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Abstract

The combination of knowledge distillation with contrastive learning has great potential
to distill structural knowledge. Most of the contrastive-learning-based distillation methods
treat the entire training dataset as the memory bank and maintain two memory banks, one
for the student and one for the teacher. Besides, the representations in the two memory
banks are updated in a momentum manner, leading to representation inconsistency. In
this work, we propose Contrastive Consistent Representation Distillation (CoCoRD)
to provide consistent representations for efficient contrastive-learning-based distillation.
Instead of momentum-updating the cached representations, CoCoRD updates the encoders
in a momentum manner. Specifically, the teacher is equipped with a momentum-updated
projection head to generate consistent representations. The teacher representations are
cached in a fixed-size queue which serves as the only memory bank in CoCoRD and
is significantly smaller than the entire training dataset. Additionally, a slow-moving
student, implemented as a momentum-based moving average of the student, is built
to facilitate contrastive learning. CoCoRD, which utilizes only one memory bank and
much fewer negative keys, provides highly competitive distillation results. On ImageNet,
CoCoRD-distilled ResNet50 outperforms the teacher ResNet101 by 0.2% top-1 accuracy.
Furthermore, in PASCAL VOC and COCO detection, the detectors whose backbones are
initialized by CoCoRD-distilled models exhibit considerable performance improvements.
Code is available at https://github.com/ShipengFu/CoCoRD

1 Introduction
The remarkable performance of convolutional neural networks (CNNs) in various computer
vision tasks, such as image recognition [10, 14] and object detection [9, 20, 21], has triggered
interest in employing these powerful models beyond benchmark datasets. However, the
cutting-edge performance of CNNs is always accompanied by substantial computational costs
and storage consumption. Numerous endeavors have been made to reduce computational
overheads and storage burdens. Among those endeavors, Knowledge Distillation, a widely
discussed topic, presents a potential solution by training a compact student model with
knowledge provided by a cumbersome but well-trained teacher model.
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Figure 1: The general pipelines of contrastive learning based distillation methods and CoCoRD. Instead
of momentum updating the representations, CoCoRD updates the encoder in a momentum manner. The
teacher dictionary, which contains representations from preceding batches, is a queue.

The majority of distillation methods induce the student to imitate the teacher represen-
tations [1, 3, 4, 13, 18, 24, 25, 29, 30]. Although representations provide more learning
information, the difficulty of defining appropriate metrics to align the student representations
to the teacher ones challenges the distillation performance. Besides, failing to capture the
dependencies between representation dimensions results in lame performance. To enhance
performance, researchers attempt to distill structural knowledge by establishing connections
between knowledge distillation and contrastive learning [3, 24].

To efficiently retrieve negative keys for contrastive learning, memory banks cache keys
which are updated in a momentum manner, as shown in Fig. 1. The momentum-updated
keys in the memory bank will be distinctly different from those not updated in that iteration,
making the cached keys inconsistent. Therefore, the student can easily contrast the positive and
negative keys, keeping the student from learning good features. The storage size of the memory
bank is another concerned factor when applying contrastive-learning-based distillation. As in
[3, 24], there are two memory banks and each of them contains representations of all training
images, leading to massive GPU memory usage on large-scale datasets.

Motivated by the discussion above, we propose Contrastive Consistent Representation
Distillation (CoCoRD) as a novel way of distilling consistent representations with one fixed-
size memory bank. Specifically, CoCoRD is composed of four major components, as shown
in Fig. 2: (1) a fixed-size queue which is referred to as the teacher dictionary, (2) a teacher, (3)
a student, and (4) a slow-moving student. The teacher dictionary is regarded as the memory
bank, where all the representations serve as the negative keys. The encoded representations of
the current batch from the teacher are enqueued. Once the queue is full, the oldest ones are
dequeued. By introducing a queue, the size of the memory bank is decoupled from dataset
size and batch size, allowing it to be considerably smaller than the dataset size and larger than
the commonly-used batch size. The student is followed by a projection head, which maps the
student features to a representation space. The teacher projection head is initialized the same
as the student one and is a momentum-moving average of the student projection head if the
teacher and the student have the same feature dimension; otherwise, the teacher projection
head is randomly initialized and not updated. Since the contrast through the teacher dictionary
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is to draw distinctions on instance level, the cached teacher representations which share the
same class label as the student ones leads to noise in the dictionary. To alleviate the impact of
the dictionary noise, a slow-moving student, implemented as a momentum moving average
of the student, is proposed to pull together anchor representations and class-positive ones.
As shown in Fig. 2, with a momentum-updated projection head, the slow-moving student
projects another view of the anchor image to the representation space, which serves as the
class-positive key. The main contributions are listed as follows:

• CoCoRD utilizes only one lightweight memory bank, where all the representations are neg-
ative keys. We experimentally demonstrate that a miniature teacher dictionary with much
fewer negative keys can be sufficient for contrastive learning in knowledge distillation.

• CoCoRD equips the well-trained teacher with a momentum-updated projection head to
provide consistent representations. Besides, a slow-moving student provides class-positive
representations to alleviate the impact of the potential noise in the teacher dictionary.

• CoCoRD achieves state-of-the-art distillation performance in 12 out of 13 student-teacher
combinations. On ImageNet, the CoCoRD-distilled ResNet50 can outperform the teacher
ResNet101 by 0.2% top-1 accuracy. Moreover, we initialize the backbones in object detec-
tion with CoCoRD-distilled weights and observe considerable performance improvements
over the counterparts that the vanilla students initialize.

2 Related Work

2.1 Knowledge Distillation
The core of knowledge distillation lies in the definition of knowledge and the way the
knowledge is distilled. Hinton et al. [13] propose distilling the softened teacher logits to the
student. After the representative work [13], various distillation methods [2, 4, 19, 23, 27] aim
to distill more informative knowledge via intermediate features. Among them, Passban et
al. [19] fuse teacher information to avoid the loss of significant knowledge. Chen et al. [2]
propose semantic calibration based on the attention for adaptively assigning cross-layer
knowledge. Chen et al. [4] introduce a novel knowledge review framework in which the
knowledge of multiple layers in the teacher can be distilled for supervising one student layer.
However, the methods mentioned above are dependent on Euclidean losses. It is challenging
to measure the distance appropriately with Euclidean loss in high-dimensional feature space,
especially when teachers and students have different feature shapes. The proposed method
leverages InfoNCE [26] to avoid regularizing the intermediate features with Euclidean losses,
which can largely blur the requirement for significant architecture similarities.

2.2 Contrastive Learning
The main goal of contrastive learning is to learn a representation space where anchor rep-
resentations stay close to the positive keys and distant from the negative keys. Contrastive
learning is a powerful approach in self-supervised learning [5, 12, 28]. To perform effective
distillation, CRD [24] combines knowledge distillation with contrastive learning to distill
structural knowledge. In addition, WCoRD [3] combines distillation with contrastive learn-
ing based on Wasserstein dependency measure [17]. However, the memory banks in CRD
and WCoRD contain representations of all the training images, which brings about storage

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Chen, Mei, Zhang, Wang, Wang, Feng, and Chen} 2021{}

Citation
Citation
{Chen, Liu, Zhao, and Jia} 2021{}

Citation
Citation
{Passban, Wu, Rezagholizadeh, and Liu} 2020

Citation
Citation
{Song, Wu, Yang, Zhang, Li, and Yuan} 2021

Citation
Citation
{Wang and Li} 2021

Citation
Citation
{Passban, Wu, Rezagholizadeh, and Liu} 2020

Citation
Citation
{Chen, Mei, Zhang, Wang, Wang, Feng, and Chen} 2021{}

Citation
Citation
{Chen, Liu, Zhao, and Jia} 2021{}

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}den Oord, Li, and Vinyals} 2018

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Wu, Xiong, Yu, and Lin} 2018

Citation
Citation
{Tian, Krishnan, and Isola} 2020

Citation
Citation
{Chen, Wang, Gan, Liu, Henao, and Carin} 2021{}

Citation
Citation
{Ozair, Lynch, Bengio, Vanprotect unhbox voidb@x protect penalty @M  {}den Oord, Levine, and Sermanet} 2019



4 S. FU, H. YANG, X. YANG: COCORD

Feed 𝒙𝒔 to the slow-moving student and 

𝒙𝒔
′ to the student to compute  ෩𝓛𝒑𝒓𝒆𝒅

The teacher dictionary

Contrastive Loss

predictor

Predict

𝒑s

𝓛 𝒑𝒓𝒆𝒅

𝓛 𝒄𝒕𝒓

slow-moving
Student

momentum
projection head

𝒙𝒔
′

𝒈𝒔
′

𝒇𝒔
′

Student projection head

𝒙𝒔 𝒈𝒔 𝒇𝒔
𝒑𝓛 𝒄𝒍𝒔

𝒌𝒕
+ ∪ {𝒌𝒕𝟏

− , . . . , 𝒌𝒕𝒏
− }

momentum
projection head

Teacher

𝒙𝒕 𝒈𝒕 𝒇𝒕
𝒑

swap

𝒒+-

𝒒s

�s

Figure 2: Illustration of the proposed CoCoRD. Note that q+s- is detached from the computational graph
during the distillation process. q̃+s-, which is obtained by feeding xs to the slow-moving student, is also
detached. The teacher is frozen and the teacher dictionary does not receive gradient.

challenges on large-scale datasets. Besides, momentum updates on representations can also
lead to inconsistent representations that negatively affect the distillation performance. Consid-
ering contrastive learning as a dictionary lookup task, we implement the memory bank as a
fixed-size queue where all cached representations serve as negative keys.

3 Method
The key idea of combining distillation with contrastive learning is straightforward. The
proficient teacher can provide consistent keys that are beneficial for contrastive learning. The
student can learn powerful features which are close to the positive teacher keys and distant
from the negative ones in a representation space.

3.1 Contrastive Learning as Looking up in the Teacher Dictionary
In CoCoRD, the negative keys are encoded by the teacher at previous iterations and cached
in a fixed-size queue, which is referred to as the teacher dictionary. The teacher dictionary
is initialized with random numbers from the standard normal distribution and we perform
L2 normalization over each initial negative key. Given an input image x, two views of x
under random data augmentations form a positive pair (a query and a positive key, which are
encoded at every iteration).

We define the input to the student S as the query xs and the input to the teacher T as
the positive sample xt , as shown in Fig. 2. The outputs at the penultimate layer (before the
last fully-connected layer) are projected to a representation space by a projection head. For
simplicity of notation, the student nested functions up to the penultimate layer are denoted as
gs(·) and the student projection head is denoted as f p

s (·). Therefore, the query representations
qs and the positive keys k+t are given by:

qs = f p
s (gs(xs)), k+t = f p

t (gt(xt)), (1)

where gt(·) denotes the teacher nested functions up the penultimate layer and f p
t (·) is the

teacher projection head. f p
s (·) and f p

t (·) are two-layer perceptrons. The cached i-th negative
key in the queue is denoted as k-ti which is produced the same way as k+t but from the preceding
batches. The fixed-size teacher dictionary K={k-t1 , · · · ,k

-
tN} contains N negative keys. The

teacher representations of the current batch will be added to the queue after this iteration,
while the oldest representations are removed from the queue if the queue is full.
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The contrastive loss. The value of the contrastive loss should be small when qs is close to
k+t and distant from k-ti in the representation space. To meet this condition, we consider the
wildly-used and effective contrastive loss function: InfoNCE [26]:

Lctr =− log
exp(qs · k+t /τ)

exp(qs · k+t /τ)+∑
N
i=1 exp(qs · k-ti /τ)

, (2)

where τ is the temperature hyper-parameter. N is the size of the teacher dictionary. Lctr can
be intuitively interpreted as the log loss of a softmax-based (N+1)-way classification task. In
our case, we attempt to classify qs as k+t in the scope of {k+t }∪{k-t1 ,k

-
t2 , · · · ,k

-
tN}.

The consistency in the teacher dictionary. The core to learning good features by con-
trastive learning lies in the challenging negative keys. In CRD [24] and WCoRD [3], the
negative keys are momentum updated. The momentum update to the negative keys brings
about two main issues: (1) the negative keys were updated only when they were last processed,
and (2) the update interval for each negative key can be highly different. The two issues cause
inconsistent negative keys that are less challenging. To provide consistent negative keys, we
momentum-update the teacher projection head. Specifically, denoting the parameters of f p

t (·)
as wt and those of f p

s (·) as ws, we update wt as:

wt ← mcwt +(1−mc)ws. (3)

mc ∈ [0,1] is a momentum coefficient which adjusts the update smoothness. The momentum
update of wt makes f p

t (·) progress more smoothly than f p
s (·). The difference between f p

t (·)
at different iterations can be made small. Therefore, the negative keys encoded at different
iterations can be consistent. Besides, the current keys are enqueued, while the oldest keys
are dequeued. This gradual replacement is beneficial for maintaining the consistency of the
queue since the oldest keys are the least consistent with the current ones.

3.2 Representations of one class flock together
As shown in Eq. 2, classifying qs as k+t in the scope of {k+t ,k-t1 ,k

-
t2 , · · · ,k

-
tn} is categorization

on instance level. However, k-ti which shares the same class label with qs should be close to
qs in the representation space. To bring qs closer to its class-positive keys, we introduce a
slow-moving student whose nested functions up to the penultimate layer are denoted as g′s(·).
Specifically, the slow-moving student is implemented as a momentum-moving average of the
student. The slow-moving student is also accompanied by a projection head f ′s(·), which is
also updated in a momentum manner. Denoting the parameters of gs(·) as θs, the parameters
of g′s(·) as θ ′s and those of f ′s(·) as w′s, we update θ ′s and w′s by:

θ
′
s ← mrθ

′
s +(1−mr)θs w′s← mrw′s +(1−mr)ws, (4)

where mr ∈ [0,1] is another momentum coefficient and ws denotes the parameters of f p
s (·).

Therefore, the class-positive key q+s- can be obtain by:

q+s- = f ′s(g
′
s(x
′
s)), ◁ the class-positive key (5)

where x′s is another view of x under the random data augmentations. Instead of directly
narrowing down the distance between qs and q+s-, q+s- is predicted by qs.Formally, a predictor
hs, implemented as a two-layer perceptron, is proposed to produce the prediction ps ≜ hs(qs).
The loss is defined as the mean squared error between l2 normalized ps and q+s-, as shown
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in Eq. 6. Furthermore, we symmetrize the loss by feeding x′s to the student and xs to the
slow-moving student to compute L̃pred . Formally, denoting the representations from x′s by the
student as q̃s and the class-positive keys as q̃+s-, we compute L̃pred as shown in Eq. 7.

Lpred = ∥ ps

∥ps∥2
− q+s-
∥q+s-∥2

∥2
2. (6) L̃pred = ∥ p̃s

∥ p̃s∥2
− q̃+s-
∥q̃+s-∥2

∥2
2. (7)

Here p̃s ≜ hs(q̃s), q̃+s-≜ f ′s(g
′
s(xs)) and q̃s ≜ f p

s (gs(x′s)). Note that q+s- and q̃+s- are detached
from the current computational graph during the distillation process. Since the slow-moving
student does not receive any gradient, the extra memory consumption caused by introducing
an additional student is negligible and does not offset the benefit of keeping one fixed-size
dictionary. The memory consumption of the dictionary is provided in the supplements.

3.3 Training the student
With the slow-moving student and the teacher, Eq. 2, Eq. 6 and Eq. 7 aim at assisting the
student to effectively learn powerful features through contrastive learning. The student also
needs the task-specific loss. Overall, the total loss Ltotal can be formulated as:

Ltotal = λctrLctr +λpred(Lpred + L̃pred)+λclsLcls, (8)

where λctr, λpred and λcls are three balancing factors. Lcls ≜H(y,ys), where H(·) refers to
the standard cross-entropy, y denotes the one-hot label and ys is the student output.

4 Experiments
The student-teacher pairs are divided into two categories: (1) students share the architecture
style with teachers, and (2) the architectures of the students are different from those of the
teachers. For both categories, mc=0.999 and mr=0.9. More details about CoCoRD and
compared methods can be found in the supplemental materials.

Datasets. To investigate the performance improvements of students, we employ two bench-
marks: (1) CIFAR100 [15] and (2) ImageNet-1K [22]. CIFAR100 has 100 classes and each
class has 500 training and 100 validation images. ImageNet-1K, a large-scale dataset, contains
1000 classes and provides 1.28 million training images and 50K validation images. To test
the transferability of features that students learn with CoCoRD, we utilize two more datasets:
(1) STL-10 [7] and (2) TinyImageNet [6]. We only use the 5K labeled training images and
8K validation images from 10 classes in STL-10.

4.1 Experiments on CIFAR100
We experiment on CIFAR100 with 13 student-teacher pairs in total1, 7 of which are student-
teacher pairs with the same architecture style, and the remaining 6 are student-teacher pairs
with different architectures. As observed in Tables 1 and 2, KD [13] provides a strong baseline.
CoCoRD can consistently outperform KD and achieve highly competitive performance
compared with other state-of-the-art methods. Note that mc in Formula 3 is set to 1 for the
WRN-40-2/WRN-40-1 combination. This means the projection head for WRN-40-2 is not
updated. Although the teacher projection head is just randomly initialized and not updated,
CoCoRD still achieves the state-of-the-art result. This implies the features provided by the
well-trained teacher from the penultimate layer are already distinguishing.

1On CIFAR100, λctr=1, λcls=1, λpred=4. More training details are provided in the supplementary materials
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Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.71 (↓)
VID 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
CRD 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
LCKT 75.22 (↑) 74.11 (↑) 71.14 (↑) 71.23 (↑) 72.32 (↑) 74.65 (↑) 73.50 (↑)
CoCoRD (ours) 75.48 (↑) 75.17 (↑) 71.74 (↑) 72.11 (↑) 74.10 (↑) 75.29 (↑) 73.99 (↑)

CRD+KD 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
WCoRD 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)
CoCoRD+KD 75.90 (↑) 75.25 (↑) 72.09 (↑) 72.18 (↑) 74.37 (↑) 75.42 (↑) 74.26 (↑)

Table 1: CIFAR100 test accuracy (%) of students distilled with different methods when the student has
the same architecture style as the teacher. ↑ denotes outperforming KD, and ↓ denotes underperforming.
For all the compared methods, we use author-provided or author-verified code from the CRD repository.
Results are the averages over 5 runs. The best result among the methods which are not combined with
another one is shown in bold. The best result among the combined methods is underlined.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)
AT 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)
SP 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)
CC 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)
VID 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)
RKD 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)
PKT 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)
AB 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)
FT 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)
CRD 69.73 (↑) 69.11 (↑) 74.30 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)
LCKT 68.21 (↑) 68.81 (↑) 73.21 (↑) 74.62 (↑) 74.70 (↑) 75.08 (↑)
CoCoRD (ours) 69.86 (↑) 70.22 (↑) 74.52 (↑) 75.99 (↑) 77.28 (↑) 76.42 (↑)

CRD+KD 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)
WCoRD 69.47 (↑) 70.45 (↑) 74.86 (↑) 75.40 (↑) 75.96 (↑) 76.32 (↑)
CoCoRD+KD 69.90 (↑) 70.30 (↑) 74.62 (↑) 76.48 (↑) 77.39 (↑) 76.56 (↑)

Table 2: CIFAR100 test accuracy (%) of students distilled with different methods when the teachers’
architectures are different from those of the students. ↑ denotes outperforming KD, and ↓ denotes
underperforming. Results are the averages over 5 runs. The best result among the methods which are
not combined with another one is in bold. The best result among the combined methods is underlined.

Based on the discussion above, the teacher projection heads in Table 2 are randomly
initialized since the difference in architecture style is very likely to bring about the difference
in the input shape. Note that it is because of the projection heads that CoCoRD can achieve
distillation under cross-architecture setting. The projection heads can project features at the
penultimate layer of different shapes into one representation space.
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Student KD AT CRD CRD+KD CoCoRD Teacher

CIFAR100→STL-10 69.93 70.82 70.39 71.36 71.59 73.63 68.31
CIFAR100→TinyImageNet 34.53 33.83 33.80 35.88 36.07 38.39 32.38

Table 3: To evaluate the transferability of features, we employ linear probing to perform a 10-way
classification on STL10 and 200-way classification on TinyImageNet. For this experiment, we use the
combination of teacher WRN-40-2 and student WRN-16-2. Top-1 accuracy (%) is reported. The student
baseline and teacher are trained from scratch. Details are in the supplemental materials.

Teacher Student AT KD SP CC CRD CRD+KD ReviewKD SSKD WCoRD CoCoRD

Top-1 26.70 30.24 29.30 29.34 29.38 30.04 28.83 28.62 28.39 28.48 28.51 28.26
Top-5 8.58 10.92 10.00 10.12 10.20 10.83 9.87 9.51 9.49 9.33 9.84 9.30

Table 4: Top-1 and Top-5 error rates (%) of the students ResNet-18 trained with different distillation
methods on ImageNet-1K validation set. The lower, The better. The best performance is shown in bold.

As shown in Table 2, CoCoRD is highly effective for pairs of different architectures.
Even if the teacher projection head is not updated, CoCoRD can consistently achieve the best
performance compared to methods that are not combined with another method. Especially,
for the resnet-32x4/ShuffleNetV2 pair, CoCoRD presents 77.28% Top-1 accuracy, which is
1.32% higher than WCoRD (75.96%). The observation suggests that CoCoRD can largely
blur the requirement for significant similarities between students and teachers.
Linear probing. Following CRD [24], we employ linear probing to evaluate the transfer-
ability of the student features. We freeze the student and train a linear classifier on the global
average pooling features. As shown in Table 3, CoCoRD exhibits strong transferability and
outperform the second best (CRD+KD) by a large margin (2.04% improvement on STL10
and 2.32% on TinyImageNet). The CoCoRD-distilled student, which has a negligible per-
formance drop on CIFAR100 compared with the teacher, (shown in Table 1), exhibits better
transferability than the teacher (5.32% improvement on STL10 and 6.01% TinyImageNet).
The linear probing indicates CoCoRD-distilled models have better generalization ability.

4.2 Experiments on ImageNet
To investigate the scalability of CoCoRD to large-scale datasets, we employ ResNet-18 and
ResNet-34 as the student-teacher combination to perform experiments on ImageNet-1K. For
a fair comparison, we follow the standard PyTorch ImageNet training practice except that we
have 100 training epochs like CRD and WCoRD. We use the PyTorch-released ResNet-34
as our teacher. On ImageNet, we set λctr=1, λcls=1, λpred=4 and only calculate Lpred . The
results in Table 4 show that the proposed CoCoRD achieves the best performance on the
large-scale ImageNet. The relative improvement of CoCoRD over WCoRD [3] on Top-1
error is 14.45%, and the relative improvement over CRD [24] on Top-1 error is 40.43%. Both
improvements validate the scalability of the proposed CoCoRD to large-scale datasets.

4.3 Transfer Learning
We further validate the feature transferability of CoCoRD-distilled models by transferring the
model weights to object detection task, including PASCAL VOC [8] and COCO detection [16].
We fine-tune the pre-trained models in an end-to-end manner on the target datasets. Note
that the CoCoRD-distilled ResNet50 outperforms the teacher ResNet101 by 0.2% top-1
accuracy on classification. As shown in Table 5, the CoCoRD-initialized detectors exhibit
better performance than the student- or CRD-initialized counterparts. The valid reuse of
CoCoRD-distilled weights demonstrates the transferability to object detection.
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Classification Object Detection

ImageNet PASCAL VOC Detection CoCo Detection

Top-1 accuracy (%) AP50 AP AP75 AP50 AP AP75
scratch - 60.2 33.8 33.1 44.0 26.4 27.8

Student 76.15 81.3 53.5 58.8 59.9 40.0 43.1
CRD 77.06 (+0.91) 81.7 (+0.4) 54.2 (+0.7) 60.0 (+1.2) 60.5 (+0.6) 40.7 (+0.7) 43.9 (+0.8)

CoCoRD 77.57 (+1.42) 82.0 (+0.7) 55.0 (+1.5) 61.1 (+2.3) 60.9 (+1.0) 41.0 (+1.0) 44.5 (+1.4)

Table 5: For PASCAL VOC, Faster R-CNN is fine-tuned on VOC trainval07+12 and evaluated
on 2007test. For COCO, Mask R-CNN is fine-tuned on COCO train2017 and evaluated on
val2017. The Faster/Mask R-CNN models are with the R50-C4 backbones [11]. Numbers in green
indicate the performance improvement over the detectors initialized by the vanilla student. Please see the
supplementary material for details. ResNet101 is the teacher with 77.37% top-1 accuracy on ImageNet.

Option A B C D

Encoder Contrastive Cognate Contrastive Cognate Contrastive Cognate Contrastive Cognate
resnet110 resnet32 resnet32 resnet32 resnet110 - - resnet32

mean (±std) 74.10 (±0.14) 68.56 (±0.78) 72.92 (±0.23) fails

Table 6: CIFAR100 test accuracy (%) of resnet32 trained with different encoder pairs. The best
performance and the pair are shown in bold. The teacher is resnet110. mean denotes the average over 5
runs and std stands for the standard deviation. Note that the contrastive encoder is pre-trained and the
cognate encoder is initialized the same as the student and updated in a momentum manner.

(a) Effects of temperature (b) Effects of the teacher dictionary size

Figure 3: Effects of the temperature (τ) in InfoNCE with N=2048, as shown in (a), and the effects of
the teacher dictionary size (N) with τ=0.1, as shown in (b).

4.4 Ablation Study
4.4.1 Study of encoder combinations
To investigate how the representation quality affects the distillation performance, we utilize
different models to provide those representations. The model that generates dictionary-cached
keys is referred to as contrastive encoder. The model that produces the class-positive keys is
referred to as cognate encoder. Results are reported in Table 6. Comparing options A (the
default option) and B, we can find that leveraging the pre-trained teacher to provide quality
keys for contrastive learning is more beneficial for the distillation. Besides, removing the
cognate encoder and setting λpred to zero (option C) lead to poor performance, suggesting
the cognate encoder alleviates the adverse impact of the potential noise. If we remove the
contrastive encoder and still use the dictionary with cognate encoder (option D), the distillation
process fails. The results in Table 6 support the effectiveness of each encoder in CoCoRD.

4.4.2 Study of hyper-parameters

The temperature τ . τ in Eq. 2 varies from 0.07 to 0.11. As shown in Figure 3(a), CoCoRD
is sensitive to τ . As suggested in CRD [24], we set τ to 0.1 on CIFAR100, while τ is set to
0.07 on ImageNet. We suggest tuning the value of τ based on the classification difficulty.
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The size of the teacher dictionary. The number of negative keys is determined by the
teacher dictionary size N. As shown in Figure 3(b), extremely small teacher dictionary
provides insufficient negative keys, leading to sub-optimal performance. However, the
extremely large teacher dictionary introduces noise, which adversely affects the performance.
Based on our experiments, N=2048 should suffice on CIFAR100 while N=65536 on ImageNet.
Note that the teacher dictionary in CoCoRD is significantly smaller than the memory banks in
CRD [24] and WCoRD [3], which is more economic for large-scale datasets.

λcls λctr λpred mean (std)

1 1 4 74.10 (±0.14)

% ! ! fails
! % ! 71.81 (±0.42)
! ! % 72.92 (±0.23)

Table 7: The effects of the three balancing
factors. CIFAR100 test accuracy (%) is reported.
The best performance is shown in bold. Average
over 5 runs. More details can be found in the
supplementary material.

The balancing factors. We conduct exper-
iments on CIFAR100 to investigate the ef-
fects of the three balancing factors λctr, λcls
and λpred . resnet32-resnet110 is used as the
student-teacher combination. For experiments
on balancing factors, we set τ=0.1, N=2048,
mc=0.999 and mr=0.9. “%” denotes the bal-
ance factor is set to 0 and “!” means the
balance factor is set to the value provided in
the second row. Details on simple grid search
for each balancing factor can be found in the
supplementary material. As shown in Table 7,
all components in CoCoRD are essential for
achieving high distillation performance. When
λctr is set to 0, there is a serious performance drop, which indicates contrasting student repre-
sentations with negative keys is essential in improving the student performance. Moreover,
comparing the result of λpred=0 with the result of λpred=4, we can see the slow-moving
student can reduce the negative effect of the potential noise in the teacher dictionary.

5 Conclusion
In this paper, we propose a contrastive-learning-based knowledge distillation method named
Contrastive Consistent Representation Distillation. We build only one fixed-size queue to
cache consistent teacher representations. Besides, to alleviate the adverse impact of the
potential noise in the queue, we employ a slow-moving student, implemented as a momentum-
based moving average of the student, to provide class-positive keys. CoCoRD does not
employ the entire dataset as the memory bank, which is economic for large-scale datasets.
Extensive experiments demonstrate that CoCoRD, which utilizes fewer negative keys, can
boost the performance of the students on diverse image classification datasets. Additionally,
the models distilled by CoCoRD on ImageNet classification can efficiently improve object
detection performance on PASCAL VOC and COCO datasets.
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