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Abstract

Articulated objects (e.g., doors and drawers) exist everywhere in our life. Different
from rigid objects, articulated objects have higher degrees of freedom and are rich in
geometries, semantics, and part functions. Modeling different kinds of parts and artic-
ulations with nerual networks plays an essential role in articulated object understanding
and manipulation, and will further benefit 3D vision and robotics communities. To model
articulated objects, most previous works directly encode articulated objects into feature
representations, without specific designs for parts, articulations and part motions. In
this paper, we introduce a novel framework that explicitly disentangles the part motion
of articulated objects by predicting the transformation matrix of points on the part sur-
face, using spatially continuous neural implicit representations to model the part motion
smoothly in the space. More importantly, while many methods could only model a cer-
tain kind of joint motion (such as the revolution in the clockwise order), our proposed
framework is generic to different kinds of joint motions in that transformation matrix can
model diverse kinds of joint motions in the space. Quantitative and qualitative results of
experiments over diverse categories of articulated objects demonstrate the effectiveness
of our proposed framework.

1 Introduction
There are a plethora of 3D objects around us in the real world. Compared to those rigid
objects with only 6 degrees of freedom (DoF), articulated objects (e.g., doors and draw-
ers) additionally contain semantically and functionally important articulated parts (e.g., the
screen of laptops), resulting in their higher DoFs in state space, and more complicated ge-
ometries and functions. Therefore, understanding and representing articulated objects with
diverse geometries and functions is an essential but challenging task for 3D computer vision.
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Figure 1: We propose spatially continuous neural implicit grid that receives two point
clouds of the same object under different part poses. The point clouds are provided with
their corresponding articulated part poses and the grid could encode two frames of point
clouds into a spatially continuous implicit feature grid with both geometric and pose infor-
mation. By taking different new part poses as queries, we decode per-point transformations
representing articulated part motions from the feature grid. Then we move the object using
the transformation to generate objects under novel poses. This representation could be easily
adjusted to articulated objects with novel shapes and joint motions (e.g., from door to laptop)
tuned on only a few new objects.

Many studies have been investigating the perception of 3D articulated objects, including
discovering articulated parts [7, 10, 28], inferring kinematic models [1, 16], estimating joint
configurations [5, 12, 18, 19], predicting part poses [36, 41], building digital twins [14] and
manipulating parts [40]. One recent work, A-SDF [27], studies the representations of articu-
lated objects by encoding shape and articulation into latent space. But instead of considering
modeling articulation objects as linking parts under motion constraints, they directly decode
the whole object point cloud into the latent space. Another work, Ditto [14], successfully
generates objects under novel poses over diverse joint motions (e.g., rotation and displace-
ment over different axis) using a single network. However, this method relies on specific
articulation annotations such as joint type, orientation, and displacement which limits their
ability to generalise across diverse articulations (e.g., different joint motion and type).

In this paper, we introduce a novel framework for learning a spatial continuous repre-
sentation of the part motion of articulated objects, and enable the few-shot generalisation
across different novel object categories with different joint motion. To be specific, we model
articulation as a constraint that can map a scalar value representing the part poses to a trans-
formation describing the movements of the articulated parts.

To further study the representations of articulated objects, with a focus on the objects’
parts, we introduce our novel framework for learning the part motions of articulated objects.
To be specific, we model the movement of parts as a mapping between a scalar representing
the part pose and a transformation matrix. For a reason that part motion is a core and generic
property shared by all articulated objects, our proposed framework is generic to various
articulated objects with diverse kinds of part motions, without any need to have specific
designs for each kind of object.

Considering the limited number of DoF of joints on articulated objects, the motions of
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points on the articulated part should make up a continuous and smooth distribution with
respect to points’ positions on parts. In other words, close points on the part surface have
similar motions, while far away points have varied motions. Therefore, we further propose
to use spatially continuous neural implicit representations for the representations of point
motions on the articulated part. Inspired by ConvONet [31], we build a fine-grained and spa-
tially continuous implicit grid for learning the representations of point-level transformations
from one pose to another.

We conduct experiments over large-scale PartNet-Mobility dataset [2, 25, 39], covering
3D articulated objects with diverse geometries over 7 object categories. Quantitative and
qualitative results demonstrate that using the spatially continuous grid, our method accu-
rately and smoothly models part motion and generates articulated objects with novel part
poses reserving detailed geometries, showing our superiority over baseline methods.

2 Related Work

2.1 Representing Articulated Objects

How to understand and to model articulated objects has been a long-lasting research topic,
including segmenting articulated parts [11, 15, 16, 20], tracking feature trajectories [5, 9, 16],
estimating joint configurations [9, 15, 17, 20, 21], and modelling kinematic structures [20,
21, 23, 35]. Recently, many works [1, 10, 12, 18, 19, 36, 41, 42] further utilise the deep learn-
ing methods to study diverse articulated objects, leading to better performance and stronger
generalisation. A recent work A-SDF [27] studies the problem of generic articulated object
synthesis and leverages implicit functions to decode articulated objects into latent codes.
However, most of these works represent articulated objects by abstracting standardised kine-
matic structure, estimating joint parameters, and predicting part pose, which may not pro-
vide explicit information on articulated shapes for downstream tasks like robotics manipula-
tion [6, 7, 26, 37, 38]. Different from those works, we utilise neural implicit functions for
explicit articulated object representation and generation.

2.2 Neural Implicit Representation

A vast and impressive literature has investigated neural implicit representations [3, 8, 13,
22, 24, 29, 30, 31, 34], which utilises deep neural networks to implicitly encode 3D shapes
into continuous and differential signals in high resolution. While most of the previous works
study the representation of 3D rigid objects, two recent works, A-SDF [27] and Ditto [14],
focus on the representation of 3D articulated objects. A-SDF [27] represents the articulated
objects by separately encoding shape and articulation into latent space. Ditto [14] builds
digital twins of articulated objects by reconstructing the part-level geometry and estimating
the articulations explicitly. However, both of the works represent articulated objects without
considering the integrity of the articulated parts, which is a generic property shared by all
articulated objects. In this work, we utilise this property and leverage spatially continuous
neural implicit representation to model the motion of the monolithic articulated parts.

Citation
Citation
{Peng, Niemeyer, Mescheder, Pollefeys, and Geiger} 2020

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Mo, Zhu, Chang, Yi, Tripathi, Guibas, and Su} 2019

Citation
Citation
{Xiang, Qin, Mo, Xia, Zhu, Liu, Liu, Jiang, Yuan, Wang, Yi, Chang, Guibas, and Su} 2020

Citation
Citation
{Huang, Walker, and Birchfield} 2012

Citation
Citation
{Katz and Brock} 2008

Citation
Citation
{Katz, Kazemi, Bagnell, and Stentz} 2013

Citation
Citation
{Martin and Brock} 2014

Citation
Citation
{Desingh, Lu, Opipari, and Jenkins} 2019

Citation
Citation
{Hausman, Niekum, Osentoski, and Sukhatme} 2015

Citation
Citation
{Katz, Kazemi, Bagnell, and Stentz} 2013

Citation
Citation
{Hausman, Niekum, Osentoski, and Sukhatme} 2015

Citation
Citation
{Katz and Brock} 2008

Citation
Citation
{Katz, Orthey, and Brock} 2014

Citation
Citation
{Martin and Brock} 2014

Citation
Citation
{Mart{í}n-Mart{í}n, H{ö}fer, and Brock} 2016

Citation
Citation
{Martin and Brock} 2014

Citation
Citation
{Mart{í}n-Mart{í}n, H{ö}fer, and Brock} 2016

Citation
Citation
{Michel, Krull, Brachmann, Yang, Gumhold, and Rother} 2015

Citation
Citation
{Sturm, Stachniss, and Burgard} 2011

Citation
Citation
{Abbatematteo, Tellex, and Konidaris} 2019

Citation
Citation
{Huang, Wang, Birdal, Sung, Arrigoni, Hu, and Guibas} 2021

Citation
Citation
{Jain, Lioutikov, Chuck, and Niekum} 2021

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Liu, Qiu, Wang, Hager, and Yuille} 2020

Citation
Citation
{Wang, Zhou, Shi, Chen, Zhao, and Xu} 2019

Citation
Citation
{Yan, Hu, Yan, Chen, Vanprotect unhbox voidb@x protect penalty @M  {}Kaick, Zhang, and Huang} 2020

Citation
Citation
{Zeng, Lee, Liang, and Kroemer} 2021

Citation
Citation
{Mu, Qiu, Kortylewski, Yuille, Vasconcelos, and Wang} 2021

Citation
Citation
{Eisner, Zhang, and Held} 2022

Citation
Citation
{Gadre, Ehsani, and Song} 2021

Citation
Citation
{Mo, Guibas, Mukadam, Gupta, and Tulsiani} 2021

Citation
Citation
{Wang, Wu, Mo, Ke, Fan, Guibas, and Dong} 2022

Citation
Citation
{Wu, Zhao, Mo, Guo, Wang, Wu, Fan, Chen, Guibas, and Dong} 2022

Citation
Citation
{Chen and Zhang} 2019

Citation
Citation
{Genova, Cole, Sud, Sarna, and Funkhouser} 2020

Citation
Citation
{Jiang, Sud, Makadia, Huang, Nie{T1ss }ner, Funkhouser, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Mescheder, Oechsle, Niemeyer, Nowozin, and Geiger} 2019

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2021

Citation
Citation
{Niemeyer, Mescheder, Oechsle, and Geiger} 2020

Citation
Citation
{Park, Florence, Straub, Newcombe, and Lovegrove} 2019

Citation
Citation
{Peng, Niemeyer, Mescheder, Pollefeys, and Geiger} 2020

Citation
Citation
{Sitzmann, Zollh{ö}fer, and Wetzstein} 2019

Citation
Citation
{Mu, Qiu, Kortylewski, Yuille, Vasconcelos, and Wang} 2021

Citation
Citation
{Jiang, Hsu, and Zhu} 2022

Citation
Citation
{Mu, Qiu, Kortylewski, Yuille, Vasconcelos, and Wang} 2021

Citation
Citation
{Jiang, Hsu, and Zhu} 2022



4 YUSHI DU*, RUIHAI WU*, YAN SHEN, HAO DONG†: LEARNING PART MOTION

One frame Two frames

Ambiguous orientations Deterministic orientation

Figure 2: Two point cloud frames are required for learning articulated part motions, as one
frame may indicate ambiguous motions (e.g., clockwise and anti-clockwise orientations).

3 Problem Formulation

Learning the motion of the articulated part on an object requires at least two frames of that
object under different poses (e.g., different door opening degree). That is because using
one frame as the observation would have an ambiguity problem, take Figure 2 as an exam-
ple, given an observation of a door, we cannot distinguish whether the revolute direction is
clockwise or anti-clockwise.

In this study, each object in training set provides two point cloud I1, I2 ∈ RN×3 under
different part poses. The model maps part motion to corresponding part pose scalar values
φ1,φ2 ∈ R representing the degree of articulation, and can 1) generate new point cloud I3
given a new part pose scalar φ3 ∈ R. 2) can few-shot generalise to novel object categories.

4 Method

As shown in Figure 3, our proposed framework is mainly composed of two procedures,
Spatial Transformation Grid Generation (Left) and Part Motion Generation (Right).

Spatial Transformation Grid Generation: As is described in 1. The distribution of the
movements of points on the articulated part possesses spatial continuity over the 3D space.
In this section, our framework receives a pair of articulated object point clouds with their
corresponding part poses ((I1, φ1),(I2, φ2)), as well as a new part pose φ3 as input. Then
output a Spatial Transformation Feature Grid G to extract such spatial continuous features
representing the part motions of articulated objects.

Part Motion Generation: In order to generate the object under pose φ3, we decode
the transformation matrices from φ1 to φ3 of each point from the Spatial Transformation
Feature Grid G. Firstly, with respect to a novel part pose φ3, our framework retrieves each
point p in I1’s transformation representation ψφ3 ∈ RN×dψ in Spatial Transformation Grid
G using trilinear interpolation. Then we decode each point’s transformation representation
into a transformation matrix tp, and thus all the points’ transformation matrix tp compose
the whole transformation matrix Tφ3 for the whole point cloud I1. Finally, we apply the
transformation matrices Tφ3 to I1 and get the point cloud Î3 under the articulated part pose
φ3. In the following sections, we show details of our proposed framework.

4.1 Spatial Transformation Grid Generation

In this procedure, we generate the Spatial Transformation Feature Grid G to extract the
spatial distribution of joint motion features.
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As mentioned in Section 1, the point motions on the articulated part surface make up a
continuous and smooth distribution with respect to point positions. Therefore, spatially con-
tinuous neural implicit representations are suitable for the representations of point motions.

Spatial Transformation Grid Generation
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Figure 3: Our proposed framework receives two point clouds I1 and I2 from the same
articulated object under two different part poses φ1 and φ2. Then generate the object point
cloud I3 with a new part pose φ3. It aggregates the geometric information of I1 and I2, and
the pose information of φ1 and φ2 into a spatially continuous Transformation Grid. During
inferencing, conditioned on the new part pose φ3, it decodes the transformation of each point
by querying each point in the Grid to generate the input object with the novel pose.

We build such a 3D grid with K ×K ×K points uniformly distributed in space (K = 32),
each point having implicit features representing both the object geometries and part motions.

To empower the learned Grid with both object geometries and part motions, the Spatial
Transformation Grid Generation procedure consists of two submodules: 1) Geometry
Encoder fgeo that takes two point clouds under different part poses (which is I1 and I2) as
input and outputs an implicit feature grid Ggeo; 2) Pose Encoder fart that takes part poses φ1,
φ2, φ3 respectively as input and outputs their respective features µ1,µ2,µ3 ∈ Rdµ , and then
concatenates µ1,µ2 into zart while passing down µ3 for further use. Finally, we concatenate
zart to each grid feature of Ggeo to form Transformation Feature Grid G:

Ggeo = fgeo(I1, I2),zart = fart(φ1, φ2),G = [Ggeo, zart ]

4.1.1 Geometry Encoder

Inspired by Ditto [14], to extract geometric information of the two input point clouds, we
first use PointNet++ [32] encoders to encode I1 and I2, and extract sub-sampled point cloud
features h1,h2 ∈RN′×d , where N′ denotes the point number after the sub-sampling procedure
of PointNet++, and we use N′ = 128 in our work.

To aggregate the features of the two input point clouds, we employ an attention module
between sub-sampled point features h1,h2 into an aggregated feature h:

h = [h1,so f tmax(
h1hT

2√
d
)h2]
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Then, we feed the aggregated feature h into a 3D-UNets [4]and generate 3D geometric im-
plicit feature grid Ggeo representing geometric information of the two input point clouds with
K ×K ×K uniformly distributed points.

4.1.2 Pose Encoder

We use Multi-Layer Perceptrons (MLP) to separately encode part poses φ1, φ2, φ3 into
articulation features µ1, µ2, µ3 ∈RN×dart , and concatenate µ1 and µ2 to form zart = [µ1,µ2].

We again concatenate zart with each point feature in Ggeo to form Spatial Transformation
Feature Grid G, containing spatially continuous implicit features about both the geometric
information and the pose information of the target object in the space.

4.2 Part Motion Generation

During the above Spatial Transformation Grid Generation procedure, we have generated
the Spatial Transformation Feature Grid G. In this Part Motion Generation procedure, we
use G to generate spatially continuously distributed point motions from I1 to the target I3.

Firstly, from G which is composed of K×K×K points uniformly distributed in the space
with their corresponding features, we query the feature fp under µ3 of each point p on the
articulated part using trilinear interpolation.

Then, we employ a motion decoder ftrans (composed of an MLP network) to decode the
transformation matrix tp from φ1 to φ3 of each point p on the articulated part. Taking pose
feature µ3 as conditions, our decoder obtain the corresponding tp and conduct elemental-wise
production to generate the point cloud prediction Î3 under the part pose φ3.

ψφ3 = Query(I1,G),Tφ3 = ftrans(ψφ3), Î3 = Tφ3 · I1

In this way, for those points on the articulated parts, their motions could be generated
smoothly from the spatially continuous distribution, keeping the part as a whole after the
motion, while maintaining the geometric details of them.

4.3 Training and Loss

Data collection. To generate diverse data for training, we randomly sample articulated part
poses φ1, φ2 and φ3 and then generate point cloud observation I1, I2 and I3 corresponding to
each part poses. Ascribing to the ability to get point could in simulator with arbitrary part
poses, we can generate diverse ((I1,φ1),(I2,φ2),φ3) for training.

Loss function. We use Earth Mover’s Distance (EMD) [33] as the loss function. EMD
is utilised to estimate the distance between two distributions. We can calculate the EMD
between two point clouds by calculating the minimum amount of point movements needed
to change the generated object point cloud into the target. In our work, with the input data
((I1,φ1),(I2,φ2),φ3), the EMD is computed between the ground truth point cloud I3 of the
articulated object with the part pose φ3, and our prediction Î3.

We set up a loss optimising whole point cloud and increase the weight of loss on movable
part to facilitate neat part formulation with smooth surfaces and fewer outliers.

Loss = EMD(I3, Î3)
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5 Experiments
We conduct our experiments using the large-scale PartNet-Mobility [2, 25, 39] dataset of
3D articulated objects, covering over 7 object categories. We evaluate the performance of
our method in several tasks including: 1) the articulated object generation for unseen objects
in training categories, 2) few-shot articulated object generation for novel object categories,
and 3) the interpolation and extrapolation of the spatial continuous NIR. Quantitative and
qualitative results compared to several baselines and an ablated version demonstrate our
method’s superiority over other methods.

5.1 Baselines and Metrics

We evaluate and compare our approach with the following two baselines and one ablation:
A-SDF [27] represents objects with a shape code and an articulation code. Given an

object, it first infers the shape and articulation codes and then generates the shape at unseen
angles by keeping the shape code unchanged and changing the articulation code.

Ditto [14] also takes two point clouds as input to learn the structure of an articulated
object. It directly predicts the occupancy, the segmentation, and the joint configuration to
build a digital twin. The original paper demonstrates the point cloud reconstruct ability, we
modify it to take a new part pose as input and then generate the corresponding object.

Ours w/o NIR is an ablated version of our method that directly predicts the transforma-
tion matrix for each point to generate the new point cloud without applying spatially contin-
uous NIR as a middle step. We conduct this ablation version to demonstrate the effectiveness
of our design using Spatial Transformation Feature Grid G.

To evaluate the generated objects and their similarity with the ground-truth objects, we
apply the Earth Mover’s Distance (EMD) [33] as the evaluation metric.

5.2 Evaluation on Unseen Objects in Training Categories

Method Laptop Stapler Door Scissors Oven Refrigerator Microwave Table

A-SDF 1.6923 3.9335 3.2459 1.9307 1.3983 2.2532 3.7570 1.8467

Ditto 1.6195 3.1161 2.9811 2.1619 1.3401 1.9863 4.8210 1.4010

Ours w/o NIR 1.6080 3.3369 2.5863 2.0628 1.1294 2.1539 1.9281 1.5189

Ours 1.4420 3.0850 2.2808 1.8025 1.1134 1.6431 1.8088 1.3315

Table 1: Earth Mover’s Distance (EMD) on object generation in training categories.

In this task, given an articulated object in the training category with two point clouds and
the corresponding part poses, we generate its point cloud with novel part poses.

The quantitative results in Table 1 demonstrate that our proposed framework outperforms
all other methods in all categories with lower EMD, which means that our generated artic-
ulated objects are the closest to the ground-truth shapes. The qualitative results in Figure 4
also show that our generated objects reserve the most detailed geometry. In comparison, the
performance of both Ditto and A-SDF is worse, for example, they both fail to predict the
door frame straightly, and fail to predict the microwave door surface smoothly.

The main reason for the difference is, A-SDF and Ditto directly decode the whole point
cloud into latent space, while ours takes the integrity of parts into consideration by querying
the motion of each point in the original point cloud. This one-to-one mapping from the
original shape to the generated shape best preserves geometric features of the original shape.
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Ours

Ours
(w/o NIR)

GT

Door Oven Microwave Table Stapler

Ditto

A-SDF

Scissors

Figure 4: Visualisation of generated objects in training categories shows our method
reserves the most detailed geometries of both articulated parts and object bases. For example,
our model predicts the straightest door frame and the smoothest microwave door surface.

5.3 Evaluation on Novel Categories

In this task, we use the pretrained model in one category and finetune the model in a novel
category using only a few objects for a few epochs. Specifically, we use 8 objects in the
novel category, and the finetuning time is one-twentieth of the training time from scratch.
It is worth mentioning that the directions of the articulated part axes in the training set and
finetuning set are different in these experiments (i.e., we train on the up-down opening ovens
and finetune on the left-right opening refrigerators.) This task aims to demonstrate that
learning the part motions of articulated objects makes the model easier to adjust to a novel
kind of articulated object, as it is the shared property of all articulated objects.

Method Oven-
Refri

Refri-
Oven

Door-
Laptop

A-SDF 37.7618 2.0164 2.2532

Ditto 3.9443 2.1832 2.3997

Ours w/o NIR 15.5203 1.6832 2.3547

Ours 2.5794 1.5440 2.0873

Table 2: Earth Mover’s Distance (EMD)
on object generation in novel categories.

The quantitative results in Table 2 show
that our method achieves significantly better
results with lower EMD compared to all the
baselines, especially in the Oven-Refrigerator
block. The visualisation results of Figure 5
also show that our method present the most ac-
curate part poses and the most precise part ge-
ometry after a short-period finetuning.

Failures of A-SDF possibly come from
that, the representations learned by A-SDF are
limited to the trained articulated object cate-
gory and are hard to adjust to novel shapes and
articulations.
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Ours

A-SDF

Ours
(w/o NIR)

Ditto

GT

Refrigerator-
Oven

Door-
Laptop

Oven-
Refrigerator

Figure 5: Visualisation of generated
objects in novel categories shows our
method maintains geometric consistency.

We have also conducted experiments us-
ing the widely-used metric Pose Angle Error
(PAE) and Chamfer Distance (CD), with re-
sults shown in Table 3.

Our superior performance in novel cate-
gories against Ditto mainly comes from the use
of transformation matrix to represent part mo-
tion. Intuitively, a transformation matrix could
represent any kind of motion in 3D space and
is spatial continuous for points on the motion
part. As a result, it has the potential to few-
shot generalise to any kind of part motion no
matter its displacement.

5.4 Ablation Studies and Analysis

We compare our method with the ablated ver-
sion without Neural Implicit Representations
(Ours w/o NIR). Results in Table 1 and Ta-
ble 2 show that NIR helps the generated point
cloud to be closer to the ground-truth target,

representing by the lower EMD between the generated objects and the ground-truth objects.
From the visualisation in Figure 4 and Figure 5, we can observe that the point clouds gen-
erated with NIR have more accurate part pose and smoother part surface. Those results
demonstrate that by using Spatially Continuous Neural Implicit Representation to model the
part motion, our framework gets a better distribution for motion representations in the 3D
space.

5.5 Analysis of Transformation on Grid Points

Metric A-SDF Ditto Ours

CD ↓ 2.213 2.019 1.782
PAE (degree) ↓ 6.457 6.212 4.767

Table 3: Evaluations on CD and PAE.

Figure 6 visualises the transformation grid
of a refrigerator instance (in the first row)
and an oven instance (in the second row).
The figures on the left are displayed in 3D
while the right ones are displayed in 2D.
Note that for better visualisation and un-
derstanding, on the right, we represent the
refrigerator in the top-down view, and rep-
resent the oven in the side view. The arrows forging circles centreing the ground-truth joint
show that our model successfully projects the part motion to euclidean space.

5.6 Interpolation and Extrapolation
Interpolation and extrapolation between shapes is a key ability for 3D object representations
which reveals the distribution of articulation part poses.

In this task, given two shapes of the same object, we generate the object with novel artic-
ulation degrees in between or beyond. In Table 4, quantitative results show that our method
outperforms A-SDF and Ditto in both interpolation and extrapolation tasks. In Figure 6,
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Figure 6: Visualisation of the transformation on grid points (left), and results of inter-
polation and extrapolation (right).

Method Fridge Oven Door Table Fridge Oven Door Table

A-SDF 4.1248 1.6185 2.8883 8.3870 4.2671 2.5514 5.3937 8.0931

Ditto 3.2421 1.2861 2.5974 9.8180 3.1738 1.9405 4.4676 8.5025

Ours 2.1256 1.2364 2.1330 8.1688 2.8376 1.7669 3.5298 7.0804

Table 4: EMD on interpolation (Left) and extrapolation (Right) results.

we represent the input parts with dark and light green, and the generated part with medium
green. The results demonstrate our representation of part motion is continuous and dense.

5.7 Multi-part Generation

50, 10 10, 5 90, 75

Figure 7: Multi-part object generation.

Our method can easily extend to objects with
multiple parts by changing the input part angle
to a vector of part angles, shown in Figure 7.

6 Conclusion
In this paper, we propose a novel framework for modelling and generating articulated ob-
jects. To model the continuous articulations and motions smoothly, we adopt neural implicit
representations (NIR) to predict the transformations of moving part points of the object.
Experiments on different representative tasks demonstrate that our proposed framework out-
performs other methods both quantitatively and qualitatively.
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