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Abstract

Recently, there has been a surge of interest and attention in Transformer-based struc-
tures, such as Vision Transformer (ViT) and Vision Multilayer Perceptron (VMLP).
Compared with the previous convolution-based structures, the Transformer-based struc-
ture under investigation showcases a comparable or superior performance under its dis-
tinctive attention-based input token mixer strategy. Introducing adversarial examples as a
robustness consideration has had a profound and detrimental impact on the performance
of well-established convolution-based structures. This inherent vulnerability to adver-
sarial attacks has also been demonstrated in Transformer-based structures. In this paper,
our emphasis lies on investigating the intrinsic robustness of the structure rather than
introducing novel defense measures against adversarial attacks. To address the suscep-
tibility to robustness issues, we employ a rational structure design approach to mitigate
such vulnerabilities. Specifically, we enhance the adversarial robustness of the structure
by increasing the proportion of high-frequency structural robust biases. As a result, we
introduce a novel structure called Robust Bias Transformer-based Structure (RBFormer)
that shows robust superiority compared to several existing baseline structures. Through a
series of extensive experiments, RBFormer outperforms the original structures by a sig-
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nificant margin, achieving an impressive improvement of 4+16.12% and +5.04% across
different evaluation criteria on CIFAR-10 and ImageNet-1k, respectively.

1 Introduction

Convolutional Neural Networks (CNNs) have achieved breakthroughs in many domains [4,
9, 13, 28, 43, 44]. However, adversarial examples [4, 9, 30, 35, 38] as the inherent vulner-
ability of model structures has been extensively observed in CNNs across diverse contexts.
In allusion to alleviating this vulnerability, adversarial training [17] as the most successful
robust boosting method has also been proposed. In addition to traditional CNNs, ViT [8]
and its subsequent studies [1, 2, 3, 11, 16, 22, 37], which are inspired by the transformer-
based architectures [8], have been assumed as a novel base structure for solving various
computer vision tasks. Following the continual research about the characteristics of Multi-
head Self-Attention (MSA), [7] has found that the overmuch usage of MSA might adversely
influence the Transformer performance and lead the entire output to converge exponentially
to a rank-1 matrix. However, the Skip-Connections and MLP sub-blocks could mitigate
and avoid this rank collapse phenomenon. This finding demonstrates that the MSA is not
the most essential factor for the success of the Transformer, but the structure itself is. This
phenomenon could quickly transfer to ViT and VMLP [26, 32, 42], which illustrates the
structure like ViT but removes attention blocks. About these two new structure, there are
various works [13, 25, 27, 29, 40, 41, 46] put their first focus on analyzing the difference be-
tween Transformer-based and Convolution-based structures, which ViT and CNN typically
represent. They indicate that CNN holds the inductive bias compared with ViT. The core
concept of inductive bias is the locality, which will make CNN focus more on low-level lo-
cal information, but ViT pay more attention to high-level global information. Therefore, the
convolution structure could be understood as a low-level or high-frequency structure. For
robustness concerns, recently, [18, 21, 23, 27] claim that Transformer-based structures also
exist adversarial vulnerability and could also be alleviated by adversarial training. However,
the current research in this field primarily focuses on studying basic robust features and en-
hancing the compatibility between existing defensive methods and established structures. To
make a robust improvement based on the structural design level, we may ask:

Can we improve the robustness of original ViT/VMLP by rational structure design?

To pursue the answer to this question, the Transformer-based structures could be divided
into three essential components: 1) Embedding, 2) Token-Mixer (TM) block; 3) Classi-
fying MLP (CMLP) block, and two training facilitation techniques: 1) Normalization, 2)
Skip-connection. The TM block could be further divided into MSA sub-block and MLP
sub-block. Based on prior research, ViT/VMLP models differ from CNNs in their focus on
high-level, low-frequency information, leading to a more global representation of images.
While CNNS rely on an inductive bias that emphasizes locality, ViT/VMLP models priori-
tize capturing global context, allowing them to incorporate high-level, low-frequency details
directly. This distinction highlights how the inductive bias in CNNs makes them more sensi-
tive to high-level, low-frequency information. In the meantime, [39] analyzes the adversarial
training from the Fourier perspective. Therefore, introducing the high-frequency structure
is a feasible way to improve adversarial robustness, and it could be called robust bias. Cur-
rently, there are two ways of strengthening the inductive bias or locality in ViIT/VMLP, except
for directly adding convolution operation to structural components [15, 33, 36], introducing
multi-hierarchy layer stacking strategies [16, 33, 47], which could boost local or low-level vi-
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Figure 1: Left: Comparison Results of RBFormer (RBViT/RBVMLP) with current SOTA in clean/robust ac-
curacy and model size. Right: Fourier Heatmap, from top to bottom, ViT/VMLP (internal Left/Right), adding
convolution operation to embedding, embedding + block aggregation, and embedding + block aggregation + CMLP

sual structure by amplifying the ability of cross-patch information communication, is another
good way. Following these two ways of increasing robust biases to the original structure, we
could finally obtain RBFormer with better robustness after the comprehensive evaluation.
The evaluation includes employing PGD [17], Auto-Attack [5], frequency heat map [39],
and local Lipschitz [14] techniques to assess the clean and robust performance of various
structure designs with different robust biases under natural and robust training scenarios.
Eventually, we can provide insightful answers to the initial question and offer the following
contributions:

» After meticulous analysis and experiments, we demonstrate the effect of two distinct
robust biases toward the robustness of Transformer-based structural designs.

* Evaluating various experimental findings leads to a deeper comprehension of robust
biases integration characteristics, thereby informing the design of Transformer-based
structures. Ultimately, we propose the RBFormer (RBViT/RBVMLP), which exhibits
the most robust performance, as depicted in Fig. 2.

* According to the comparison results depicted in Fig. 1, the RBFormer structure out-
performs recent popular adopted structures in terms of robustness. Specifically, RB-
Former exceeds the original structures by a significant margin of +16.12% and +5.04%
under various evaluation methods in CIFAR-10 and ImageNet-1k.

2 Exploring Logic and Experimental Setup

As mentioned earlier, this section aims to establish a coherent, logical flow to address the
question while outlining the general experimental setup. Firstly, designing Transformer-
based structures according to the robust consideration is explored. Then, the original ViT or
VMLP structures and our particular implementation are briefly introduced. Finally, we iden-
tify convolution operation and multi-hierarchy layer stacking strategy as our two potential
available robust biases and further delve into their specific introducing methods.
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Figure 2: The RBFormer structure can be summarized as follows: (a) The left sub-figure illustrates the general
architecture of RBFormer. (b) The right sub-figures depict the specific utilization of the CMLP block, block aggre-
gation, and embedding, showcasing the modifications compared to the original structures

Robust Consideration: The previous research work [39] on the relationship between struc-
tural robustness and frequency analysis first inspires us. Through the theoretical analysis of
the activation and loss function for the most straightforward classification task and further
visual experimental verification, the high-frequency structure could be named the robust bias
to facilitate the robustness of Transformer-based models.

Previous works [12, 34] mention that generating more complicated or worse adversarial
examples in the inner maximization would be beneficial to promote the final robust perfor-
mance. About how to improve this inner optimization, [39] explores the robust characteristic
from the frequency domain and claims that adversarial training is a process for moving more
structured focuses to high-frequency information. Consequently, the target of finding more
challenging adversaries is equivalent to facilitating the ability to concentrate features on
high-frequency domains.

Adversarial training [17] as a min-max optimization is mainly pursuing adversarial per-
turbation 6 within £,-ball constraint A, in the inner maximization process. Inverse Discrete
Fourier Transform (IDFT) is x = IDFT[X]| = % ZkXWATk”, k=0,....N—1,where W = e’j%vl,
x and X is the input in the temporal and frequency domain, N is the transform interval length,
all of the parameters are positive values. And IDFT is monotonically increasing. Fig. Al is
the activation function (Sigmoid) and loss function (Cross-entropy loss) for the most straight-
forward two-class classification problem. Since the Sigmod function is also monotonically
increasing, when the input of Sigmod moves to frequency values from X; to X5, the output
will also change from y; to y;. In the cross-entropy loss of two labels, the possible value
range of loss would also extend from /; to /. Consequentially, when the input frequency X
is more toward the high-value region, this simple classification task will result in a broader
range of possible loss values like /1 to /. In a word, higher-frequency information explo-
ration will lead to more intricate adversarial examples since the inner max in adversarial
training is pursuing higher loss value within £,-ball constraint.

Recently, there are various works [13, 25, 27, 46] certify that convolution operation could
be used to promote the extracting ability of high-frequency information. Thus, we modify
the embedding, block aggregation, and CMLP to a new version with convolution operation
presented in Fig. 2. This modification could also be illustrated through straightforward tools
Fourier Heatmap [39] for the last feature map. The focus of the structure on high-frequency
information would increase when the high-light concentration moves closer to the center.
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The right subfigure in Fig. | is the Fourier heatmap for the original ViT/VMLP (Left Col-
umn/Right Column), and the original ViT/VMLP is inserted convolution operation from top
to bottom. The structures will focus more on the center or high-frequency domain when
improving the proportion of convolution operation. And the following results in Section 3
and the Appendix will also indicate their better robustness. The convolution operation or
high-frequency visual structure could be named the robust bias here. Additionally, we term
an assumption: If we continually improve the proportion of this robust bias, would the whole
model be more robust? To validate this assumption, we would figure out which types of
robust bias we can choose and how to design the corresponding experiments in the following
sections.

Structural Components: According to the previous introduction of RBFormer, all
structures could be preliminarily separated into three main components: Embedding, TM
block, and CMLP block. The TM block includes the MSA and MLP sub-block. This sub-
section will present the particular structural composition of ViT/VMLP and our implemen-
tation. The detailed theoretical calculation is in Appendix B.2.

Original Components of ViT/VMLP: (1) Embedding: The embedding function is to
transform the original images into the embedding tokens. Embedding could be divided into
two steps: Step 1 is to execute dimension transform in Eq. S1, and Step 2 in Eq. S2 will
add a learnable 1D positional embedding E,,s, which contains the positional information
under the patch segment phase, to the token vector. Additionally, similar to BERT [6], ViT
also adopts [class] token (CLS) to do classification. (2) TM Block: TM Block mixes the
embedding tokens to capture the inner features of input images and mainly consists of two
sub-blocks. For ViT, the first is the particular MSA sub-block, and the second is the MLP
sub-block, which is constituted by two projecting layers with a GELU non-linearity. And
VMLP, such as Mixer-MLP [32] and PoolFormer [42], would have two MLP sub-blocks
since the original MSA sub-block would be replaced by MLP sub-block Additionally, two
crucial training facilitation techniques, LayerNorm (LN) and Skip-connection or Residual
(Res), are adopted in both phases here. (3) CMLP Block: CMLP block is the final main
component that constitutes two MLP sub-blocks with a GELU non-linearity. This block
would also include LN and Res.

Our Implementation: (1) Embedding: Recent experimental findings [3, 20, 33, 47]
indicate that removing the CLS token, which is used in the original ViT, can potentially
enhance the performance. This kind of removal eliminates unnecessary components and
reduces redundant computational costs. Consequently, we directly average (AVG) all token
vectors as the input of the TM block. (2) TM Block: In the TM block, the general structure
and components of the MSA and MLP sub-blocks will be retained, preserving similarity
with the original ViT/VMLP models. However, a modification was made to the Linear Layer
within these two sub-blocks. It will be replaced with either Conv2d or Convld, depending
on the insertion of the convolution operation, to ensure proper dimensional transformation.
About LN and Res, [39] mentions that the normalization operation would play a significant
role in analyzing adversarial robustness in the frequency domain. Therefore, we will hold the
LN as another main research object and put the Res as the ablation study in the Appendix.
(3) CMLP Block: As presented in Fig. 2. Since the CLS is removed in embedding, CMLP
comprises an AVG pooling layer to do the average of every patch.

Robust Biases Introduction: In this subsection, two potentially available robust biases
are declared. One is the convolution operation explained above. The multi-scale hierarchy
layer stacking strategy is another implicit robust bias that can facilitate the capturing ability
of high-frequency information.
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Convolution Operation as a normal replacement of the projection layer used in the
ViT/VMLP could be easily introduced into the following components. For embedding, there
are two ways of executing it. The first is Convolution Embedding (CONV), which inserts
some convolution projection structure before the original embedding. The second Projection
Convolution Embedding (PCONYV) directly adopts the convolution map to transform the
dimension. The MSA sub-block, MLP sub-block, and CMLP block could directly adopt the
convolution layer to replace the normal feed forward projection.

Multi-hierarchy Layer Stacking: Four layer stacking strategies inspired by some recent
works [15, 16, 36, 47] are explored here and could incorporate convolution operations by
using different inserting methods. We introduce them as follows:

I. The original ViT Structure (OriViT) directly utilizes the initial ViT structure [8] as
the layer stacking strategy. Since the embedding of OriViT is fixed and outputs a 1D token,
the PCONV embedding and CONV TM block are unsuitable for OriViT.

II. CNN-based Structure would introduce the resolution and channel change process in
the multi-hierarchy structure design by imitating the dimension change of CNN [1, 3, 15, 33].
Concretely, the core of this strategy is to directly introduce 2D images as input and keep the
2D dimension in the inner processing step. PCONV embedding, Conv TM block, and CONV
MLP block could all be comprehended in this stacking strategy.

II1. Swin-based Structure [16] (Swin) achieves SOTA performance in various computer
vision tasks. Swin modifies the original MSA sub-block to Window-based (WB) MSA and
Shifted Window-based (SWB) MSA. WBM is trying to split each patch into a smaller sub-
patch further. SWBM would introduce connections across windows and reinforce the ability
to use local information. In a word, WB MSA and SWB MSA do not change the essential
components of MSA but introduce additional patch splitting and window shift operation.
Since the essential components of Swin are just like OriViT except for the TM block, we
could introduce convolution operation to each element of it directly. Swin-based VMLP [16]
has similar components and convolution operation introducing strategy as Swin-based ViT.

IV. Image Pyramid Structure (ImagePy) as another stacking strategy that is inspired by
NesT [47]. ImagePy first splits and then aggregates non-overlap image patches in a hierarchy
way, and it does not need the cooperation of any component modification. In a word, except
for the dimensional transformation limitation of PCONV, ImagePy is very flexible, and the
convolution operation could be introduced to components in any way.

3 Experiments and Analysis

In the experiments, we adopt two popular datasets (i.e., CIFAR-10 and ImageNet-1k) to
explore more robust structures by gradually increasing the proportion of robust bias. For the
specific evaluation, we use £-PGD [17] and Auto-Attack [5], which is an ensemble of white-
box and black-box attacks, as the robust validating metrics. In CIFAR-10, we use three €
values for evaluating naturally trained models: 1/255, 2/255, and 3/255. For adversarially
trained models, 8/255 as the most adopted worst value is selected. For ImageNet-1k, we
mainly evaluate the structural performance under the robust cases and use 4/255 as default
€. All models presented in this paper are trained from scratch without any transfer learning
strategy. Additionally, when doing the detailed analysis in CIFAR-10, two popular tools
(Fourier heatmap [39] and Local Lipschitz [14]) are utilized to help understand the specific
impacts of adding robust bias. Fourier heatmap could measure the sensitivity of models
when encountering noises in diverse frequency domains. Each pixel of the heatmap is scaled
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to [0, 1] and refers to the error rate after adding frequency noise with the pixel’s coordinate
as a basis for natural examples. For the Local-Lipschitz constant, as a numerical evaluation
index of robustness, the lower value of a structure indicates its smoother and more robust
characteristic.

This section is organized as follows: Section 3.1: Experimental setup of adding robust
bias structure; Section 3.2: Validate and analyze the particular results and characteristics
when inserting different robust bias visual structures to corresponding components. Section
3.3: Compare our RBFormer (RBViT/RBVMLP) with various popular baseline structures.

3.1 Structures with Various Robust Biases

This subsection indicates how to incorporate two robust biases: (1) convolution operation
and (2) multi-hierarchy layer stacking strategy to the original ViT/VMLP and finally propose
RBFormer (RBViT/RBVMLP). Specifically, for adding convolution operation, according to
the explanation of Section 2.1, there would be three components, (1) Embedding, (2) TM
Block, including MSA and MLP sub-block, (3) CMLP block, and one technique, (4) LN,
that could be inserted. About the multi-hierarchy layer strategy, (1) OriViT [8]; (2) CNN-
based structure [10, 33, 36]; (3) Swin [16] and (4) ImagePy [47] would be our research
objects. In the specific implementation process, the above-introduced robust biases are not
all compatible with each other because of the dimension matching. The concrete component
combinations are as follows:

Convolution Operation: To explore the robust influence of inserting convolution oper-
ation on each component and the presence or absence of LN, we modify each component
according to the presence of convolution-adding degree and LN in Table 1. Additionally,
the multi-hierarchy layer stacking strategy, as a structure that can bring that similar utility as
the convolution operation, is also included in Table 1. For the specific options: There would
be two options in embedding: Original (Ori) and CONV embedding. Since the dimension
mismatch issues between CONV TM block/PCONYV with the OriViT, we will not consider
the CONV TM block and PCONV here. Additionally, accompanied by whether to add the
convolution operation, CMLP will have two choices here: Original (Ori) MLP, Convolution
(CONV) MLP. Finally, Norm also has two options here: Layernorm (LN) or None. After
permutation and combination among all possible choices, the robust performance of Eight
structures (a) to (h) are analyzed in Table 1, Fig. 3, and Appendix A

Multi-hierarchy Layer Stacking Robust Bias: After discovering the best structure for
introducing convolution operation robust bias, we further focus on multi-hierarchy layer
stacking strategies. The robust performance is presented in Table 1, Fig. 3, and Appendix A.
I. OriViT: We adopt this structure as our basic structure to explore the influence of adding
convolution operation in the structure (a) to (h). II. CNN-based Structure: For the CNN-
based structure, its embedding and TM block should be fixed as PCONV embedding and
CONV TM block. For the CMLP block, the original form could be replaced with CONV
CMLP to increase its robust bias. Structures (i) and (j) are the evaluation of CNN-based
structures. III. Swin: The main distinction of Swin is to introduce cyclic shift operation by
switching the original TM block to the WB and SWB token-mixer. In this case, the TM
block could not be replaced as a CONV block. However, the original embedding and CMLP
block could be substituted as PCONV and CONV. The performance of Swin is presented by
structures (k) and (1). IV. ImagePy: ImagePy is a simple stacking strategy compared with
CNN-based structure and Swin without modifying any component. Except for its embedding
that is modified to PCONYV because of the 2D image dimension, both the form of TM and
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ViT/VMLP Clean PGD Auto- Lipschitz
Components Stacking Accuracy (8/255) Attack Constant
Combine | Cmbedding ‘ ™ ‘ CMLP ‘ Norm ‘ Structure (8/255)
(a) Ori Ori Ori None oriViT 79.88/71.06 | 52.66/45.56 | 51.12/44.37 | 159.2/163.2
(b)-Ori - - - LN - 79.93/66.38 | 52.70/44.06 | 51.45/43.10 | 157.7/164.7
(c) - CONV | None - 82.81/78.83 | 54.79/54.24 | 53.83/53.69 | 151.3/152.3
(d) - - LN - 81.66/77.58 | 54.69/51.00 | 53.85/50.88 | 152.7/157.5
(e) CONV - Ori None - 82.77/77.86 | 55.85/53.22 | 54.98/52.89 | 151.4/155.8
() - - LN - 80.50/75.92 | 54.40/50.89 | 53.69/48.99 | 153.1/162.3
(2) - CONV None - 80.57/79.25 | 55.63/53.81 | 54.23/52.45 | 146.3/148.5
(h) - - 82.35/81.42 | 56.41/56.89 | 56.12/57.02 | 140.3/141.3
(i)-CVT PCONV CONV Ori CNN-based | 79.62/77.62 | 53.15/52.12 | 52.11/50.21 | 143.2/146.9
() CONV 80.98/79.64 | 57.67/56.83 | 57.34/57.06 | 136.9/138.1
(k)-Swin Ori WBM+SWBM Ori Swin-based | 76.39/75.23 | 48.93/46.34 | 47.64/45.21 | 152.0/154.2
() PCONV CONV 80.08/78.34 | 52.10/50.92 | 50.48/50.22 | 146.3/145.2
(m)-NT Ori Ori Ori ImaéePy 76.22/75.94 | 52.45/51.82 | 51.28/49.14 | 158.2/167.9
(n)-RB PCONV CONV CONV 83.74/82.19 | 60.91/59.88 | 59.69/59.22 | 89.1/98.7

Table 1: The performance of our exploring structures under adversarial training in CIFAR-10. All results are
shown in ViT/VMLP accuracy (%). This Table includes two robust bias explorations, 1) Structure (a)-(h):
the exploration of convolution operation; 2) Structure (h)-(n): the exploration of multi-hierarchy layer stacking
strategy. Among (a)-(n), some of them are corresponding to some current typical structures, (b) is the original
ViT/VMLP [8, 32] (Ori), (i) is corresponding to CVT [33]/CVT-based VMLP (CVT) or CNN-based structures, (k)
is Swin ViT/MLP [16] (Swin), (m) is the NesT [47]/NesT-based VMLP (NT). (n) is our final RBViT/RBMLP (RB).

CMLP block should be similar to OriViT. More detailed information, like layer number
selection, distribution of each hierarchy, and others, are all offered in Appendix A.

3.2 Results Analysis

According to the adversarial robust performance of CIFAR-10 and ImageNet-1k in Table 1,
Fig. 3 and Table A1, we could conclude some interesting findings about the robust charac-
teristic of transformer-based structures and propose our RBFormer:

After comparing the performance of the (a)-(h) structure in Table 1, we obtain the con-
clusion that improving the proportion of convolution operation in ViT/VMLP-based mod-
els could availably boost the robustness of corresponding models. Undoubtedly, the pres-
ence of LN has less impact on robustness. Comparing the results among structure (a) to
(h) in CIFAR-10, the robust results of ViT/VMLP under PGD attack and Auto-Attack with
€ =4/255 has at most 3.71%/12.83% and 4.67%/12.92% enhancement. And the Lipschitz-
constant value comes into a 17.4/23.4 decrease (the lower, the better in robust case). Ad-
ditionally, when ignoring the presence of LN, we adopt the Fourier heatmap on structures
(b), (d), (f), and (h). As mentioned in Section 1.1, after adding more convolution opera-
tions from (b) to (h), the Fourier map concentrates more on the central zone, which indicates
this model could capture more high-frequency information. The robust performance also
increases from (a) to (h). Therefore, convolution operation as a high-frequency information-
capturing structure or robust bias could promote robustness. In ImageNet-1k, the structure
(a) and (h) in the left sub-figure in Fig. 3 could also conclude a similar observation. After en-
suring the positive effect of adding convolution operation, we target the oriViT, CNN-based,
Swin, and ImagePy. The robust influence of these four strategies is our primary purpose in
this subsection. According to the PGD attack and Auto-Attack with € = 8/255, as well as
Lipschitz constant value from structures (h) to (n) in Table 1, Fig. 3 and Table A1, we could
acquire two observations about changing layer stacking strategy: (1) In each kind of layer
stacking strategy, adding convolution operation to any components could generate a positive
effect on improving robustness; (2) Not any layer stacking strategy could successfully intro-
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duce robust bias to boost robustness, like Swin in structures (k) and (1). The suitable layer
stacking strategy should be a significant consideration when designing transformer-based
structures. We also utilize the Fourier heatmap to analyze the characteristics of four strate-
gies with the highest proportion of convolution operation (structure h, j, 1, and n). According
to the experimental results in CIFAR-10, following the partial enhancement of clean accu-
racy, structure (n) could generate 8.21%/15.82, 8.24%/16.12% robust accuracy improvement
under PGD adversarial examples and Auto-Attack, 27.0/30.2 decrease in Lipschitz constant,
and concentrating more on the central zone in the Fourier heatmap as Fig. 3. In ImageNet-
1k, compared with the original ViT/VMLP (b), structure (n) could generate 4.13%/4.66%,
4.03%/5.04% improvement under PGD attack and Auto-Attack. Therefore, structure (n)
would be our target RBFormer (RBViT/RBVMLP).
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Figure 3: Left: ImageNet- 1k results for ViT/VMLP structure. PGD-VMLP/PGD-ViT and Auto-VMLP/Auto-ViT

represent the robust accuracy under PGD and auto (¢ = 8/255) attack. Right: Fourier heatmaps of Ori ViT/VMLP,
some representative structures with convolution operation, and our RBFormer (b, h, j, 1, n) from top to bottom.
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3.3 Comparison Results of RBFormer with SOTA Baselines

In this section, we mainly focus on the robust enhancement of our RBViIT/RBVMLP (n)
with some popularly used ViT [8]/Mixer-MLP [32] (b), CVT/CVT-based VMLP [33] (i),
Swin ViT/VMLP [16] (k), NesT/NesT-based VMLP [47] (m) in Table 1, Fig. 3 and Ta-
ble Al. We first use PGD and Auto-Attack to compare our RBViIT/RBVMLP with the
other ViT/VMLP-based structures. Among these four values, our RBViT/RBVMLP could
achieve at most 16.12%, 9.01%, 14.01%, and 9.56% improvement for CIFAR-10. And for
ImageNet-1k in Fig. 3 and Table A1, RBViT/RBVMLP could attain at most 5.04%, 5.04%,
11.59%, and 6.02 % enhancement. Additionally, in CIFAR-10, we also further adopt Lips-
chitz Constant (Lower values mean better robustness) to evaluate the robustness after com-
paring RBViT/RBVMLP (n) with those four ViT/VMLP-based structures (b), (i), (k), and
(m), it can earn at most 68.6, 54.1, 62.9, 69.2 value decrease that means better robustness.
We also adopt the left figure in Fig. 1 to illustrate the superiority of our RBFormer com-
pared with ViT, CeiT [45], Local-ViT [15], Mixer-MLP, NesT, CVT, Swin Transformer and
Swin MLP [16]. Our RBFormer (RBViT/RBMLP) could obtain the best robust performance
compared with other baseline models. Additionally, in contrast to [19, 24] that claim to spe-
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cialize in improving the general robustness of Transformer-based structures, Table 2 shows
that RBFormer also maintains performance advantages in both clean and adversarial cases.

Metric ViT/VMLP
(%) CIFAR-10 ImageNet-1k
Clean Acc Adv Acc Clean Acc Adv Acc
Mao et al. [19] | 83.13/83.44 | 52.79/47.13 | 60.46/58.81 | 24.23/21.67
Qinetal. [24] | 82.76/81.17 | 53.61/45.65 | 61.14/59.43 | 26.55/24.52
RBFormer 83.74/82.19 | 60.91/59.88 | 61.59/60.27 | 32.71/32.09

Table 2: Comparing RBFormer with benchmarks under clean and adversarial case in CIFAR-10 and ImageNet-1k

3.4 The Affinity for Sparse Algorithms

RBFormer is realized through the process of rational component analysis and structure re-
design, but instead, simply adding new parameters to increase the redundancy. This process
involves only some modification in the dimensional transformation operation and does not
significantly introduce computational complexity. Additionally, RBFormer could adopt var-
ious model compression methods, such as model pruning, quantization, and sparse training,
to further reduce our parameter numbers and model size without sacrificing robust perfor-
mance. The most straightforward and least technically advantageous irregular magnitude
pruning is adopted in Fig. 4, the robust performance could be maintained under a low per-
centage of remaining non-zero weights.

o
2

32

| ‘_\—o__\\ - '—‘\‘_\\‘\\
1 —e— RBVIT (CIFAR-10) —e— RBVMLP (CIFAR-10) 30 RBVIT (ImageNet-1k) —e— RBVMLP (ImageNet-1k)
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Figure 4: Applying irregular pruning to RBViT/RBVMLP in CIFAR-10 (Left) and ImageNet- 1k (Right).

4 Conclusion

In this paper, we perform an exhaustive examination of the critical components that notably
influence the performance of Transformer-based structures. Our analysis systematically ex-
plores the impact of each component on robust vulnerability by experimenting with various
combinations. Furthermore, we delve into a study of adversaries in the frequency domain,
identifying robust biases that could potentially enhance adversarial robustness. Our proposed
RBFormer integrates a carefully selected mix of these robust biases. Through rigorous exper-
imental validation, we affirm that the RBFormer surpasses robust SOTA baselines, including
currently prevalent structures and some methods that could be used to enhance general ro-
bustness. Therefore, introducing robust biases leads to a noticeable enhancement in overall
performance, as evidenced by our study results.
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