling. The test images
are img004 (top) and img044 (bottom) from Urban100, respectively.

×4. Our model was tested using PSNR and SSIM against various benchmarks.
In Table 1, we present the quantitative evaluation results, including the number of param-

eters and the number of multiplication and additions (Multi-Adds), for a more informative
comparison (under the name of the method). Multi-Adds were calculated using 1280×720
SR images at all scales. It is important to note that we only compare models with simi-
lar numbers of parameters in this table. Our SwiseNet outperforms previous approaches on
numerous baseline datasets. Additionally, our SwiseNet without SUM has similar or better
results. The results show that both SUM and the proposed feature extractor independently
improve PSNR compared to other SR methods. Finally, the proposed feature extractor is
combined with SUM to further improve performance.

Table 4 illustrates the comparisons between several typical lightweight models in terms
of performance on Urban100 (SR×2) and efficiency indicators, including SwinIR. It can
be seen that (i) although SwinIR achieves excellent SR performance with relatively few pa-
rameters, it is not user-friendly for practical deployment since its inference is too slow and
throughput is much smaller than CNN-based models; (ii) our SwiseNet shows better SR re-
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sults than SwinIR with less inference time and larger throughput, as stated above. Moreover,
our SwiseNet shows a significant performance margin compared to other CNN-based mod-
els (e.g., IMDN + 0.62dB, EDSR-baseline + 0.81dB and CARN + 0.87dB). Therefore, the
proposed model significantly promotes the compromise between SR performance and model
efficiency.

Furthermore, we present qualitative results in Figure 5 and Figure 6, which demonstrate
that our solutions produce high-quality image structures.

4.2 Ablation Studies

To analyze the performance behavior of the proposed method, we examined the effects of
the Scale-wise Upsample Module in other models. Additionally, we investigated the effects
of the ChunkGate unit, Layer Normalization, and attention mechanism within the CGBs.
SUM across the architecture. The aim of this section is to demonstrate the effectiveness
of SUM across various architectures. To achieve this, we utilized state-of-the-art networks,
such as CARN [2], EDSR [21], RDN [38], and RCAN [37], as benchmarks. We replaced
their conventional upsampling modules with our SUM, denoted as CARN-SUM, EDSR-
SUM, RDN-SUM, and RCAN-SUM in Table 2, respectively. We trained these models on all
scaling factors while keeping their original training settings unchanged.
ChunkGate Block. The ChunkGate block, which is defined in Section 3.2 and illustrated
in Figure 3, was found to cause unstable training of SwiseNet in its default configuration.
However, this issue was ultimately resolved by introducing layer normalization (LN), as
illustrated in Section 3.2. This resulted in a more stable training process. Additionally, the
effectiveness of ChunkGate was demonstrated, as shown in Table 3.

Several ablations are presented in the supplementary material, including a study on the
effects of skip connections (SCs) in ChunkGate blocks and groups (CGBs, CGGs), the in-
fluence of different interpolation methods on reconstruction, evaluation results obtained by
applying BD and DN degradation models and comparisons with six existing SR methods,
and an analysis of the generalization ability of our architecture across different scales.

5 Conclution

In this paper, we propose a scale-wise upsample block, a lightweight structure that favors ef-
ficient model design and outperforms state-of-the-art algorithms with fewer parameters and
lower computational requirements. Our main contributions are twofold: (i) a lightweight fea-
ture extractor that improves information propagation and maintains image details, where the
attention mechanism is used to learn the combination coefficients of the ChunkGate Block,
resulting in improved super-resolution performance. (ii) A Scale-wise Upsample Module
that generates accurate SR images by combining different scale factors. This block can be
embedded in any super-resolution network as an upsample block. We also created SwiseNet,
a lightweight super-resolution model based on the Scale-wise Upsample Module, and used
a skip connection strategy to integrate contextual information from different receptive fields.
Experimental results on several benchmark datasets demonstrate that our method can achieve
superior performance with moderate parameters on several benchmark datasets.

Acknowledgement: This work is supported in part by the National Natural Science Foun-
dation of China (Nos. 62102330, 62306249) and in part by the Natural Science Foundation
of Sichuan Province (Nos. 2022NSFSC0947, 2022NSFSC0945).
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