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Abstract
We present a general methodology that learns to classify images without labels by

leveraging pretrained feature extractors. Our approach involves self-distillation training of
clustering heads, based on the fact that nearest neighbours in the pretrained feature space
are likely to share the same label. We propose a novel objective that learns associations
between image features by introducing a variant of pointwise mutual information together
with instance weighting. We demonstrate that the proposed objective is able to attenuate
the effect of false positive pairs while efficiently exploiting the structure in the pretrained
feature space. As a result, we improve the clustering accuracy over k-means on 17
different pretrained models by 6.1% and 12.2% on ImageNet and CIFAR100, respectively.
Finally, using self-supervised vision transformers we achieve a clustering accuracy of
61.6% on ImageNet. The code is available at https://github.com/HHU-MMBS/
TEMI-official-BMVC2023.

1 Introduction
Given a plethora of publicly available pretrained vision models, we ask the following ques-
tions: a) how well-structured is the feature space of pretrained architectures with respect to
label-related information, and b) how to best adapt this structure to unsupervised tasks. To
answer these questions, we focus on unsupervised image classification, also known as image
clustering. Image clustering is the task of assigning a semantic label to an image, given an a
priori finite set of classes. Ultimately, image clustering consists of simultaneously learning
the relevant representations and the cluster assignments.

To begin addressing the aforementioned questions, we present the key challenges regarding
image clustering. First, given that we can roughly estimate the number of ground-truth labels,
the underlying distribution among classes is hard to infer from the data, which is typically
assumed to be uniform. Second, the images should ideally be classified consistently (images
of the same class are grouped together) and confidently (one-hot prediction probability).
*Equal contribution.
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Figure 1: Clustering accuracies on ImageNet (left) and CIFAR100 (right) across 17
pretrained models. Supervised and self-supervised models (MSN, MoCoV3, DINO) were
pretrained on ImageNet. R50 stands for ResNet50 [17], C for ConvNext [26], and V for
Vision Transformer [13]. Small (S), Base (B), and Large (L) indicate the size of the models.
The vertical distance of each data point to the diagonal (dashed line) shows the improvement
of our method (TEMI) over k-means. Best viewed in color.

Consistency can be achieved by either learning features that are invariant under transfor-
mations of the same image (e.g. cropping, colour jitter, etc.), or invariant w.r.t. to substitution
by other images that belong to the same semantic class. Consequently, clustering methods are
generally prone to degenerate solutions [1]. In other words, samples tend to collapse into a
single cluster or the prediction probability spreads out uniformly.

It is well-established that representation learning plays a critical role in image clustering
[6], which is achieved with self-supervised learning [7, 16, 18, 39]. Recent studies have
demonstrated that self-supervised features are typically more transferable to new tasks than
features from supervised learning [15]. The frequently used joint-embedding architectures
[5, 16] are by design invariant to strong image transformations that preserve label-related
information. That renders these architectures as promising candidates for image clustering
[34], which has not been thoroughly explored at scale [40]. Even though self-supervision
[15] and vision transformers (ViTs) [29] have been separately established for representation
learning, limited research has been conducted to study self-supervised ViTs or vision-language
models (i.e. CLIP [32]).

How to adapt a pretrained model for image clustering is non-trivial. For instance, it is well
known that k-means is sub-optimal, as it often leads to imbalanced clusters [34] since it is
primarily suitable for evenly scattered data samples around their centroids [37]. On the other
hand, deep image clustering methods normally rely on pairs by mining the nearest neighbours
(NN) based on their feature similarity [14, 20]. Still, images that are close in the feature space
do not always share the same semantic class [34] and therefore must be considered as noisy
pairs.
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In this paper, a two-stage method that extends the existing multi-stage clustering ap-
proaches is proposed. In contrast to [34], where features are learned from scratch for each
dataset, we show that multi-stage clustering approaches can leverage pretrained models trained
on larger-scale datasets (Fig. 1) and focus on learning the cluster assignments. To this end, a
self-distillation clustering framework is introduced using a novel objective based on pointwise
mutual information and instance weighting. Second, a comprehensive experimental study
across models and datasets is conducted. Therein, we report an average gain of 6.1% and
12.2% in clustering accuracy compared to k-means on ImageNet and CIFAR100 across 17
pretrained models, as illustrated in Figure 1. Overall, we show that ViTs capture the most
transferable label-related features. Finally, we find that self-supervised ViTs [2] achieve state-
of-the-art results (61.6% clustering accuracy) on ImageNet, without using the ground-truth
labels or external data.

2 Related Work
Single-stage Deep Image Clustering Methods. Deep image clustering approaches can be
roughly divided into single and multi-stage methods. The majority of single-stage methods
alternate between learning the features and the clusters, i.e. in an expectation-maximization
manner. For instance, in DAC, [6] formulate a binary pairwise-classification task, where at
each iteration pairs are selected based on their feature similarity. Next, the computed pairs are
used to train a convolutional neural network (CNN). In the same direction, in DeepCluster [4],
the authors alternate between clustering the features of a CNN with k-means [27] and using
the obtained cluster assignments as pseudo-labels to optimize the parameters of the CNN.

Later on, in [38], the authors demonstrate that DeepCluster is prone to degenerate solutions
that are avoided via particular hyperparameter choices. To that end, the authors design a
multi-step pseudo-label extraction framework, called SeLa. The latter iteratively estimates the
pseudo-label assignment matrix under the equipartition constraint. In PCL [25], the authors
formulate clustering as learning the cluster centroids with k-means in parallel with optimizing
the network via contrastive learning [7]. To overcome the class collision of the negative pairs,
[21] extend PCL in a proximal framework called ProPos. ProPos only maximizes the distance
between the cluster centroids with contrastive learning, while mining NN for neighbouring
sample alignment [16]. However, most of the existing approaches still rely on k-means for
estimating the clusters (pseudo-labels).

Several single-stage approaches exist, which aim to jointly learn the feature representations
and clusters. Single-step methods are known to be sensitive to weight initialization [11]. In
this direction, DCMM is developed [35] to progressively mine NN in the feature space as
well as high-confident samples. Another single-stage end-to-end example is IIC, wherein [22]
derives a mutual information-based objective for paired data to train a CNN. Nevertheless, the
aforementioned approaches only consider stochastic transforms of the same image to obtain a
pair. They are hence limited to solely learning invariances w.r.t. image augmentations, which
cannot cover the variability of a given class [14]. More recently, [1] presented a single-stage
end-to-end method, called SSCN, that employs a variant of the cross-entropy loss.
Multi-stage Deep Image Clustering Methods. Multi-stage methods initially design a pretext
task in order to learn semantically meaningful features, such as denoising autoencoders [36].
A major breakthrough in deep image clustering is established by the adoption of contrastive
learning [7, 18]. For instance, [34] decouples image clustering into three distinct steps,
starting with contrastive learning. Subsequently, the authors train a head to cluster the mined
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NN from the extracted features. Lastly, they use the pseudo-labels from the confidently
assigned samples to fine-tune the whole architecture. A similar approach, called NNM [11],
aims to mine NN from the batch and dataset features.

Recently, [40] leverage self-supervised pretrained ViTs [5] and train a clustering head,
which is closer to our method. Nevertheless, their approach (TSP) heavily relies on k-means
for the weight initialization phase. Surprisingly, very few image clustering approaches
[1, 34, 38] have been successfully applied on ImageNet [12]. Besides, most methods report
results only with Resnet50 [17], while superior architectures for image recognition remain
unexplored [13, 26].

3 Proposed Method

3.1 Classification Model
Our aim is to learn a probabilistic classifier from pairs of examples that share label-related
information. We assume that the data distribution, p(x), is the result of a generative process,
c∼ p(c) and x∼ p(x|c), with p(c) the prior probability that an example belongs to a class c ∈
{1, ..,C}. Consequently, the joint distribution, p(x,x′) that a pair of examples, (x,x′), belongs
to the same class is given by p(x,x′) = ∑

C
c=1 p(x|c)p(x′|c)p(c). We introduce a parametrized

probabilistic classifier, q(c|x), that distributes examples x∼ p(x) among classes, with class
occupancy given by q(c) = Ex∼p(x)[q(c|x)]. Using Bayes’ theorem q(x|c) = q(c|x)p(x)/q(c),
the joint distribution, p(x,x′), can be approximated by

q(x,x′) =
C

∑
c=1

q(x|c)q(x′|c)q(c). (1)

To estimate the association between x and x′ we introduce the pointwise mutual information,
pmi(x,x′) [8], defined by

pmi(x,x′) := log
q(x,x′)

p(x)p(x′)
= log

C

∑
c=1

q(c|x)q(c|x′)
q(c)

. (2)

Theorem 1. If (i) each example x ∼ p(x) belongs to one and only one cluster under the
generative model p(x) = ∑c p(x|c)p(c), (ii) the joint distribution p(x,x′) is known, and (iii)
q∗(c|x) is a probabilistic classifier defined by

q∗(c|x) = arg max
q(c|x)

Ex,x′∼p(x,x′)[pmi(x,x′)], (3)

then q∗(c|x) is equal to the optimal probabilistic classifier, p(c|x) = p(x|c)p(c)/p(x), up to a
permutation of cluster indices.

The proof can be found in the supplementary material. Theorem 1 states that under
condition (i) the knowledge of pairs of examples belonging to the same class suffices to
establish an objective for an optimal classification model.

3.2 Self-distillation Clustering Framework
The starting point is a pretrained feature extractor (backbone) g(·) that assigns each example
x in the dataset D a feature vector g(x). We mine the k nearest neighbours (k-NN) of x in the
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feature space by computing the cosine similarity between g(x) and the feature vectors of all
other images in D. We denote the set of k-NN for x by Sx. During training, we randomly
sample x from D along with x′ from Sx, to generate image pairs that share label information
with high probability.

We introduce two clustering heads, a student head, hs(·), and a teacher head, ht(·), that
share the same architecture but differ w.r.t. their parameters, θs, and θt . Each head consists of
a three-layer fully connected feed-forward network. The image pairs x,x′ are fed to the shared
backbone and subsequently in the two heads, hs(g(x)) and ht(g(x′)). The head outputs are
converted to probabilistic classifiers, qs(c|x) and qt(c|x′), using a temperature-scaled softmax
function, which for the student’s head is given by

qs(c|x) =
exp(hs(g(x))c /τ)

∑c′ exp(hs(g(x))c′ /τ)
, (4)

where τ is the temperature hyperparameter. Unlike previous self-distillation frameworks [5],
we use the same temperature τ = 0.1 for both heads. We approximate the pointwise mutual
information by

p̃mi(x,x′) := log
C

∑
c=1

qs(c|x)qt(c|x′)
q̃t(c)

. (5)

and estimate q(c) by an exponential moving average (EMA) over batches using the teacher’s
head

q̃t(c)← mq̃t(c)+(1−m)
1
B

B

∑
i=1

qt(c|xi), (6)

with B the batch size and m ∈ (0,1) a momentum parameter. In practice, we symmetrize
Equation (5) to compute the loss function

L(x,x′) :=−1
2

(
p̃mi(x,x′)+ p̃mi(x′,x)

)
. (7)

Note that only the parameters θs of the student’s head are updated using backpropagation.
The parameters of the teacher’s head, θt , are updated by an exponential moving average for
the student parameters, θs, over past update steps [5, 16]. As a result, pt(c|x) represents a
sufficiently stable target distribution for the student head. In contrast to other self-distillation
frameworks [5] no complicated adaptation of softmax temperatures over training is required.
Following previous work [34], we employ an ensemble of H independent clustering heads in
training (fig. 3), which alleviates the variability stemming from random initialization. For the
evaluation, we use the teacher head with the lowest training loss.

3.3 Balancing class utilization
For a dataset D that has been generated using balanced classes, p(c) = const, we expect that
q̃(c)≈ const, as a consequence of the optimization process. However, in practice, we observe
that classes are typically far from uniformly utilized. We suspect that our self-distillation
learning framework leads to over-confident class predictions for a fraction of classes in the
early training phase.

To limit the effect of aligning the cluster predictions and take into account the individual
cluster probability of the mini-batches q̃i

t(c), we introduce a hyperparameter β ∈ (0.5,1] in
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Equation (5) to avoid collapsing all sample pairs in a single cluster. Without affecting the
optimal solution, we rewrite Equation (5) as

p̃mi
i
(x,x′) = log

C

∑
c=1

(
qi

s(c|x)qi
t(c|x′)

)β

q̃i
t(c)

, (8)

where i ∈ {1, . . . ,H} is the head index.

3.3.1 Intuition for β .

We now provide an explanation of how the above equation addresses the discussed challenges
of image clustering. Equation (8) consists of two parts inside the log sum: the numerator(
qi

s(c|x)qi
t(c|x′)

)β encourages the class assignment of a positive pair to align (consistency)
and is maximal when this assignment is one-hot. The denominator q̃i

t(c) promotes a uniform
cluster distribution by up-weighing the summand corresponding to classes with low probability
(q̃i

t(c) is low). In effect, β balances these two effects by reducing the influence of the
numerator, and thus degenerative solutions are avoided.

Note that for β = 0.5 the loss corresponds to the Bhattacharyya distance [3] if q̃i
t(c) =

const. The Bhattacharyya distance can be minimal even if qi
t is far from one-hot. Moreover,

if utilization of all classes is not required – for example as in the case of overclustering
– we set β = 1. Crucially, β is bounded, and we empirically found that the value of 0.6
consistently avoids degenerative solutions across the majority of datasets, as opposed to
existing clustering methods [1, 34]. In additon, we propose an experimental strategy to choose
β without access to the ground-truth labels, as explained in Section 4.2. The symmetrized
loss from Equation (8) is defined as Li(x,x′) in analogy to Equation (7).

3.4 Teacher-guided Instance Weighting

As discussed in Section 1, the mined k-NN in the feature space of g(·) tend to be noisy. For
this reason, we introduce an instance weighting term for each head i given by

wi(x,x′) =
C

∑
c=1

qi
t(c|x)qi

t(c|x′). (9)

Intuitively, wi(x,x′) acts as a guidance term that assigns a higher weight to true positive
pairs compared to false positive ones. Importantly, wi(x,x′) relies only on the predictions
of the teacher. The rationale behind this is that model averaging over training iterations
tends to produce more accurate predictions [31, 33]. We call this setup teacher-weighted
pointwise mutual information (WPMI). The final objective for each separate head i is given
by Li

WPMI(x,x
′) := wi(x,x′)Li(x,x′).

3.4.1 TEMI: Teacher Ensemble-weighted pointwise Mutual Information

To compensate for the noisy NN pairs based on the feature space of g, we further propose to
aggregate information from multiple heads, in contrast to previous works [34] that employ
independent heads. For this purpose, we compute a scalar for each image pair using the mean
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weight across the heads, which is conceptually similar to model ensembling. We thus call this
loss TEMI (teacher ensemble-weighted pointwise mutual information) defined by

Li
TEMI(x,x

′) :=
1
H

H

∑
j=1

w j(x,x′)Li(x,x′). (10)

4 Experimental evaluation

4.1 Datasets, Metrics and Implementation Details
The proposed method (TEMI) is evaluated on five common benchmark datasets, namely
CIFAR10, CIFAR20, CIFAR100 [23], STL10 [9], and ImageNet [12]. CIFAR10, CIFAR20
and CIFAR100 contain 50K training images, STL10 contains 5K training samples, and
ImageNet has 1,281,167 training samples. CIFAR20 has the same training data as CIFAR100
with 20 superclasses derived from the ground-truth labels. We resize all images to 224×224.
The training set is used during the optimization phase, while the evaluations are carried out
on the validation set. Additional information can be found in the supplementary material.

To quantify the clustering performance, we report the clustering accuracy (ACC), and the
adjusted random index (ARI). To estimate the accuracy, the one-to-one mapping between
cluster predictions and ground-truth labels is computed by the Hungarian matching algorithm
[24]. For our overclustering experiments, we report the adjusted mutual information (AMI).
Finally, we establish two baselines: a) k-means and b) the SCAN clustering loss within
our self-distillation framework. For a fair comparison with existing methods, we assume to
know in advance the number of ground-truth labels. Concerning the hyperparameters, we set
H = 50 and β = 0.6 for clustering, while we set β = 1 for overclustering. We use 25-NN on
ImageNet, and 50-NN for the remaining datasets. We used the AdamW optimizer [28] for 200
epochs with a batch size of 512, with a learning rate of 10−4, weight decay of 10−4 and report
results at the end of training. Unlike previous methods [34], we found that augmentations
(RandAugment [10], and the ones from [7]) were not improving the clustering metrics when
training with k-NN pairs. Hence, we precomputed the feature representations, which enables
training the clustering heads on a single GPU with 12GB of VRAM, within 24 hours.

4.2 Experimental Results
We first present a strategy to choose β ∈ (0.5,1]. As depicted in Figure 2, an accurate
model, pt(c|x) should be able to maintain a high entropy H(qt(c)), while maintaining its
discriminative power. To quantify the latter we use the conditional entropy H(qt(c|x)). The
lower the value of H(qt(c|x)) the more discriminative the predictions. The extreme case
H(qt(c|x)) = 0, corresponds to a one-hot distribution. Thus, we propose to pick the lowest
value of β such that H(qt(c|x)) remains sufficiently low. We experimentally found 0.6 to
work consistently well across models and datasets.

As shown in Table 1, an average accuracy gain of 5.0% over k-means is found for
CIFAR100 and ImageNet, even with the plain PMI setup. Introducing multiple heads in PMI
further improves the obtained results by an average gain of 0.8%. Critically, for our best
setup (TEMI) we observe an average gain of 8.1% and 3.7% compared to k-means and the
SCAN clustering loss, respectively. Note that even 16 heads were sufficient to get similar
performance, specifically less than 1% accuracy deterioration compared to 50 heads.
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Figure 2: Effect of β on the validation accu-
racy and on the entropy of qt(c|x) and qt(c)
on CIFAR100. The values are computed using
MWMI DINO ViT-B/16. The dashed horizon-
tal line illustrates the maximal possible entropy,
i.e. logC. A high entropy of qt(c) indicates
that the clusters are almost uniformly utilized,
while a low entropy of qt(c|x) indicates highly
confident predictions (one-hot).

....

Figure 3: An overview of the proposed
self-distillation clustering framework.
The nearest neighbors are mined in the
feature space of g. EMA refers to the ex-
ponential moving average over the param-
eters.

Method Heads CIFAR100 ImageNet

k-means - 56.99 52.26
SCAN 50 62.6±0.94 55.6±0.15
PMI 1 61.6±0.41 57.5±0.22
WMI 1 63.4±1.89 56.5±0.41
PMI 50 63.1±0.56 57.7±0.06
WPMI 50 65.6±1.04 57.0±0.38
TEMI 50 67.1±1.30 58.4±0.22

Table 1: Ablation study for the TEMI objective.
All the experiments were conducted with β = 0.6,
and DINO ViT-B/16 as the backbone model. The
clustering accuracy is reported in %.

To study the applicability of our
method, we then applied our best setup
(TEMI) to various publicly available
pretrained models, as shown in Fig 1.
Therein, we report an average accuracy
gain of 6.1% and 12.1% compared to
k-means on ImageNet and CIFAR100
across 17 different pretrained models.
More specifically, TEMI MSN ViT-
L/14 and TEMI DINO ViT-B/16 are the
best-performing self-supervised meth-
ods on ImageNet (61.6% ACC) and
CIFAR100 (67.1% ACC). Moreover,
CLIP-based backbones have the high-
est ACC increase over k-means when
trained with TEMI, precisely 10.7% on

ImageNet and 14.1% on CIFAR100.
Concerning the supervised pretrained models in Fig. 1, we demonstrate that ConvNext-L

outperforms ViT-L on ImageNet, precisely by 2.7% on ACC with TEMI. However, the
supervised ViT-L surpasses ConvNext-L by a large margin of 22.3% in ACC, when bench-
marked on CIFAR100 with TEMI. Among the architectures investigated, large ViTs learn the
most transferable label-related features, even without supervised fine-tuning. This finding is
consistent with [29].

Clustering and overclustering results on ImageNet. Regarding ImageNet, we compare
various self-supervised architectures that were trained without any external data, as depicted
in Table 2. Using the same architecture (Resnet50) as current state-of-the-art models (SSCN
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Method Arch. ACC ARI
SeLa [38] Resnet50 30.5 16.2
SCAN [34] Resnet50 39.9 27.5
SSCN [1] Resnet50 41.1 29.5

Our method
TEMI DINO Resnet50 45.2 31.3
TEMI DINO ViT-B/16 58.4 45.9
TEMI MSN ViT-L/16 61.6 48.4

Table 2: Clustering results for the Ima-
geNet validation set, without using ad-
ditional data. Evaluation metrics include
clustering accuracy (ACC), and adjusted
random index (ARI) in %. All our models
are pretrained on ImageNet.

Method AMI (%)

DeepCluster [4] 28.1
MoCo [18] 28.5
PCL [25] 41.0
ProPos [21] 52.5

TEMI DINO Resnet50 51.8±0.1
TEMI DINO ViT-B/16 59.9±0.2
TEMI MSN ViT-L/16 58.8±0.5

Table 3: Overclustering results on the
ImageNet validation set. The adjusted
mutual information (AMI) score for 25K
clusters is reported, as in [25]. For all
experiments, we set β = 1.

[1]), TEMI achieves an improvement of 4.1% in ACC. With MSN ViT-L/16 as the backbone,
we push the state-of-the-art ACC on ImageNet to 61.6%, resulting in a substantial gain
of 20.5% compared to SSCN. The obtained results strongly indicate that first learning the
augmentation-invariant features and then focusing on learning the invariances w.r.t. images
that belong to the same class is an effective strategy for image clustering. Incentivized by
the above observation, we investigate the overclustering performance in Table 3, by adopting
the setup from [25]. More concretely, we use 25K clusters and set β = 1 as in ProPos. We
almost match the performance of ProPos [21] with TEMI DINO Resnet50 without tuning the
number of clusters or any other hyperparameter, while reaching a considerable gain of 7.4%
in AMI with TEMI DINO ViT-B/16.

Small-scale benchmarks. In Table 4, the transfer performance on three small-scale
datasets is evaluated. TEMI DINO ViT-B backbone has inarguably the best transfer perfor-
mance, outperforming the ACC of ProPos by 4.6% and TSP by 2.9% on average. It is worth
pointing out that TSP [40] uses the same pretrained model and it is thus a fair comparison.
Ultimately, we notice a large accuracy gap between clustering methods and probing in CI-
FAR20, which suggests that the superclass structure cannot be inferred from the visual input.
For instance, clocks, lamps, and telephones are grouped into household electrical devices.

Analysis on noise (false positives) from the NN of g. As shown in Tab. 5, when keeping
only the true positive neighbours from 50-NN, we increased the performance from 67.1→
82.6 using TEMI DINO ViT-B on CIFAR100. We also show that the head weighting term of
TEMI in Eq. 10 is not needed, highlighting that TEMI is designed for the noisy pairs obtained
from k-NN. As a reference, DINO ViT-Base has 72% true positive pairs in 20-NN, and 66%
in the mined 50-NN on CIFAR100.

4.3 Discussion

How expressive can an image classifier be by only training with NN pairs? We examine
the training accuracy in Table 5, by training with the true positive pairs from the computed
k-NN. The 98.6% training accuracy on CIFAR100 with TEMI DINO ViT-B/16 indicates that
it is possible to train a powerful unsupervised image classifier by only relying on pairs. In
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Methods CIFAR10 CIFAR20 STL10
NNM [11] 84.3 47.7 80.8
PCL [25] 87.4 52.6 41.0
SCAN [34] 88.3 50.7 80.9
SPICE [30] 92.6 53.8 93.8
ProPos⋆ [21] 94.3 61.4 86.7
TSP† [40] 94.0 55.6 97.9
TEMI† 94.5 63.2 98.5
supervised baseline
Probing† 96.8 89.5 99.2

Table 4: Clustering accuracy on small
datasets. Methods with † use DINO ViT-B pre-
trained on ImageNet, while ⋆ indicates methods
that include the validation split during training.

Loss Val. Train
ACC ACC

PMI 84.1±0.36 98.6±0.38
TEMI 82.6±0.67 96.5±0.88
supervised baseline
Probing 85.3 99.3

Table 5: Clustering accuracies on CI-
FAR100 when training only with the
true positive NN pairs using TEMI
DINO ViT-B/16.

fact, we observe that we almost match the supervised linear probing accuracy on CIFAR100
(84.1% vs 85.3%). Still, we identify cases where the human-annotated label is ambiguous
and cannot be determined solely by the visual signal (supplementary material).
What is the impact of the instance weighting term? After training, we examined the actual
value of the instance weighting term w(x,x′). To this end, we computed the mean weights for
true positives and false positives sampled from 50-NN within the CIFAR100 validation set,
which take the values 0.76 and 0.40, respectively. Furthermore, w(x,x′) has a negative impact
when only true positive pairs are considered during training (Table 5). This is an expected
behaviour, as a fraction of true positive pairs will be down-weighted by w(x,x′) due to low
feature similarity (i.e. digital and analogue clocks).
How discriminative are the cluster assignments of TEMI? Besides Fig. 2, we quantify
the discriminative power of TEMI by computing the mean and median maximum softmax
probability (MSP [19]). We calculate a mean and median MSP of 88.5% and 98.9% on CI-
FAR100 and 85.3% and 99.2% on ImageNet. The computed results verify that the introduced
framework results in discriminative predictions.
Joint learning of encoder and cluster head. When jointly training the pretrained backbone
with the already trained head, we observed a performance increase only when the pretraining
dataset was different from the downstream dataset (67.1%→ 70.9% ACC on CIFAR100 using
the ImageNet-pretrained DINO ViT-B/16). We hypothesize this enables learning features
specific to the training distribution. Still, the structure in the latent space of the pretrained
model is required for TEMI to determine the k-NN.

5 Conclusion
In this paper, a novel and general self-distillation framework for image clustering was proposed
that can achieve competitive results almost out of the box. In addition, a new objective based
on pointwise mutual information was presented. After studying the performance of 17
pretrained models, it was shown that TEMI can be used with any type of pretraining with
significant improvements over k-means. Finally, new state-of-the-art results were achieved
on ImageNet both for clustering and overclustering, leveraging self-supervised ViTs. To
conclude, future works are encouraged to explore the connection between image clustering
and representation learning in greater depth.
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