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Abstract

Surface reconstruction from point clouds is a fundamental task in computer vision
and graphics. Recent methods learn neural fields as a surface representation from point
clouds. However, these methods are difficult to scale to large scenes due to the limited
size of the point clouds they can handle. In this paper, we propose a point cloud sam-
pling method to improve scalability for training a surface reconstruction network. We
train the surface reconstruction network with sampled point clouds obtained from a sam-
pling network. In the sampling network, we introduce a seed point that serves as the
origin to sample point clouds from partial regions. It encourages the surface reconstruc-
tion network to learn both the global structure and local geometry on a part of the scene.
We also introduce a split-and-merge approach to avoid increasing the memory footprint
by suppressing the input size to the sampling network. Experimental results on Scan-
Net dataset show that the proposed method significantly improves surface reconstruction
performance compared with state-of-the-art methods.

1 Introduction
Reconstruction of object or scene surfaces from three-dimensional (3D) point clouds is a
fundamental task in computer vision and graphics. It is essential to drive numerous prac-
tical applications such as virtual/augmented reality, autonomous navigation, and computer
animation. Traditional methods have tackled the task through mathematical optimization
with specific geometric priors based on triangulation [1, 7], smoothness [16, 17], and tem-
plate [21, 29]. On the other hand, the learning-based methods [11, 23, 39] worked on ex-
plicitly reconstructing the surfaces from the point clouds. Recently, the representation of
surfaces as neural fields has attracted a great deal of attention due to their fidelity and flex-
ibility [2, 4, 15, 24, 25, 30, 33]. These methods learn the neural fields that can extract
zero-level surfaces by mapping the positions of 3D points to binary occupancy values [25]
or signed distance values [30]. The neural fields being continuous representations allow the
reconstructed surfaces to represent high-resolution geometry of arbitrary topology.

The representative methods [25, 30] with neural fields encode the entire 3D shape into a
global feature. These methods are limited to a single object since they cannot represent local
geometry well. Aiming at better scalability for large scenes, many subsequent methods have
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been proposed. Several methods [33, 37] divide the 3D space into regular grids and encode
the input shape into a feature grid with a grid-based convolution. Also, several methods [3,
15] divide the input shape into multiple partial shapes and encode them individually. A
more recent method [2] encodes each input point with a point convolution to preserve direct
connections between features and points. However, this method still has limited scalability
since memory requirements increase in proportion to the size of the input point clouds.

Point cloud sampling before performing a target task is widely used in order to reduce the
input size in the pre-processing step. The most common methods are random sampling and
farthest point sampling [10, 27]. Point clouds sampled by these methods lose local geometry
details since their points are sampled in a spatially uniform manner. Although other sam-
pling methods [5, 12, 35] focus on specific properties such as edges, contours, and curvature
to achieve sampling that preserves local geometry details, these methods do not consider
the downstream tasks. Several learning-based methods [9, 19, 41] sample point clouds op-
timized for a downstream task by introducing a task loss, measured with the sampled point
cloud. However, these methods mainly focused on improving computational efficiency for
inference, with little exploration of better scalability for training.

In this paper, we propose a learning-based point cloud sampling method to improve
scalability for training a surface reconstruction network based on neural fields. We train
the surface reconstruction network with sampled point clouds obtained from a sampling
network. The sampling network aims to sample point clouds that encourage the surface
reconstruction network to learn both the global structure and local geometry on a part of the
scene. To this end, we introduce a seed point that serves as the origin for sampling from
partial regions. The sampling network samples points using features weighted by distances
from the seed point. We also design loss functions regarding point sampling modified in a
probabilistic manner to make the sampling operation differentiable. This makes it possible
for the proposed method to sample both points around the seed point and points far from it
during training. The sampled point cloud does not necessarily preserve the entire input shape
and may represent a partial shape. However, uniformly selected seed points cover most
regions of the input shape throughout the training. This partial sampling of the proposed
method is beneficial for scaling the training to large scenes, even when the input size that
can be handled is limited. Furthermore, we also propose a split-and-merge approach to avoid
increasing the memory footprint for sampling. This approach suppresses the input size to the
sampling network by splitting the input point cloud, and then merging the sampling results
to construct the final sampled point cloud. As a result, the proposed method achieves better
performance in terms of surface reconstruction compared to the previous sampling methods.

The main contributions of this paper can be summarized as follows:
• We propose a novel method to learn neural fields as a 3D surface representation using

point clouds sampled with a learnable sampling network. To the best of our knowl-
edge, our work is the first to propose learning-based sampling to improve the scalabil-
ity of surface reconstruction with neural fields.

• We propose a sampling network considering a seed point to sample points that rep-
resent both global structure and local geometry on a part of the scene. With loss
functions modified in a probabilistic manner, the sampling network can sample both
points around the seed point and points far from it.

• We introduce a split-and-merge approach that suppresses the input size fed into the
sampling network in order to avoid increasing the memory footprint.

• We experimentally show that the proposed method samples more effective point clouds
to improve surface reconstruction performance compared to state-of-the-art methods.
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2 Related Work

2.1 Neural Surface Reconstruction

We focus on surface reconstruction from point clouds based on neural fields. Recently, neu-
ral fields have achieved remarkable success in the field of surface reconstruction from point
clouds. Global methods [25, 26, 30] that encode the entire shape into a feature space are
limited in their ability to capture local geometry details, making it difficult to scale to large
scenes. Subsequent methods [3, 6, 15, 33, 37, 38] for training neural fields in local re-
gions have been proposed in order to capture more detailed geometry. These methods divide
the input point cloud with regular grids or patches, and train neural fields locally using the
partial point clouds. However, these methods involve additional limitations such as the non-
direct connections between features and points, the requirement for oriented normals, and
slow inference speed. To overcome these limitations and achieve better scalability, a recent
method [2] extracts features for each input point using a point convolution. This method ex-
tracts point-wise features from entire input point clouds using a U-Net-like architecture, and
then performs weighted interpolation with neighbors of query points to obtain local features.
Although this method achieves faithful reconstruction of large scenes, its scalability is still
limited since the memory requirements increase with the number of input points.

2.2 Point Cloud Sampling and Simplification

Point cloud sampling and simplification have been studied to reduce the size of point clouds
while preserving appearance quality and geometric properties. They are beneficial for im-
proving the efficiency of storage, transmission, and computational processing associated
with downstream tasks. Although many methods [5, 12, 20, 32, 34, 35, 44] reduce the size
of point clouds while focusing on specific properties such as edges, contours, and curvature,
they do not take the downstream tasks into account. Recently, learning-based point cloud
sampling methods [9, 19, 41] have been proposed to achieve optimal performance on down-
stream tasks. Unlike previous methods, they do not necessarily aim to preserve the appear-
ance quality and geometric properties. In these methods, a task network is first trained, then
a sampling network is trained with the frozen task network. The computational efficiency
of the task network is improved at inference with sampled point clouds. Therefore, these
methods are not suitable for training task networks when computational resources are lim-
ited. Furthermore, although these methods sample points that preserve the global structure
of the input point clouds, they cannot guarantee that the local geometry will be preserved. In
contrast, the proposed method trains the sampling network for surface reconstruction while
focusing on preserving both the global structure and local geometry on a part of the scene.

3 Proposed Method
The proposed method aims to sample points to encourage the surface reconstruction network
based on neural fields to learn both the global structure and local geometry on a part of the
scene. We train neural networks for sampling and surface reconstruction while feeding point
clouds sampled by the sampling network to the reconstruction network. In the following,
we explain the pipeline of the proposed method in Section 3.1, the sampling network in
Section 3.2, and the training details in Section 3.3.
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Figure 1: Overview of the proposed method: (a) pipeline; (b) sampling network. The pro-
posed method feeds a point cloud Q sampled from the input point cloud P to the recon-
struction network. The weights of two sampling networks are shared in (a). The sampling
network samples a point cloud Q′ from a size-suppressed point cloud P′ with a seed point s.

3.1 Pipeline

Figure 1 (a) illustrates a pipeline of the proposed method. Given an input point cloud
P ∈ RN×3, the proposed method constructs a sampled point cloud Q ∈ RM×3 (Q ⊆ P) using
a learnable sampling network. Then, Q is fed into a reconstruction network.

The pipeline consists of the two branches drawn at the upper and lower of Figure 1 (a).
The upper one is for training the sampling network while suppressing the size of inputs. The
lower one is for constructing a sampled point cloud from size-suppressed inputs. This point
cloud is constructed to be fed into the reconstruction network. The weights of the sampling
networks in these branches are shared. We describe the components of the pipeline below.

Initial Sampling. If the number of input points N increases due to the scale of the scenes, the
computer may run out of memory. To avoid this, we first sample a point cloud P′ ∈ RN′×3

from the P using a random sampling method. Then we feed the point cloud P′ into the
sampling network and obtain further sampled point cloud Q′ ∈ RM′×3. The point cloud Q′

is used to measure the loss values with respect to the sampling network. Let rinit and rnw be
the sampling rates of the initial sampling and sampling network, respectively. The size of P′

and Q′ are represented as N′ = round(rinitN) and M′ = round(rnwN′), respectively.

Selecting Seed. We introduce a seed point to encourage the reconstruction network to cap-
ture the detailed geometry on a part of the scene. This is accomplished by our sampling
network intensively sampling points from a local region around the seed point. In practice,
given the input points P′, we randomly select one of them. Let it be the seed point s ∈ R3.
During training, spatially uniform seed points are selected through an iterative process.

Uniform Splitting. We propose a split-and-merge approach to sample a point cloud Q from
a point cloud P while suppressing the input size to the sampling network. We first split
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the P into D point clouds while preserving spatial uniformity. Specifically, we generate
D point clouds by iteratively applying a random sampling method to the P while exclud-
ing points sampled so far from the P. The obtained set of the point clouds is denoted as
{P′

i ∈ RN′×3}D
i=1. Here, we use a sampling rate rinit common to that of the initial sampling.

Therefore, it becomes D= round(1/rinit). All of these point clouds retain the global structure
of the input point cloud P, with no point overlap.
Merging Points. We feed P′

i into the sampling network instead of P to suppress the input
size. This process is performed sequentially for each P′

i while freezing model parameters of
the sampling network. Here, a common seed point s is fed into the sampling network along
with each P′

i. Then, we obtain a set of sampled point clouds {Q′
i ∈ RM′×3}D

i=1. Finally, we
merge them to construct a sampled point cloud Q ∈ RM×3. This can be considered as an
approximation of the sampling results from the original input P.
Reconstruction Network. We feed the sampled point cloud Q to the reconstruction network
based on neural fields. The network requires a set of query points, which are usually sampled
uniformly within the object’s bounding box [25] or near the object’s surfaces [24]. In the
proposed method, the input shape may become partial due to the sampling, which causes
differences in distribution from the query points. To address this, we pre-associate points in
the input point cloud P with their neighboring query points. Then, we use the query points
associated with the sampled input points Q during training.

3.2 Sampling Network
We propose a sampling network for point clouds considering the seed point. Figure 1 (b)
shows the architecture of the network. The network takes a point cloud P′ = {p′

i ∈ R3}N′
i=1

and a seed point s ∈ R3 as inputs, and outputs a sampled point cloud Q′ = {q′
i ∈ R3}M′

i=1.
Encoder. Given a point cloud P′, we extract features with an encoder network parameterized
by θ . The encoder network consists of multi-layer perceptrons (MLP) and graph neural
networks (GNN). The MLP is composed of eight fully-connected layers followed by the
ReLU activation function [28]. The GNN following the MLP is also activated with the ReLU
function. The GNN captures local geometry information for each point from its k-nearest
neighbor (NN) graph. Let θ(p′

i) denote a feature for i-th point p′
i.

Distance Weights. We introduce distance weights to represent the relevance between the
seed point and each input point in the feature space. We adopt the Euclidean distance as the
distance metric. The weight wi for the i-th feature is calculated according to the distance of
the point from the seed point using the Gaussian function as follows:

wi = e−
∥s−p′i∥

2

σ2 (1)

where s is the seed point, p′
i is the i-th input point, ∥ ·∥ is the L2-norm, and σ is a smoothing

parameter. We obtain a weighted feature by multiplying the feature θ(p′
i) by the weight wi.

Then, we refine the weighted features using an MLP with parameters ϕ .
Decoder. We predict sampling scores S(p′

i) ∈ R for points p′
i with a decoder network from

features fi. We generate the features fi by concatenating the point coordinates p′
i, the ex-

tracted features from the encoder, and the weighted features as follows:

fi = p′
i ⊕θ(p′

i)⊕ϕ(wi ⊗θ(p′
i)), (2)

where ⊕ and ⊗ represent the concatenate operation and the element-wise product, respec-
tively. The architecture of the decoder network is a shallow MLP. All fully connected layers
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are followed by batch normalization [14] and the ReLU activation function [28], except for
the last prediction layer.
Point Sampling. The sampling score indicates the probability that the point is present in the
sampled point cloud. We select a set of points {q′

i}M′
i=1 corresponding to the top M′ values

of the predicted sampling scores S(p′
i), denoting the sampled point cloud Q′. Therefore, the

point cloud Q′ is a subset of P′. Lastly, the sampling network outputs the Q′.

3.3 Training
We train the sampling network and the reconstruction network while feeding the sampled
point clouds to the reconstruction network. We introduce a mean squared error (MSE) loss
Lmse and a repulsion loss Lrep as loss functions modified in a probabilistic manner regarding
point sampling. Therefore, we train the sampling network by minimizing the following total
loss L:

L= Lmse +αLrep, (3)
where α is a parameter to balance each term. We describe these loss functions below.
MSE Loss. We introduce a loss function to encourage the sampling network to intensively
sample points from a local region around the seed point. To this end, we define the MSE loss
between the seed point s and the input points to the sampling network P′. We modify the
MSE loss in a probabilistic manner to make the sampling operation differentiable as follows:

Lmse =
1
N′

N′

∑
i=1

g(S(p′
i))∥s−p′

i∥2, (4)

where S(p′
i) is the predicted sampling score for the point p′

i, g(·) is the sigmoid function
applied to stabilize the training.
Repulsion Loss. We encourage the reconstruction network to learn not only the local ge-
ometry, but also the global structure on a part of the scene. Therefore, we also introduce a
repulsion loss [42, 43] to make sure that points far away from the seed point are sampled.
The loss function penalizes each point in the sampled point cloud Q′ when its neighbors are
too close. As with the MSE loss, we modify the loss in a probabilistic manner as follows:

Lrep =
1

M′ ·K

M′

∑
i=1

∑
j∈N (q′i)

g(S(q′
j))η(∥q′

i −q′
j∥)ω(∥q′

i −q′
j∥), (5)

where N (q′
i) is the index set of the K-NN of the point q′

i∈ Q′ excluding i itself, η(a) =−a,
ω(a) = e−a2/b2

, and b is a parameter that determines the range of influence.
We train the reconstruction network with the reconstruction loss Lrec defined in a recon-

struction method applied to the proposed pipeline. Here, we input the sampled point cloud
into the reconstruction network and measure the reconstruction loss. Therefore, the recon-
struction network can be optimized for the point clouds sampled by the sampling network.

4 Experiments
We experimentally demonstrate that the point clouds sampled with the proposed method
are beneficial for the training of the reconstruction network. We adopt POCO [2] for the
reconstruction network, the state-of-the-art surface reconstruction method based on neural
fields. At testing, surfaces are reconstructed with the marching cube algorithm [22].
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4.1 Experimental Setups
Dataset. We use ScanNet-v2 [8] as the main dataset to evaluate the proposed method by
performing experiments on a scene-level surface reconstruction. The ScanNet-v2 dataset
consists of large-scale 3D models acquired with an RGB-D sensor from real-world scenes.
We split the dataset into 1201/312/100 models for training/validating/testing according to
the provided lists. We generated watertight models from the original models with a manifold
surface generation method [13] since the dataset does not provide them. We use uniformly
sampled points on the surfaces of each model as input point clouds. For training and vali-
dating, query points are sampled uniformly from near the surfaces. Occupancy values that
represent inside/outside information of the surface are computed for the query points.
Evaluation Metric. We evaluate the surface reconstruction performance to validate the ef-
fectiveness of the proposed method. Following [25], we adopt intersection over union (IoU),
Chamfer distance (CD), and normal consistency (NC) as evaluation metrics. We use the
L1-norm as the point-to-point distance measure when computing the CD. These metrics are
measured between randomly sampled points from the reconstructed surface and ground truth
surface as approximations of deviations between two surfaces.
Implementation Detail. We implemented the proposed method using PyTorch [31]. To
train our model, we used the Adam optimizer [18] with a learning rate of 0.001. We set
the batch size to 8 and train the model for 100k iterations. We empirically use α = 0.1 in
Eq. (3). The reconstruction loss Lrec is a cross entropy loss [2] for occupancy prediction.
We set the sampling rate for the initial sampling and sampling network to rinit = 0.1 and
rnw = 0.1. Thus, the number of splits is D = 10. The size of point clouds P, P′, Q′ and Q are
N =100k, N′ =10k, M′ =1k, and M =10k, respectively. The number of query points used to
train the reconstruction network is 10k. We set σ = 1.0 in Eq. (1), and K = 4 as in [42] and
b = 1.0 in Eq. (5). The dimensions of the features θ(p′

i), ϕ(wi ⊗ θ(p′
i)) and fi are 64, 64,

and 131, respectively. The neighborhood size used in the GNN is set to k = 7 as in [34]. To
achieve better reconstruction performance, we use unsampled input point clouds P of size N
for testing1. All experiments are conducted on a computer equipped with a NVIDIA RTX
A6000 GPU, Intel Core i9-13900K CPU (3.0 GHz), and 128 GB of RAM.

4.2 Comparison with State-of-the-art Methods
Comparison Methods. We conduct comparisons with previous point cloud sampling and
simplification methods. For the comparison, we choose the random sampling method as a
Baseline. We also compare the proposed method to the state-of-the-art learning-based meth-
ods, SampleNet [19] and RPCS [34]. For training SampleNet, we first trained the recon-
struction network with input point clouds of size N since SampleNet requires a pre-trained
task network. We then trained SampleNet to sample M points from point clouds of size N
using the frozen pre-trained reconstruction network. RPCS is trained independently to gen-
erate a simplified point cloud of size M since it does not require a task network. We train the
reconstruction network using a point cloud of size M constructed by each method as inputs.
Quantitative Evaluation. Table 1 summarizes the surface reconstruction performance with
POCO. SampleNet tends to sample spatially uniform points since it does not consider the
preservation of local geometry. As a result, a similar performance to the Baseline is ob-
served. RPCS constructs point clouds that are beneficial for learning the local geometry

1We do not apply scene scaling [2] since it degraded reconstruction performance in our preliminary experiments.
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Table 1: Surface reconstruction performance. CD is
scaled by 102. ↑ (↓) denotes higher (lower) is better.

POCO ALTO
Method IoU ↑ CD ↓ NC ↑ IoU ↑ CD ↓ NC ↑
Baseline 0.810 0.310 0.923 0.800 0.323 0.918
SampleNet [19] 0.811 0.308 0.925 0.805 0.319 0.919
RPCS [34] 0.840 0.306 0.936 0.801 0.320 0.915
Ours 0.924 0.291 0.948 0.828 0.309 0.928

Figure 2: Increase in memory
footprint as a function of the
number of splits D.

Baseline                        SampleNet RPCS                                  Ours 

Figure 3: Sampled point clouds. Gray and green points represent the input and sampled
point clouds, respectively. The red point represents the seed point in the proposed method.

since it intensively samples points with high curvature. Therefore, a reasonable performance
improvement is confirmed. However, it still tends to sample points with high spatial uni-
formity, limiting the amount of improvement. The proposed method achieves the best per-
formance in all metrics. The proposed method preserves local details around the seed point
while sampling points far from it. This encourages the reconstruction network to learn both
global structure and local geometry on a part of the scene, resulting in a significant improve-
ment. Table 1 also shows the performance when ALTO [40] is adopted as the reconstruction
network in order to verify the effectiveness of the proposed method for different surface re-
construction methods. Even in this case, it can be seen that the proposed method achieves
superior surface reconstruction performance compared to the other methods.

We also evaluate the memory efficiency of the proposed method. Figure 2 shows the
increase in the memory footprint of the proposed method for training compared to the Base-
line. Here, we draw it as a function of the number of splits D to verify the effectiveness of
our split-and-merge approach. In this experiment, the memory footprint of the Baseline is
20.5 GB. It can be seen that the increase in memory footprint decreases rapidly as D be-
comes larger. The input size to the reconstruction network is the same across all D. On the
other hand, the input size to the sampling network is effectively suppressed in proportion to
the value of D. As a result, memory efficiency improves as D becomes larger. Therefore,
the proposed method significantly improves surface reconstruction performance when using
D = 10, with only a 2.8% additional memory footprint. Although the size of sampled point
cloud Q increases with the size of input point cloud P, the proposed method can suppress the
size of Q to the acceptable range of memory by adjusting the sampling rates rinit and rnw.
Qualitative Evaluation. We qualitatively evaluate the sampled point clouds and the recon-
structed surfaces. Figure 3 illustrates the sampled point cloud from the input point cloud.
Gray and green points represent the input and sampled point clouds, respectively. A red
point in the proposed method represents the seed point. Baseline samples points randomly.
It is observed that SampleNet samples point clouds with higher spatial uniformity than Base-
line. RPCS samples to preserve points with high curvature and does not sample much from
flat areas. It can be seen that the proposed method samples points intensively around the seed
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Figure 4: Sampled point clouds for various seed points in the proposed method.

Ground truth           Baseline                   SampleNet RPCS                       Ours

Figure 5: Reconstructed surfaces. The upper row represents the overall view, and the lower
represents a partially enlarged view. White spaces represent areas with no data.

Table 2: Ablation study. CD is scaled by
102. ↑ (↓) denotes higher (lower) is better.

Method IoU ↑ CD ↓ NC ↑
k-NN sampling 0.647 2.182 0.896
Random query 0.852 0.306 0.930
Remove Lmse 0.804 0.313 0.919
Remove Lrep 0.918 0.294 0.944
Complete 0.924 0.291 0.948

Ground truth k-NN Sampling          

(a) 　　 (b)
Figure 6: Results of k-NN sampling: (a) sam-
pled point cloud; (b) reconstructed surface.

point, while also sampling points far from it. In the proposed method, various seed points
are selected from the input points during training, as shown in the examples in Figure 4.

Figure 5 visualizes the reconstructed surfaces. The upper row represents the overall view,
and the lower represents the partially enlarged view. Comparison methods have low recon-
struction accuracy for local geometry details, resulting in distortion and rough surfaces. On
the other hand, it can be seen that the proposed method reconstructs surfaces more faithfully
compared with the other methods. This is because the proposed method makes it possible
for the surface reconstruction network to learn the local geometry on a part of the scene.

4.3 Ablation Study
We provide ablation studies to verify how the design choices made in the proposed method
impact the final results.
k-NN Sampling. Row 1 in Table 2 shows the results of constructing a sampled point cloud
Q with k-NN search from the seed point instead of our sampling network. This constructs
a locally concentrated point cloud as shown in Figure 6 (a), and the reconstruction network
can hardly learn the global structure. This often leads to large distortions in the reconstructed
surfaces as shown in Figure 6 (b).
Query Points. Row 2 in Table 2 shows the results of randomly selecting query points without
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Table 3: Generalization ability with POCO. CD is
scaled by 102. ↑ (↓) denotes higher (lower) is better.

Scene3D Replica
Method IoU ↑ CD ↓ NC ↑ IoU ↑ CD ↓ NC ↑
Baseline 0.721 0.250 0.938 0.650 0.258 0.949
SampleNet [19] 0.726 0.244 0.939 0.668 0.255 0.951
RPCS [34] 0.718 0.256 0.934 0.634 0.273 0.942
Ours 0.848 0.238 0.947 0.850 0.235 0.958

Figure 7: Processing time of the
sampling network as a function
of the number of splits D.

associating them with input points. In this case, the reconstruction performance is degraded
due to the difference in the distribution of sampled points and query points.
Loss Functions. Rows 3 and 4 in Table 2 show the results when each loss term in Eq. (3)
is removed. If these losses are removed, it can also be seen that the reconstruction perfor-
mance is degraded. When removing the MSE loss, local geometry details are lost due to
spatially uniform sampling. If the repulsion loss is removed, it becomes difficult to capture
the global structure since the sampled points are concentrated around the seed point. We
have explored a parameter α that achieves the proper balance of these losses. Therefore, the
best performance is obtained from the complete proposed method.
Generalization. We evaluate the generalization ability of all methods on the scene-level
datasets Scene3D [45] and Replica [36]. Table 3 shows the surface reconstruction perfor-
mance tested on these datasets with POCO trained on the ScanNet-v2 dataset. As can be
seen, the proposed method achieved better generalization to both datasets.
Sampling Efficiency. We provide processing time of the sampling network as a function
of the number of splits D in Figure 7. Note that these are the total sampling times for all
split point clouds. The processing time tends to become shorter as D becomes larger. This
is because the sampling network involves processes such as k-NN graph construction, where
computational complexity increases non-linearly with the size of input point clouds.

Figure 8: Chamfer distance as
a function of sampling rate rnw.

Sampling Rate. We investigate the effect of the sampling
rate of the sampling network rnw on the surface reconstruc-
tion performance. Figure 8 shows the CD as a function of
the sampling rate. The performance tends to degrade with
lower sampling rates, while the performance remains al-
most the same when the sampling rate is above 0.1. This
indicates that a performance close to that of a sampling
rate of 1 can be achieved at much lower sampling rates.

5 Conclusions
In this paper, we proposed a point cloud sampling method to improve the scalability of
surface reconstruction with neural fields. We introduced a seed point that serves as the
origin to encourage the sampling network to sample point clouds from partial regions of
the scene. Our split-and-merge approach allowed the construction of sampled point clouds
while suppressing the input size to the sampling network. Experimental results show that the
proposed method improves the performance of the surface reconstruction while avoiding an
increase in memory footprint for training. In the future, we will explore ways to extend the
proposed method to train the reconstruction network without ground truth.



MATSUZAKI, NONAKA: POINT CLOUD SAMPLING PRESERVING LOCAL GEOMETRY 11

Acknowledgement

These research results were obtained from the commissioned research (No. 06801) by Na-
tional Institute of Information and Communications Technology (NICT) , Japan.

References
[1] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel

Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on
Visualization and Computer Graphics, 5(4):349–359, 1999.

[2] Alexandre Boulch and Renaud Marlet. POCO: Point convolution for surface recon-
struction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6302–6314, 2022.

[3] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Love-
grove, and Richard Newcombe. Deep local shapes: Learning local SDF priors for
detailed 3D reconstruction. In Proceedings of the European Conference on Computer
Vision, pages 608–625. Springer, 2020.

[4] Chao Chen, Yu-Shen Liu, and Zhizhong Han. Latent partition implicit with surface
codes for 3D representation. In Proceedings of the European Conference on Computer
Vision, pages 322–343. Springer, 2022.

[5] Siheng Chen, Dong Tian, Chen Feng, Anthony Vetro, and Jelena Kovačević. Fast
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